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概要

これは 2025年度の「宇宙物理概論」（原田担当部分）の講義ノートです。合計７回の講義

です。ミニマムしか扱いませんので、宇宙物理学に関する網羅的な知識を得ることを目指

しません。ただし宇宙物理学は人によって何をミニマムとするのか全然違う学問でもあり

ます。具体的には、基礎の基礎を身に着けたあと、宇宙物理学を広く浅く概観します。も

ちろん興味のある課題はもっと深く勉強してください。

これは暫定版です。いろいろとたくさんの誤りがあると思うので指摘してください。ま

た皆さんの質問等に対してコメントも入れていきます。そしてこの学期の最後にその時の

最新版を公開する予定です。
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第 1章

天文学・宇宙物理学の基本概念 (1)

宇宙物理学と素粒子物理学は 16世紀以降の近代物理学の発展に伴ってほぼ一体として

発展してきました。一方、天文学はそれよりずっと古い歴史がありますが、現代物理学に

親しんだ我々からみると少しなじみにくいところがあります。そのあたりを自由自在に行

き渡れるようにすれば両方のいいところを使うことができるようになるでしょう。そのな

じみにくさの最たるところが単位や指標に関わるところですので、それを含めて２回の講

義でマスターしていきましょう。

1.1 単位系と物理定数

1.1.1 MKS単位系と cgs単位系

みなさんが高校まで習った物理では単位系は MKSA あるいは SI をとっていたと思い

ますが、宇宙物理学・素粒子物理学ではごく最近までほぼすべての論文で cgs 単位系を

とっていました。今はこの２つの単位系が併存していますが cgsが主流です。この講義で

も cgs単位系を基本にしていきましょう。MKSと cgsの関係は

1m = 100cm, 1kg = 1000 g (1.1.1)

によって換算できます。現在の時間と長さの単位の決め方は、

� 1秒=原子量 133のセシウム原子の基底状態の２つの超微細準位間遷移の振動によ

る周期の 9192631770倍

� 1m=真空中の光が 299792458分の 1秒間に進む距離

となっています。これによって真空中の光速は 299792458 m/sという定義値になります。
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SI 接頭辞というものが３桁ごとに決まっています。その他に慣用的に使われている

100, 10, 0.1, 0.01に対応する接頭辞もあります。大きい方から小さい方に並べると

� 1015: P (peta)

� 1012: T (tera)

� 109: G (giga),

� 106: M (mega)

� 103: k (kilo)

� 102: h (hecto)

� 101: da (deca)

� 1

� 10−1: d (deci)

� 10−2: c (centi)

� 10−3: m (milli)

� 10−6: µ (micro)

� 10−9: n (nano)

� 10−12: p (pico)

� 10−15: f (femto)

MKSでは m, kg, sが基本単位です。cgsでは cm, g, sです。これらですべての力学量

を表すことができます。電磁気学ではこれに加えて A （アンペア）を用います。

基本単位だけでは不便なことも多いので、基本単位の組み合わせで作られる組立単位を

用いることも多いです。主な組立単位として、エネルギーの単位があります。MKSでは

J（ジュール）、cgsでは erg（エルグ）が使われます。エネルギーの単位は仕事の単位で

すから

J = kg ·m2/s2, (1.1.2)

erg = g · cm2/s2 (1.1.3)

です。これより
J = 107erg (1.1.4)

という換算公式が得られます。

また電磁気学で使われる組立単位は Aを用いて

� クーロン: C = A · s
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� ワット: W = J/s

� ボルト: V = W/A = J/A/s

です。

1.1.2 物理定数と便利な式

関連して主な物理定数を上げておきましょう。

� 重力定数 G ≃ 7× 10−8 cm3g−1s−2

� Boltzmann定数 kB ≃ 1.4× 10−16 erg/ K

� 換算 Planck定数 ℏ ≃ 1× 10−27 erg·s
� 素電荷 e ≃ 1.6× 10−19 C

� 陽子質量 mp ≃ (1/NA) g ≃ 1.7× 10−24 g

� Avogadro定数 NA ≃ 6× 1023

ここで Boltzmann定数の意味について考えます。これは統計力学で初めて現れる定数

ですが、実は熱力学でも理解できます。理想気体の状態方程式はモル数を N とすれば気

体定数を R とすると PV = NRT ですが、これを粒子数 nを用いると P = nkBT と書

けます。したがって、Boltzmann定数は kB = R/NA と書かれるということです。

また、E = kBT という式からわかるように、温度 [K]とエネルギー [erg]を換算するた

めの定数でもあります。kB = 1.4× 10−16erg/Kであるということは、

1.4× 10−16erg = 1K (1.1.5)

であるということです。

もともと NA の定義は、12Cが NA 個あると 12 gになるというものでした。12Cには

核子（中性子と陽子）が 12個含まれ、それぞれの質量はほぼ全て陽子の質量に等しいの

で、mp ≃ (1/NA) gになるというわけです。

エネルギーの単位として、ergや Jの他に大事な単位として eV（エレクトロンボルト）

があります。C = A · s、V = W/A = J/A/sですから、

eV ≃ 1.6× 10−19J = 1.6× 10−12erg (1.1.6)

となります。これは電子が 1Vの電圧で加速されたときになされる仕事です。eVは素粒

子・宇宙物理学分野でエネルギーの単位として広く使われています。eVを用いると ℏに
対して

ℏc ≃ 200MeV · fm (1.1.7)
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という式が出てきて、これが意外と便利です。

あと覚えておくと便利なのは (1.1.5)と (1.1.6)から得られる関係

� 1eV ≃ 104K

です。

また Einstein の質量とエネルギーの等価性の式 E = mc2 があります。そこで覚えて

おくと便利なのは

� 陽子の質量エネルギー: mpc
2 ≃ 1GeV

� 電子の質量エネルギー: mec
2 ≃ 0.5MeV

です。

1.1.3 Planckスケール

最後に Gと ℏと cから作られる質量を考えましょう。これは

mPl =

√
ℏc
G

≃ 10−5 g (1.1.8)

で、これを Planck質量といいます。ここからいろいろな量が作れます。

� Planckエネルギー: EPl = mPlc
2 ≃ 1019GeV

� Planck長：ℓPl = ℏ/(mPlc) ≃ 10−33cm

� Planck時間: tPl = ℓPl/c = ℏ/EPl ≃ 10−43s

個人的には私はいろいろな量を暗算するときにこれらの量を使っています。

1.1.4 演習問題

1. 次の問に答えよ。ただし有効数字 1桁で良い。

（a）cgs単位系では G ≃ 7× 10−8 cm3g−1s−2 である。これをMKS単位系にする

とどうなるだろうか？

（b）Planckエネルギーが約 1019GeVであることを確かめよ。

（c）太陽表面の温度は約 6000Kである。これはエネルギーで言えば何 eVか?
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1.2 天文学・宇宙物理学の単位

1.2.1 単位としての太陽パラメータ

天文学や宇宙物理学で質量や距離を表すのにMKS単位系や cgs単位系を直接使うのは

あまり便利ではありません。なぜなら、これらの学問では非常にスケールの大きいものを

扱わなければならないのに、MKSや cgsは我々が日常扱っているような長さや質量や時

間に基づいているからです。そこで登場するのが我々にとって最も身近な恒星である太陽

です。

ここで太陽の基本的なパラメータを上げていきましょう。

� 質量 M⊙ ≃ 2× 1033 g

� 半径 R⊙ ≃ 7× 1010 cm

� 表面温度 T⊙ ≃ 6000 K

� エネルギー放出率（明るさ） L⊙ ≃ 4× 1033 erg/s

これらを天体の質量や半径や温度やエネルギー放出率の単位に使うことが多いです。ちな

みに天文学では単位時間あたりのエネルギー放出率を明るさ (luminosity) といいます。

力学では仕事率 (power) と習いました。

また太陽と地球にまつわるパラメータとして次のものが大切です。

� 天文単位 (au) (太陽と地球の平均距離): 1 au ≃ 1 億 5 千万キロメートル ≃
1.5× 1013 cm

� 年 (yr) (地球の公転周期): 1yr ≃ 365× 24× 60× 60s ≃ 3× 107 s

このような数字を有効数字一桁で良いので覚えておくことは非常に大事なことです。も

ちろんすぐ調べられるのですが、覚えておけばいつでも頭の中で考えたり計算できたりし

ます。早く答にたどり着く能力をもつということはみなさんが考えているより遥かに大切

なことです。

1.2.2 パーセク

天文学では距離が非常に重要なのですが、それを正確に測るのは非常に難しいことでも

あります。そこで最も正確に距離を測る仕組みが年周視差を利用する方法です。年周視差

とは図 1.1のように、地球が太陽の周りを一年かけて公転する間に星の天球上の見かけの

7



「宇宙物理学概論」講義ノート 2025年 12月 29日

位置が変化することです。実際には非常に遠方にあって年周視差が無視できる星との天球

上のみかけの位置の変化を観測します。

年周視差の大きさと距離は反比例します。そこで年周視差が 1秒 (′′)の場合の星の距離

を 1 pc （パーセク）といいます。ちなみに秒というのはここでは度数法での角度の単位

です。度数法というのは円を 360度 (◦)として 1度を 60分 (′)として 1分を 60秒としま

す。ただし実際の計算では度数法よりも弧度法の方が便利なことが多いです。弧度法は角

度を単位半径の円弧の長さで表す方法で単位はラジアンと呼ばれたりもしますがこの単位

は付けないのが普通です。したがって、

1′′ =
2π

360× 60× 60
(1.2.1)

ということです。図からわかるように

1pc =
1au

tan 1′′
≃ 3.1× 1018cm (1.2.2)

です。

パーセクは天文学・宇宙物理学では最も頻繁に使用される距離の単位です。パーセクよ

り少し長い長さの単位が光年 (ly)です。これは光が１年間に進む距離で、

1ly ≃ 3× 1010cm/s× 3× 107s ≃ 1× 1018cm ≃ 0.3pc (1.2.3)

と計算できます。光年は science fiction (SF) ではよく出てきますが、天文学でも宇宙物

理学でも残念ながら少しマイナーな単位です。

図 1.1 パーセク
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1.2.3 演習問題

1. 次の問に答えよ。ただし有効数字 1桁で良い。

（a）太陽には核子（陽子と中性子）が何個含まれているか？

（b）太陽から放たれた光が地球に届くのにかかる時間は何秒か？

（c）地球の北極と南極を通る周の長さは約 40000kmである。このことから、地球

の体積は太陽の体積の何倍であるか計算せよ。

（d）ある天体の年周視差は 0.1′′ であったという。この天体までの距離は何 pcか？

9
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第 2章

天文学・宇宙物理学の基本概念 (2)

2.1 天体の明るさ・等級・色・位置・距離

2.1.1 明るさ

天文学では天体の明るさや色は重要な観測量です。天体の明るさや色の指標は天文学独

特の表し方をするので要注意です。

まず明るさ (luminosity)または光度は単位時間あたりのエネルギー放出率です。

明るさ =
エネルギー
時間

. (2.1.1)

これは仕事率でもあります。

統計力学によれば、温度 T の熱平衡にある物体はその温度に対応した黒体輻射を放射

し、その単位時間単位面積あたりに放射されるエネルギー I は

I = σT 4 (2.1.2)

となります。これを Stefan-Boltzmannの法則といいます。σ は Stefan-Boltzmann定数

です。したがって、半径 R の天体が温度 T の黒体輻射を放射するとすると、その明る

さ Lは
L = 4πR2σT 4 (2.1.3)

と表されます。ここから、黒体輻射に限らず、Lと Rに対して

L = 4πR2σT 4
eff (2.1.4)

によって有効温度 Teff を定義します。
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2.1.2 絶対等級とみかけの等級

明るさ Lから絶対等級Mを

M = −2.5 log10
L

L⊙
+M⊙ (2.1.5)

によって定義します。ここでM⊙ = 4.83は、太陽の絶対等級です。ここでわかるのは明

るさが大きいほど絶対等級は小さいということです。明るさが 100 倍大きくなると絶対

等級は 5だけ小さくなります。*1

つぎに見かけの等級です。見かけの明るさは観測される単位時間単位面積あたりのエネ

ルギー流束（flux）によって決まります。エネルギー流束を f とすると、

f =
L

4πr2
(2.1.6)

です。見かけの等級mは、f を使って

m = −2.5 log10 f +m0 (2.1.7)

としたもので定数m0 は、mを先に定義した絶対等級Mを用いて、

m = M+ 5 log10
r

10 pc
(2.1.8)

となるように決めます。ここから、光源を r = 10pcにおいたときの見かけの等級が絶対

等級であるということがわかります。観測的には光源の見かけの等級 mと光源までの距

離 r がわかれば絶対等級Mが計算できるいう順番になります。r は観測者から光源まで

の距離です。(2.1.6), (2.1.7), (2.1.8)から f とMを消去すると、

m = −2.5 log10
L

L⊙
+ 5 log10

r

10pc
+M⊙ (2.1.9)

が得られます。また光源が遠ければ遠いほど見かけの等級は大きくなります。太陽の見か

けの等級は −26.74です。

*1 なぜ明るいほど等級が小さくなるのかというと、それには天文学の歴史的な経緯が関係しています。昔の
人は目視で夜空の星を見て、星を見た目の明るさの程度に応じて分類して 6 つのグループに分けました。
そして１番明るいグループの星を１等星、２番めに明るいグループの星にを２等星、以下同様に、３等
星，４等星、5 等星、6 等星と名付けました。したがって、6 等星は肉眼でぎりぎり見えるくらいの星た
ちグループの星ということになります。その後、科学が発達してくると、我々の目で見た場合、星の明る
さはエネルギー流束の対数に対して線形的に感じられることがわかり、1等星のエネルギー流束は 6等星
のおおよそ 100倍であることがわかったので、(2.1.7)によって見かけの等級を定義することになりまし
た。そのため、星の見かけの明るさが明るいほど見かけの等級は小さいのです。1等星は明るさ１等賞の
グループだということです。
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2.1.3 色指数

光源はいろいろな振動数 ν の光を発していますから、明るさ Lを各振動数からの寄与

Lνdν に分けて、

L =

∫ ∞

0

dνLν (2.1.10)

と書くことができます。この積分区間を [νimin, νimax]とすれば、その区間からの寄与を

L̃i =

∫ νimax

νimin

dνLν( (2.1.11)

と定義できます。*2このようにして振動数帯を制限して得られた L̃i を絶対等級に直した

ものを、各振動数帯で振動数の高い方から低い方への順に、U, B, V, R, I, Jなどと表し

ます。

そこで隣り合う帯域のうちの高振動数帯域の等級から低振動数帯域の等級を引いたも

の、つまり、U−B, B−V, V−R, R−Iなどを色指数といいます。これらは値が大きいほど

比較対象である２つの振動数域のうち低振動数側からの寄与が大きいので、「赤い」と言わ

れます。このあたりはかなりややこしいので注意が必要です。太陽の場合、B−V= 0.65

で黄色に見えます。

2.1.4 位置と距離

観測者（自分）から見て天体がどの方向に見えるかを、観測者（地球）を中心とした仮

想的な球面に天体が見える方向をあたかもそこに貼り付いているかのように角度で表すこ

とが多いです。このときの仮想的な球面を天球または天球面といいます。地球の自転に

伴って、天体の貼り付いた天球が、天の北極と南極（天の極を参照）を結ぶ軸の周りに自

転と逆向きに（東から西へ）、1日にほぼ 1回転するように見えます。

さまざまな天体の天球上の位置を正確に決めることを目的とする天文学を位置天文学と

いいます。天体の天球上の位置は望遠鏡の解像度を限界としてかなり正確に決めることが

できます。一般的には望遠鏡の解像度は非常に良いものでも秒から 100ミリ秒程度です。

*2 ただしこの説明は簡略化したもので、実際には i 番目の振動数帯に対応するフィルター Fi(ν) (0 ≤
Fi(ν) ≤ 1)を用いて

L̃i =

∫ ∞

0
dνFi(ν)Lν (2.1.12)

と定義されます。
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図 2.1 天球（天球面）[岡村・家・犬塚・小山・千葉・富阪編『天文学辞典』、シリー

ズ現代の天文学別巻（日本評論社）, p. 277]

一方、天体までの奥行き（距離）を正確に決めることは遥かに難しいです。既出の年周

視差による方法は, 天球上の位置を用いて幾何学的に距離を決めることができるので、最

も信頼できる方法です。しかし、望遠鏡の解像度より年周視差が小さくなると使うことが

できません。この限界による距離の最大値は 300 pcくらいです。それより遠くの天体ま

での距離測定については、モデルを使ったさまざまな方法が提案されていて、その距離の

大きさの程度に応じた測定方法をつないでいくので、距離梯子と言われています。

2.1.5 演習問題

1. 全天で太陽を除いて最も明るい恒星はシリウスでその見かけの等級は −1.46 であ

る。また年周視差約 380ミリ秒が観測されている。

（a）シリウスまでの距離を求めよ。

（b）シリウスの絶対等級を求めよ。ただし log10 3.8 ≃ 0.58を用いて良い。[ウィキ

ペディアは間違っているかもしれません。]

13
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2.2 天文学的観測手段

2.2.1 電磁波と波長

天文学ではいろいろな手段で観測を行いますが、なんと言っても最も古くから行われて

いるのは電磁波によるものです。電磁波は光ですが、波長によって呼び方が変わります。

また波長 λの電磁波の角振動数 ω = 2πν は

ω =
2πc

λ
(2.2.1)

で表されます。Einsteinの光量子仮説の関係式を使うと、この波長の光に対する光子のエ

ネルギーは

E = ℏω =
2πℏc
λ

(2.2.2)

で与えられます。

図 2.2 様々な波長の電磁波。出典: https://www.ushio.co.jp/jp/technology/

glossary/material/attached_material_01.html

2.2.2 電磁波天文学

図 2.3にあるように、紫外・可視・赤外と電波以外の波長では大気による激しい吸収を

受けるので地上では観測できません。このため歴史的にはこれらの限られた波長で観測が

行われてきました。

天文学は観測に用いる電磁波の波長によって次のように分類されます。

� 可視光・赤外線天文学

古くは目視で世界中で星の観測が行われていました。望遠鏡による天体観測は
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図 2.3 大気の不透明度（Credit: NASA)

1609年に Galileiが木星の衛星を４つ発見したのが最初とされています。現在は口

径 10～20m 級のすばる望遠鏡や VLT などの大型望遠鏡や、大気の影響を避ける

ために Hubble宇宙望遠鏡やジェームズウェッブ宇宙望遠鏡のような宇宙観測も行

われています。

� 電波天文学

1930年代になって Jansky によって始められました。高解像度を得るためには D

を大きくする必要があります。世界中のいくつかの電波望遠鏡を組み合わせて D

を大きくする Very Long Baseline Interferometry (VLBI) によって非常に高い解

像度が得られます。また、宇宙衛星に電波望遠鏡を積んで宇宙背景マイクロ波放射

(CMB)の精密観測が行われています。

� X線・ガンマ線天文学

大気圏外に望遠鏡を置く必要があります。1960年代に Giacconiらによって始めら

れました。宇宙の高温ガスから発生される高エネルギー電磁波を捉えられるので、

高エネルギー天文現象を調べるのに適しています。Giacconiは 2002年にノーベル

物理学賞を受賞しています。

2.2.3 望遠鏡の解像度

光（波）の回折という性質により、望遠鏡によってものを見る際にぼやけて見えてし

まって、２つの光源が２つの光源として見える限界の角度があります。望遠鏡による解像

15
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度は像を分解できる最も小さな天球上の角度 ∆θ を用いて、波長を λ、口径を D として

∆θ ≃ 1.22◦
λ

D
(2.2.3)

と表せます。これにより、高い解像度を得るためには、望遠鏡の口径が大きく、波の波長

が短いものが有利であるということになります。

2.2.4 非電磁波天文学

電磁波以外の手段による天文学として、以下のものがあります。

� 宇宙線天文学

高エネルギーに加速されて地球に飛来する電子・陽子・原子核などを観測します。

基本的に荷電粒子なので宇宙に存在する磁場によって曲げられてしまうので指向性

が低いのが特徴です。1020 eVといった超高エネルギー宇宙線も観測されています

が、その起源はよくわかっていません。

� ニュートリノ天文学

何らかの天体現象で放射されるニュートリノを観測します。1960年代に Davisに

よって創始されたとされています。太陽から放射されるニュートリノが観測され

ニュートリノの質量が調べられました。1987年に大マゼラン雲で爆発した超新星

から放射されたニュートリノは日本のKamiokandeで観測され、小柴昌俊が Davis

とともに 2002年にノーベル物理学賞を受賞しました。

� 重力波天文学

重力波は 1916年に Einsteinが提案した一般相対論によって予言される時空の歪み

が波として伝播する現象です。非常に長い年月をかけて観測が試みられていました

が、ついに 2015年に LIGOによってブラックホール連星からの重力波が検出され

ました。この業績で 2017年にWeiss, Barish, Thorneがノーベル物理学賞を受賞

しました。現在は日本の検出器 KAGRAも参加し、LIGO稼働中は毎日のように

重力波が検出されています。

2.2.5 演習問題

1. Event Horizon Telescope は 1.3mmの波長の電波を用いて地球から 16.4 Mpc離

れたM87という銀河の中心M87*を観測し、質量 6.5× 109M⊙ のブラックホール

の地平線半径 (約 120 au)程度の構造を分解して撮像することに成功したと言われ

16
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ている。つぎの問に答えよ。ただし数字は有効数字 1桁で良い。

（a）要求される解像度はどの程度か？

（b）Event Horizon Telescopeの有効的な口径は何 m程度だろうか？

2.3 素粒子の世界

2.3.1 Planckスケール

量子力学の Heisenbergの不確定性の関係

∆E ·∆t ≳ ℏ
2

(2.3.1)

から、短時間の現象あるいは短距離の現象は高エネルギー現象に対応します。その最た

るものは、Planckスケールです。すでに見ましたが、mPl ≃ 10−5 g, EPl ≃ 1019 GeV,

ℓPl ≃ 10−33 cm, tPl ≃ 10−43 s です。Planck質量の Compton波長は Planck質量のも

のがブラックホールになった場合の半径（Schwarzschild半径）に等しいため、この質量

の素粒子の量子力学を考えるときにはその重力的効果が無視できない、あるいは重力的効

果を考えるときにはその量子力学的効果を無視できないということになります。つまり重

力の量子論を知らなければならないということです。しかし我々は信頼に足る重力の量子

論を知らないので、これが現代物理学が扱える最高エネルギーとみなされていて、宇宙物

理学ではこれより高エネルギーを扱うのを避けることが常道になっています。

2.3.2 素粒子標準模型

次に我々に馴染みの深い原子核を構成する陽子・中性子を見てみましょう。これらはと

もに 1 GeVくらいの静止質量エネルギーを持っていて、質量にすると 10−24 g程度です。

中性子は電気的に中性の粒子で単体では不安定で 15分ほどで崩壊してしまいます。陽子

は正の素電荷 eをもつ粒子で非常に安定であることが実験的に知られています。

この程度のエネルギーの物質の構造は素粒子標準模型でよくわかっています。図 2.4は

素粒子標準模型の粒子たちです。陽子や中性子はクォーク３つからなる複合粒子でバリオ

ンと呼ばれるものの仲間です。陽子は uudで中性子は uddです。クォークは３世代（６

種類）あって電荷を 2e/3または −e/3を持っていてこれ以上分解できない素粒子ですが、
単体で取り出すことはできません。

電子はおなじみの粒子ですが、これはエネルギーが 0.5 MeV程度でレプトンと呼ばれ

17



「宇宙物理学概論」講義ノート 2025年 12月 29日

図 2.4 素粒子標準模型 (https://commons.wikimedia.org/wiki/)

る素粒子の仲間です。ニュートリノもレプトンの仲間で、非常に小さな質量を持っていま

す。レプトンも実は３世代に分類されます。それからこれらの粒子に質量を与える上で重

要な役割を果たすのが Higgs粒子です。光子は他のWボソン・Zボソンとともに力を伝

える働きをするゲージ粒子になります。

重力は素粒子標準模型には入っていないので、重力波あるいはそれを量子化したボソン

の重力子（グラビトン）はこれとは別枠になります。

2.3.3 演習問題

1. 次の問に答えよ。ただし数字は有効数字 1桁で良い。

（a）陽子や中性子の質量は電子の質量の何倍か？

（b）熱平衡にある質量 mの粒子は、平均的に E −mc2 ≃ kBT 程度のエネルギー

をもつ。したがって、非常に高温であれば超相対論的粒子となり、非常に低温

であれば非相対論的粒子として振る舞う。電子の場合、その境目となる温度は

18
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何 Kだろうか？

（c）陽子や中性子の場合にはその温度は何 Kだろうか？

2.4 天体の階層性

2.4.1 天体の階層性

次に天体の階層性を見ていきますが、ここでは概観するだけなので、小さいものから大

きいものへと箇条書きでまとめておきます。

� 小惑星

結合力は重力よりも原子結合のほうが重要であるため、多くの小惑星は球形ではな

く複雑な形状をしている。火星軌道と木星軌道の間にある小惑星帯に多数の小惑星

が存在し、その典型的な大きさは 1 kmから 100 kmほどだが、さらに小さいもの

はさらに多数あると見られる。

� 月（衛星）：太陽系にある最大の衛星である。

M ≃ 10−2M⊕ ≃ 10−8M⊙, R ≃ (1/4)R⊕, ρ ≃ 3.3 g/cm3 (2.4.1)

� 地球（地球型惑星）

公転半径 1 au

M⊕ ≃ 6× 1027 g ≃ 10−6M⊙, (2.4.2)

R⊕ ≃ 6× 108cm ≃ 10−2R⊙, (2.4.3)

ρ ≃ 5.5 g/cm3 (2.4.4)

� 木星（木星型惑星）

公転半径 5 au

MJ ≃ 10−3M⊙, (2.4.5)

RJ ≃ 10−1R⊙, (2.4.6)

ρ ≃ 1.3 g/cm3 (2.4.7)

� 太陽（恒星）: 数ある恒星の中で最も典型的なものであることが知られている。

M⊙ ≃ 2× 1033 g, (2.4.8)

R⊙ ≃ 7× 1010cm, (2.4.9)

ρ ≃ 1.4 g/cm3 (2.4.10)
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自転周期は 30日程度。恒星間の距離は pc程度。

� 太陽系（惑星系）

図 2.5のように、太陽・惑星・小惑星・彗星・Kuiper belt天体・Oortの雲などか

らなる。ほとんどの質量は太陽が担っている。最も外側の海王星の軌道半径は 30

au程度。Oortの雲は彗星の起源とされ 105 au ≃ 1 pc程度広がっているとみられ

ているが、その存在は観測的には確認されていない。

図 2.5 太陽系の構造 (NASA: https://upload.wikimedia.org/wikipedia/

commons/8/8c/)

� 我々の銀河あるいは天の川銀河（銀河）

棒渦巻銀河に分類される。約 1011 個の恒星からなり、L ≃ 1011L⊙, M ≃ 2 ×
1011M⊙。回転しておりその回転速度は平均的には ≃ 300 km/s程度。回転して１

周するのに 108 yr程度かかる。太陽は銀河中心から約 9 kpcのところにある。天

の川中心は Sgr A*にあり、106M⊙ 程度の超大質量ブラックホールが存在する。銀

河はバルジ, 円盤, 腕, ハローといった構造があり、円盤の半径は 20 kpc程度。ハ

ローは 50 kpc 程度まで広がっていると見られる。銀河間の平均的な間隔は Mpc

程度。

� 局所銀河群 (Local Group)（銀河群）
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図 2.6 我々の銀河の構造の想像図 (NASA https://upload.wikimedia.org/

wikipedia/commons/1/12/)

我々の銀河は 50 kpc 程度の距離に大マゼラン雲・小マゼラン雲を従えている。

我々の銀河やそこから 7.7Mpc離れたアンドロメダ銀河 (M31)を含む 50-60個の

銀河の集まりが局所銀河群である。

� 銀河団 (cluster of galaxies)

銀河団は数百から数万の銀河が集まったもので重力的に束縛されている。平均的な

間隔は 10 Mpc程度。Coma cluster, Virgo cluster などが有名。

� 超銀河団 (supercluster)・大規模構造 (large-scale structure)

超銀河団や大規模構造というのは銀河の分布が 30 Mpc～100 Mpcのスケールの複

雑なパターンをなしている。密度の薄いボイドとそれを取り囲むウォールからなる

構造とも見られる。このスケールの構造は重力的に束縛されていない。

� 宇宙の地平線

宇宙膨張によって各銀河は我々から遠ざかっており、その後退速度 v は我々からの

距離に比例する。
v = H0r. (2.4.11)

この後退速度 v が光速 c に達する距離 r を宇宙の地平線という。定数 H0 は
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図 2.7 宇宙の大規模構造 (2DF Survey https://commons.wikimedia.org/wiki/

File:2dfgrs.png)

Hubble定数と言われる。その観測値は H0 = 100hkm/s/Mpc、h ≃ 0.7であるの

で、地平線長 ℓH は

ℓH = cH−1
0 ≃ 4

(
h

0.7

)−1

Gpc (2.4.12)

と計算できる。

2.4.2 演習問題

1. 次の問に答えよ。ただし数字は有効数字 1桁で良い。

（a）太陽・木星・地球・月のうち比重がもっとも大きいものはどれか？

（b）木星の公転周期は約何年だろうか？

（c）太陽の角運動量は木星の角運動量の何倍か？

（d）H−1
0 は何秒か？またそれは何年か？
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第 3章

重力に関する基本的な現象

3.1 天体力学

3.1.1 運動方程式

ニュートン力学において図 3.1に示すような２体問題は完全に解くことができます。こ

れを解くのは１年生のときの力学で習ったと思いますが、おさらいです。ちなみに、1年

生のときに習うとはいえ、これを完全に解き切るのはかなり難しいです。

図 3.1 ２体問題

運動方程式は

m1ẍ1 =
Gm1m2

|x2 − x1|2
x2 − x1

|x2 − x1|
, (3.1.1)

m2ẍ2 =
Gm1m2

|x1 − x2|2
x1 − x2

|x1 − x2|
. (3.1.2)

となります。ここでドットは時間微分を表します。
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運動を重心 xc と相対位置ベクトル xに分けます。ここで

xc =
m1x1 +m2x2

m1 +m2
, (3.1.3)

x = x2 − x1 (3.1.4)

です。すると重心 xc については
ẍc = 0 (3.1.5)

が導かれるので、等速直線運動することがわかります。

相対位置ベクトルについては、

ẍ = −GM
r3

x (3.1.6)

が導かれます。ここでM = m1 +m2 は総質量です。

3.1.2 Keplerの第２法則

すると単位質量あたりの角運動量 h = x× ẋは、(3.1.6)を用いると

ḣ = ẋ× ẋ+ x× ẍ = 0 (3.1.7)

となるので、保存することがわかります。xも ẋも hに垂直なので、xは常に hに垂直

な固定された平面上に存在します。xが微小時間 dtで描く微小な三角形の面積 dS は

dS =
1

2
|x× ẋ|dt (3.1.8)

であるので、「面積速度」 VS は

VS =
dS

dt
=

1

2
|x× ẋ| (3.1.9)

です。角運動量が保存することより、

h := |h| = |x× ẋ| = 2VS = 一定 (3.1.10)

であるので、面積速度 VS は一定であることがわかります。これが Keplerの第２法則の

内容です。
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3.1.3 運動方程式の動径方向と角度方向への分解

xが存在する平面上で x = 0を中心とする極座標 (r, θ)をとると、自然な正規直交基底

er, eθ をとることができます。これらはデカルト座標で

er = (cos θ, sin θ), eθ = (− sin θ, cos θ) (3.1.11)

という成分を持っていて、
ėr = θ̇eθ, ėθ = −θ̇er (3.1.12)

であることに注意すると、

x = (r cos θ, r sin θ) = rer, (3.1.13)

ẋ = ṙer + rėr = ṙer + rθ̇eθ, (3.1.14)

ẍ = r̈er + ṙθ̇eθ + (ṙθ̇ + rθ̈)eθ − rθ̇2er

= (r̈ − rθ̇2)er +
1

r

d

dt
(r2θ̇)eθ (3.1.15)

となります。これを用いて (3.1.6) を r 成分と θ 成分に分解します。θ 成分は

d

dt
(r2θ̇) = 0 (3.1.16)

となり、これを積分すると
r2θ̇ = h (3.1.17)

が得られます。hは (3.1.10)ですでに定義した定数です。(3.1.6)の r 成分は

r̈ − h2

r3
= −GM

r2
(3.1.18)

となります。右辺を左辺に移項して両辺に ṙ をかけて tで積分すると

1

2
ṙ2 +

h2

2r2
− GM

r
= E (3.1.19)

が得られます。ここで E は積分定数でこれは力学的エネルギー 保存の法則です。

3.1.4 Keplerの第１法則

近星点や遠星点では ṙ = 0となります。したがって、(3.1.19) から、rmin, rmax を近星

点距離、遠星点距離とすると、1/rmin と 1/rmax は uに関する 2次方程式

h2

2
u2 −GMu− E = 0 (3.1.20)
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の 2つの異なる解なので、解と係数の関係より

1

rmin
+

1

rmax
=

2GM

h2
,

1

rmin

1

rmax
=

−2E

h2
(3.1.21)

を満たします。

ここで、(3.1.18)から (3.1.17)を用いて tを消去し u = 1/r とおくと、

d2u

dθ2
+ u =

GM

h2
(3.1.22)

という線形の非斉次二階微分方程式が得られます。この微分方程式を解き、その式から r

を θ の関数として書くと、E < 0のとき

r =
ℓ

1 + e cos θ
; ℓ =

h2

GM
, 1− e2 =

−2Eh2

(GM)2
(3.1.23)

が得られます。ただし (3.1.21)を用い、積分定数は θ = 0のとき近星点 r = rmin となる

ようにとりました。また 0 ≤ e < 1です。これは焦点が r = 0、離心率 e、長軸半径 aが

ℓ/(1 − e2) の楕円の式です。これが、Kepler の第１法則です。この楕円を図示したのが

図 3.2です。

図 3.2 楕円
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3.1.5 Keplerの第３法則

軌道周期を求めるには (3.1.19)で tを r 積分で表した後、[rmin, rmax]で積分したとき

の tの増分が周期 P の半分になることを使います。

r = a(1− e cosψ) (3.1.24)

とおくと、ψ = 0, πがそれぞれ近星点、遠星点にあたることがわかります*1。積分変数を

r から ψ に変換して積分を実行すると

1√
−2E

a(ψ − e sinψ) = t+ const (3.1.25)

と積分を実行することができますから、周期として

P =
2πa√
−2E

(3.1.26)

が得られます。aを E とM で書き直すと、(3.1.21)から

a =
rmax + rmin

2
=

1

2

(
1

rmax
+

1

rmin

)
rminrmax = −GM

2E
(3.1.27)

が得られます。この式から E を消去すると、

P =
2πa3/2√
GM

(3.1.28)

となります。つまり公転周期は長軸半径の 3/2乗に比例するという Keplerの第 3法則が

得られたことになります。

3.1.6 演習問題

1. (3.1.18)と (3.1.17)から (3.1.22)を導け。

2. (3.1.19)に変数変換をおこなって積分することによって (3.1.25)を導け。

3. 地球の軌道パラメータから GM⊙ を求めよ。

*1 この ψ を離心近点角 (eccentric anomaly)といいます。
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3.2 重力不安定性

銀河形成や星形成など宇宙の多くの構造形成は重力不安定性によって起こります。図

3.3は宇宙論的なシミュレーションにおける構造形成の様子です。ここでは重力不安定性

の基礎を学びます。

図 3.3 数値シミュレーションによって得られたダークマターの密度の非一様性が膨

張宇宙の中で成長していく様子松原隆彦「構造形成論の基礎」、シリーズ現代の天文学

第 3巻、二間瀬・池内・千葉編『宇宙論 II』 3章 図 3.3（日本評論社）

3.2.1 完全流体の基礎方程式

物質場は簡単のため完全流体（または理想流体）として扱います。完全流体とは粘性の

ない流体のことです。ρ, v, P を密度、速度、圧力とします。これらは場なので、時間座

標 tと空間座標 xの関数です。まず基礎方程式を提示します。

まず微小な直方体にどういう力が働くか考えてみましょう。図 3.4 のように、中心を

(x, y, z)とし x軸、y 軸、z 軸に平行な辺の長さをそれぞれ ∆x, ∆y, ∆z とする微小な直

方体を考えます。
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図 3.4 微小な直方体

この直方体の z 軸に垂直な 2つの面の面積はいずれも ∆x∆y であって、直方体の外側

から直方体にかかる力は z 軸正の向きに

P

(
t, x, y, z − ∆z

2

)
∆x∆y − P

(
t, x, y, z +

∆z

2

)
∆x∆y ≃ −∂P

∂z
(t, x, y, z)∆z∆x∆y

(3.2.1)

です。他の面にかかる力も同様に計算できますから、直方体の表面に加わる力の合力は

−∇P∆x∆y∆z (3.2.2)

と計算できます。これを圧力勾配力といいます。ここで

∇P =

(
∂P

∂x
,
∂P

∂y
,
∂P

∂z

)
(3.2.3)

は圧力 P の勾配です。密度 ρ(t,x)を用いると、この直方体の質量は ρ∆x∆y∆z ですか

ら、単位質量あたりの圧力勾配力は

−1

ρ
∇P (3.2.4)

です。これが圧力勾配力による加速度ということになります。

つぎに流体素片の加速度を考えます。時刻 tに位置 xにある流体素片の速度は v(t,x)

です。一方、この流体素片は微小時間 ∆t後に x+ v(t,x)∆t の位置にあり、そのときの

この流体素片の速度は v(t+∆t,x+ v(t,x)∆t)ですから、この流体素片の加速度は、

a =
v(t+∆t,x+ v(t,x)∆t)− v(t,x)

∆t
=
∂v

∂t
+ (v · ∇)v (3.2.5)

と計算できます。したがって、流体素片の運動方程式は

∂v

∂t
+ (v · ∇)v = −1

ρ
∇P (3.2.6)
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が得られます。これを Euler方程式といいます。

次に質量の保存を考えます。直方体の z 軸に垂直な面から tから t +∆tの間に直方体

中に流入する質量は

−(ρvz)

(
t, x, y, z +

∆z

2

)
∆x∆y∆t+ (ρvz)

(
t, x, y, z − ∆z

2

)
∆x∆y∆t

≃ −∂(ρvz)
∂z

∆x∆y∆z∆t (3.2.7)

であり、他の面からの流入も足せば、

−∇ · (ρv)∆x∆y∆z∆t (3.2.8)

となります。一方、直方体全体の質量の増分は

ρ(t+∆t, x, y, z)∆x∆y∆z − ρ(t, x, y, z)∆x∆y∆z ≃ ∂ρ

∂t
∆x∆y∆z∆t (3.2.9)

となります。質量が保存するとするとこの両者が等しいので、

∂ρ

∂t
+∇ · (ρv) = 0 (3.2.10)

が成り立ちます。これを連続の式といいます。

3.2.2 静的一様解からの摂動

まず方程式 (3.2.6), (3.2.10)には静的一様な解

ρ = ρ0, P = P0, v = 0 (3.2.11)

という解があることがすぐにわかります。

次にこの解から少しずれた解を

ρ = ρ0 + δρ, P = P0 + δP, v = δv (3.2.12)

と書きます。ここで δ がついた量は非常に小さいと仮定します。このような量のこと

を一般に摂動といいます。これらの摂動を代表的に δQ と書きます。以下簡単のため、

P = P (ρ)であると仮定します。このとき

δP

δρ
=
dP

dρ
=: c2s (3.2.13)
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と書いて cs を音速といいます。いま δv = (δvx, 0, 0)とし、摂動の時間・空間依存性を

δQ = Q1e
i(kx−ωt) (3.2.14)

とすると、(3.2.6), (3.2.10)から、(
−iω ikρ0

ik
c2s
ρ0

−iω

)(
ρ1
vx1

)
= 0 (3.2.15)

が得られます。ここで (
ρ1
vx1

)
̸= 0 (3.2.16)

であるとすると、(3.2.15)の左辺の 2× 2の行列の行列式が 0でなければなりません。こ

れより
ω2 = c2sk

2 (3.2.17)

が得られます。このような ω = ω(k)の式を一般に分散関係式といいます。これは

δQ = Q1+e
ik(x−cst) +Q1−e

ik(x+cst) (3.2.18)

という解が一般解として得られるということです。物理的にはこの実部をとって

δQ = C1+ cos[k(x− cst) + δ+] + C1− cos[k(x+ cst) + δ−] (3.2.19)

という解が得られます。これは x軸正の向きと負の向きに速さ cs で伝播する波を表しま

す。これは音波にほかなりません。

3.2.3 自己重力的完全流体の基礎方程式

ここまで重力を考えませんでしたが、今度は流体自身の重力も考えていきましょう。重

力ポテンシャルを Ψ とすると重力加速度は −∇Ψ ですから、Euler 方程式の右辺にこの

項を加えて
∂v

∂t
+ (v · ∇)v = −1

ρ
∇P −∇Ψ (3.2.20)

が得られます。これも Euler方程式といいます。連続の式は変更を受けません。重力ポテ

ンシャルは物質の密度を源とする Poisson方程式

∆Ψ = 4πGρ (3.2.21)

の解です。自己重力的完全流体力学は、(3.2.20), (3.2.10), (3.2.21) の３つの方程式によっ

て定まる系です。
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3.2.4 静的一様解からの自己重力を含む摂動

さきほどと同じように静的一様解

ρ = ρ0, P = P0, v = 0, Ψ = Ψ0 (3.2.22)

から少しずれた解

ρ = ρ0 + δρ, P = P0 + δP, v = δv, Ψ = Ψ0 + δΨ (3.2.23)

を調べてます。すると、(3.2.20), (3.2.10), (3.2.21)から、 −iω ikρ0 0

ik
c2s
ρ0

−iω ik

−4πG 0 −k2


 ρ1
vx1
Ψ1

 = 0 (3.2.24)

が得られます。ここで  ρ1
vx1
Ψ1

 ̸= 0 (3.2.25)

であるとすると、(3.2.15)の左辺の 3× 3の行列の行列式が 0でなければなりません。こ

れより
ω2 = c2sk

2 − 4πGρ0 (3.2.26)

が得られます。これをプロットしたものが図 3.5です。

図 3.5 分散関係
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3.2.5 Jeans不安定性

(3.2.17)から、|k| > kJ で ω2 > 0, 0 < |k| < kJ で ω2 < 0ということが言えます。こ

こで

kJ :=

√
4πGρ0
cs

(3.2.27)

とおきました。|k| > kJ のときは ω は実数ですから、これは x軸方向に伝播する波にな

ります。一方、0 < |k| < kJ では ω は純虚数で ω = ±iσ (σ > 0)と書けます。すると、

一般解は
δQ = C1+e

σt cos(kx+ δ+) + C1−e
−σt cos(kx+ δ−) (3.2.28)

ですから、摂動は伝播せず、指数関数的に成長する解と指数関数的に減少する解の線型結

合になります。十分時間が経つと、特別な初期条件の場合を除いて必ず成長解が卓越しま

す。これは静的一様解には不安定性があるということです。これを Jeans 不安定性とい

います。このとき

σ = cs

√
k2J − k2 (3.2.29)

は成長率を表します。成長率は k → 0の場合に最大で、その成長時間は

tgrow =
1√

4πGρ0
(3.2.30)

と書けます。σ は k の減少関数ですから、Jeans不安定性では大きい波長から先に成長す

るということがわかります。kJ に対応する波長 λJ と質量MJ

λJ :=
2π

kJ
, MJ :=

4π

3
ρ0λ

3
J (3.2.31)

をそれぞれ Jeans長と Jeans質量といいます。λ > λJ すなわちM > MJ が Jeans不安

定性の条件ということになります。

3.2.6 膨張宇宙における Jeans不安定性

ここで紹介した Jeans 不安定性の説明は多くの教科書に書かれているものです。しか

し根本的な問題があります。実は背景解として採用した静的一様密度分布は自己重力的完

全流体の基礎方程式の解になっていないのです。これは Poisson 方程式 (3.2.21) を解い

て Euler 方程式 (3.2.20) の右辺に代入してみればすぐわかります。摂動論では背景とし
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て採用するものが方程式の解になっていることが大前提です。そうでなければ摂動論は正

当化できません。

実は一様密度の自己重力的流体は静止し続けることができず、膨張するか収縮するかし

ます。各々の流体素片の位置ベクトル r は tの関数 a = a(t)に比例する形で

r(t,x) = a(t)x (3.2.32)

のように運動します。ここで xは各流体素片に付随する座標で共動座標といいます。a(t)

と ρ0(t)は Euler方程式 (3.2.20)、Poisson方程式 (3.2.21)、連続の式 (3.2.10)から

ρ0 ∝ a−3, (3.2.33)(
ȧ

a

)2

=
8πG

3
ρ0 −

K

a2
(3.2.34)

と求まります。ここで K は流体素片の力学的エネルギーに関係する定数です。これは一

様宇宙に対応する解です。

一様膨張解を背景とした摂動論は、膨張宇宙における重力不安定性という宇宙の構造形

成の観点から非常に面白い問題に対応します。これ以降の導出はこの授業で想定している

レベルを超えるので結果だけ提示しますが、

δ :=
δρ

ρ0
, δ =

∑
k

δk(t)e
ik·x (3.2.35)

としたとき、

δ̈k + 2
ȧ

a
δ̇k −

(
4πGρ0 −

c2sk
2

a2

)
δk = 0 (3.2.36)

という式が得られます。ここで、k は共動座標 xにおける波数を表しています。(3.2.36)

の左辺第二項は摩擦項の役割をします。この場合も、物理的な波長 2πa/k がその時刻で

の Jeans 長 (3.2.31) を超えることが摂動が成長するための必要十分条件であることがわ

かります。成長は摩擦項のために指数関数よりも遅くなりますが、膨張率が十分小さいと

認められる場合には膨張の効果は無視できて、静的背景解を用いて得られた結果が近似的

に成り立ちます。

実は無限に一様に広がった物質分布を扱うことはニュートン重力の適用範囲を超えてお

り、一般相対論を適用しなければなりません。しかし一般相対論を適用した解析でも、地

平線長より十分小さいスケールでは上に述べたニュートン重力の議論が成り立つことがわ

かっています。このように、静的一様解の摂動解析は結果としてそれほど間違っていな

かったということになります。
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3.2.7 演習問題

1. (3.2.20), (3.2.10), (3.2.21)から、(3.2.24)を導け。

2. 星形成が起こりうる分子雲コアは主に水素分子 H2 からなる。水素分子密度はおよ

そ 104 cm−3、 温度はおよそ 10 K、大きさは 0.1 pc 程度、質量は太陽質量の 10

倍程度であるとする。 重力不安定性は成長するだろうか？また成長する場合には、

収縮が進む典型的な質量と時間（スケール）を求めよ。

35



36

第 4章

静水圧平衡と輻射輸送

4.1 球対称星の力学平衡

4.1.1 静水圧平衡

図 4.1 球対称星の静水圧平衡

図 4.1のような恒星などの星の構造を考えます。この際、星を構成する物質は完全流体

として扱いましょう。圧力勾配力と重力が釣り合っているとすると、

−1

ρ
∇P −∇Ψ = 0 (4.1.1)

が成り立ちます。図 4.1のように球対称性を仮定すると、P = P (r)であるので ∇P は r

成分しか持たず、

∇P =
dP

dr
er (4.1.2)

となります。一方、質量分布が球対称の場合、半径 rにおける重力はそれより内側にある
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質量 m(r)がすべて原点にあるとしたときの重力に等しいという定理を用いると, 重力加

速度 −∇Ψも r 成分しか持たず、

−∇Ψ = −Gm(r)

r2
er (4.1.3)

となりますから、
1

ρ

dP

dr
= −Gm(r)

r2
(4.1.4)

が成り立ちます。これを静水圧平衡の式といいます。

半径 r の内側にある質量m(r)は密度 ρ(r)を体積積分して得られますから

dm

dr
= 4πr2ρ (4.1.5)

が成り立ちます。

4.1.2 Virial定理

ここで図 4.1のように、星の半径を Rとし、質量をM としましょう。星の表面では圧

力はゼロでないといけないので、m(R) = M、P (R) = 0です。(4.1.5)を用いて (4.1.4)

の dr を dmで書き直すと
dP

dm
= − Gm

4πr4
(4.1.6)

が得られます。そこでこの両辺に 4πr3 をかけてmで区間 [0,M ]で積分します。すると∫ M

0

4πr3
dP

dm
dm = −

∫ M

0

Gm

r
dm (4.1.7)

となりますが、右辺は重力エネルギーW になります。左辺は部分積分して (4.1.5) を使

うと、

LHS = [4πr3P ]M0 −
∫ M

0

12πr2
dr

dm
Pdm = −3

∫ M

0

P

ρ
dm (4.1.8)

が得られます。さらに星が非相対論的な理想気体からなると仮定すると、その状態方程

式は
P = nkBT =

ρ

µmp
kBT (4.1.9)

です。ここで µは平均分子量と呼ばれる量で、理想気体を構成する粒子一個あたりの質量

数です。これより
P

ρ
=
kBT

µmp
=

RT

µNAmp
=

(Cp − CV )T

µNAmp
(4.1.10)
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となります。ここで Rは気体定数であり、Cp, CV は定圧モル比熱、定積モル比熱です。

またMayerの関係式 Cp − CV = R を用いました。µNAmp は 1モルあたりの質量です

から、
P

ρ
=
kBT

µmp
=

RT

µNAmp
= (cp − cV )T = (γ − 1)cvT (4.1.11)

となります。ここで cp, cV は単位質量あたりの定圧比熱、定積比熱です。γ = cp/cV (> 1)

とおきました。単原子分子理想気体の場合、Cp = (5/2)R, CV = (3/2)Rなので、γ = 5/3

になります。

これらの結果を (4.1.7)に代入すると

3(γ − 1)Eint +W = 0 (4.1.12)

が得られます。これを Virial定理といいます。ただし

Eint =

∫ M

0

cV Tdm (4.1.13)

は星の内部エネルギーの総和です。これより星の総エネルギー Etot = Eint +W は

Etot =
3γ − 4

3(γ − 1)
W (4.1.14)

となるので、1 < γ < 4/3のときは Etot > 0となって重力的に束縛できないということ

になります。γ > 4/3の場合には Etot < 0となって重力的に束縛されることになります。

さらにここから面白いことがわかります。(4.1.12)と (4.1.14)からW を消去すると

Etot = −(3γ − 4)Eint (4.1.15)

となります。これは星からエネルギーが放射されて星の全エネルギーが減少すると、

γ > 4/3のとき内部エネルギー Eint が増加するということになります。(4.1.13)から、星

の質量は変化しないとすると内部エネルギーが増加するには星の温度が上昇するしかあり

ません。つまりこの系ではエネルギーが失われると温度が上昇します。これは比熱が負で

あるということです。このような性質は星でだけでなく自己重力で束縛されて平衡が保た

れている場合には普遍的に見られる性質です。

4.1.3 天体形成における冷却の重要性

温度 Ti = 0 の半径 Ri のガスが収縮して半径 Rf の平衡に達したとします。この過程

でエネルギーを全く失わなかったとしましょう。単原子分子理想気体と仮定して γ = 5/3
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とすると、(4.1.14)とエネルギー保存則から

Etot =W0 =
1

2
W (4.1.16)

です。ここで例えば密度一定の球だとすると

W = −3

5

GM2

R
(4.1.17)

ですから、(4.1.16)は

−3

5

GM2

Ri
= −1

2

3

5

GM2

Rf
(4.1.18)

となります。これより、Rf = Ri/2が得られます。つまり収縮してももとの半分の半径

にしかならず、密度も８倍にしかなりません。これは冷却過程がなければガスが高密度に

収縮することはないということを意味しています。

4.1.4 演習問題

1. 太陽は水素とヘリウムの理想気体からなる。太陽の質量と半径を用いて中心温度を

オーダー評価せよ。ただし、微分をオーダー評価する際に

dP

dr
∼ ∆P

∆r
,

dm

dr
∼ ∆m

∆r

のように微分を分子と分母の典型的な変化の比で置き換えて良い。

4.2 輻射

4.2.1 黒体輻射

温度 T の熱平衡状態にある物体はそれに応じた輻射を出します。これを黒体輻射とい

います。振動数 ν と ν + dν の間にあるエネルギー密度を Uν(T )dν とすると、調和振動

子系に関する統計力学から

Uν(T ) =
8πh

c3
ν3

eβhν − 1
(4.2.1)

と書けます。これを Planck 分布といいます。β = 1/(kBT ) は逆温度です。またこれは

波長 λ = c/ν に対する分布 Uλ(T )に直すと

Uλ(T ) =
8πhc

λ5
1

ehc/(λkBT ) − 1
(4.2.2)
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図 4.2 Planck分布 (https://commons.wikimedia.org/wiki/)

と計算できます。これをプロットしたのが図 4.2 です。この分布のピークは hνpeak ≃
hc/λpeak ∼ kBT となります。また Uν(T ) を積分すると Stefan-Boltzmann の法則が得

られます。

U(T ) =

∫ ∞

0

dνUν(T ) = aBT
4 (4.2.3)

ここで

aB =
8π5k4B
15c3h3

(4.2.4)

は Stefan-Boltzmann 定数です。U(T ) ∝ T 4 は黒体輻射の状態方程式 P = U/3 と熱力

学から導くことができますが、定数係数は統計力学を用いなければ得られません。

4.2.2 輻射場

一般の輻射場は黒体輻射とは限りません。位置 xで微小面積 dAに時間 dt の間に、単

位ベクトル nの向きに立体角 dΩで、振動数 ν から ν + dν までの輻射が入るとします。

このエネルギーを dEνdν とすると

dEνdν = Iν(x, t,n) cos θdAdtdΩdν (4.2.5)

と書くことができます。ここで θは nと微小面積 dAの法線がなす角を θとしました。球

座標 (θ, ϕ)を用いると微小立体角 dΩ = sin θdθdϕです。このとき Iν(x, t,n)を specific
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intensityといいます。日本語では比強度といいます。これは、1 + 3 + 1 + 2 = 7変数関

数であり、この量が輻射場のすべての状態を決める基本量です。

エネルギー流束（フラックス）Fν(x, t)とは、微小面積 dAを通過する単位時間単位面

積単位振動数あたりのエネルギーであり、

Fν · dA = dA

∫
dΩIν cos θ, (4.2.6)

F =

∫
Fνdν (4.2.7)

で与えられます。

エネルギー密度を Uν とすると、n方向の光子による寄与は図 4.3のような立体を考え

ることで、
dUνdνdAcdt cos θ = Iν cos θdAdtdΩdν (4.2.8)

と評価できるので、

Uν =

∫
dΩ

Iν
c
, (4.2.9)

U =

∫
Uνdν (4.2.10)

が得られます。

図 4.3 Iν(x, t,n)の Uν(x, t)に対する寄与。

Iν から輻射圧を計算することもできます。

(圧力) =
(面に垂直な方向の運動量移動)

(面積 ·時間)
(4.2.11)
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であり、光子の場合 p = (E/c)nなので、

Pν =

∫
(dEν/c) cos θ

dAdt
=

∫
Iν
c
cos2 θdΩ, (4.2.12)

P =

∫
Pνdν (4.2.13)

となります。

輻射場が等方の場合、Iν が nによらないので、

Fν = 0, Uν =
4π

c
Iν , Pν =

4π

3

Iν
3

=
1

3
Uν (4.2.14)

となります。特に黒体輻射は等方であり、その場合 Iν = Bν(T )とおくと

Bν(T ) =
c

4π
Uν(T ), (4.2.15)

B(T ) =

∫
Bν(T )dν =

c

4π
U(T ) = σT 4, (4.2.16)

σ =
c

4π
aB =

2π4k4B
15c3h3

(4.2.17)

となります。これも Stefan-Boltzmannの法則といい、σ を Stefan-Boltzmann定数とい

います。完全な黒体輻射は等方なのでフラックスはゼロですが、黒体の壁からの放射の場

合は全立体角ではなくその半分だけの積分になるので、フラックスはゼロではなく壁に対

して垂直外向きに

Fν = πBν(T ), (4.2.18)

F = πB(T ) (4.2.19)

の大きさのフラックスを持ちます。

4.2.3 輻射輸送方程式

真空中では specific intensity は光線に沿って一定です。放射や吸収があるとその分の

増減があって、光線にそって以下のような式に従います。

dIν
ds

= jν − ανIν (4.2.20)

これを輻射輸送方程式といいます。ここで、s は光線に沿った距離であり、jν を放射係

数、αν を吸収係数といいます。

τν =

∫ s

s0

αν(s̃)ds̃ (4.2.21)
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を s0 から s までの光学的厚さといいます。この光学的厚さが 1 になる距離 lmfp つまり

lmfp = α−1
ν を平均自由行程といいます。これは光子が平均的に一回吸収（散乱）される

長さです。αν は長さの逆数の次元をもっています。

4.2.4 光学的に厚い場合

光学的厚さが 1より十分大きい場合、光学的に厚いといいます。このような場合光子は

その領域で何度も吸収と散乱を繰り返すので、ほぼ熱平衡にあると考えていいでしょう。

すると輻射は黒体輻射と考えて、そのエネルギー密度は U = aBT
4 であり、輻射圧は

P =
1

3
aBT

4 (4.2.22)

と書けます。ただし、その温度 T は場所によるとしましょう。このような状態を局所熱

平衡といいます。完全な熱平衡ではないので、温度勾配によってエネルギー流束 F が発

生します。簡単のためすべての振動数で積分した量を扱うことにして、その吸収係数を α

とします。エネルギー流束 F による力が輻射圧の勾配による力だとすると

αF

c
= −∇

(
1

3
aBT

4

)
(4.2.23)

となります。これより球対称な場合の半径 r における明るさは L(r) = 4πr2F (r)は

L(r) = −16πcaBT
3

3κρ

dT

dr
(4.2.24)

と書けます。ここで κ = α/ρは吸収係数を質量密度で割ったもので opacityといいます。

opacityは単位質量あたりの散乱断面積でもあります。κは T , ρの他に物質の化学組成な

どによって決まります。この式で温度分布が与えられたときのエネルギーの流れが計算で

きます。

4.2.5 演習問題

1. 荷電粒子による電磁波の散乱の古典極限を Thomson 散乱という。電子の Thom-

son散乱の散乱断面積は

σ =
8π

3

(
αℏc
mec2

)2

≃ 6.65× 10−25 cm2 (4.2.25)

である。これを用いて太陽内部の光の Thomson散乱に対する平均自由行程をオー

ダー評価せよ。
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第 5章

恒星・白色矮星・中性子星

5.1 恒星の構造と進化

5.1.1 恒星のエネルギーの流れ

太陽などの恒星の力学平衡は前の章で見たように静水圧平衡で決まっていますが、エネ

ルギーの流れはどうなっているでしょうか？太陽の中心付近は核融合反応によって非常に

大きなエネルギーが生成されています。この大きなエネルギーによって多数の高エネル

ギー光子が放射されます。

図 5.1 ランダムウォーク https://commons.wikimedia.org/w/index.php?curid=1962651

太陽の内部では光子の平均自由行程は約 0.1 − 1 cmです。この長さより大きなスケー

https://commons.wikimedia.org/w/index.php?curid=1962651
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ルでは光子は何度も吸収・散乱を繰り返すので、光学的に厚いと言えます。この場合、太

陽の光学的厚さ τ = R/lmfp ≃ 7× 1010 です。この場合、図 5.1のように、光子は太陽を

まっすぐ突っ切ってくることはなく、ランダムウォークして拡散しながらかなり長い時間

をかけて太陽の外まで到達します。この場合のランダムウォークというのは、光子が水素

原子と衝突するたびに散乱される方向がランダムに決まるという運動のことです。*1ラン

ダムウォークでは散乱回数 N に対して拡散距離はだいたい
√
Nlmfp であるので、光子の

散乱回数は N ≃ (R/lmfp)
2 ≃ (7× 1010)2 ≃ 1022 程度と見積もれます。

この場合 (4.2.24) を使って輻射輸送によるエネルギーの流れを計算することができま

す。あとは表面からの放射に関する式

L = 4πR2σT 4(R) (5.1.1)

とエネルギーの生成に関する式
dL

dr
= 4πr2ρε (5.1.2)

によって決まります。ε = j/ρは単位質量あたりのエネルギー生成率です。εは核融合反

応によるもので、T , ρ や物質の化学組成などによって決まります。恒星のエネルギー輸

送は輻射輸送ではなく対流による輸送が支配的になる場合もあります。

恒星を作る材料は宇宙組成（水素 (H)とヘリウム (He)が重量比で 7:3）の気体（ガス）

です。他に重い原子核が少しだけあります。これらは重元素あるいは比喩的に金属といい

ます。

核反応について簡単に見てみましょう。恒星の中心部分が高温高密度になると、まず水

素が核融合を起こしヘリウムになります。

4H →4 He (5.1.3)

もっと詳しい反応の詳細の違いから、p-p chainと CNO cycleという 2つの反応過程に区

別されます。太陽質量程度では p-p chainが優勢ですが、太陽より重い星では CNO cycle

が優勢になります。これは 26MeVの発熱反応なので大きなエネルギーが取り出せます。

この反応が卓越している段階は主系列と呼ばれ、恒星はこの段階でその寿命の殆どを過ご

します。

*1 ランダムウォークとして有名なのは、1827 年に Brown が発見した、水面に浮かぶ花粉が不規則に動く
現象で、これは Brown 運動と呼ばれています。Brown 運動を引き起こしているのが熱運動する媒質の
分子の不規則な衝突であることを提唱したのが 1905年の Einsteinの論文です。

45



「宇宙物理学概論」講義ノート 2025年 12月 29日

その後ヘリウムが核融合して炭素になる反応が起こります。

4He +4 He →8 Be (5.1.4)
8Be +4 He →12 C (5.1.5)

ヘリウムが燃えたあと、星の中心部でさらに高温高密度状態が維持されると、炭素（C）,

酸素（O）, ネオン（Ne), 珪素（Si）, マグネシウム（Mg）が生成されて、最終的に鉄（Fe）

が生成されます。鉄は最も安定な（最もエネルギーの低い）原子核なので、これ以上核融

合は起こらなくなります。

圧力を決める式 P = P (ρ, T )がないと式が閉じません。この式を状態方程式といいま

す。恒星でよく使われるのは理想気体としての圧力と輻射圧で圧力が構成されるというも

ので

P =
kBρT

µmH
+

1

3
aBT

4 (5.1.6)

です。µは平均分子量、mH は水素原子の質量です。

5.1.2 恒星進化の理論計算とその結果

実際に恒星の構造と進化を決めるには次のようにします。(5.1.6) のように適当な状態

方程式を仮定して力学的平衡は静水圧平衡 (4.1.4) の式を解いて決めます。エネルギー

輸送は (5.1.2) を解いて決めます。このもとで、各反応を解いてエネルギー生成率 ϵ を

決めます。中心付近以外では L(r) は r に依存しないで一定とみなせます。温度分布は

(4.2.24)により定まります。これらがすべて矛盾のないように方程式系を解きます。核融

合反応が進んでくると徐々に化学組成が変化します。この化学組成の変化や、それに伴う

ϵや κの変化は非常にゆっくりしたものなので、準静的・準定常の仮定のもとで力学平衡

とエネルギー輸送を解きます。そして、ゆっくりした時間変化を取り入れていきます。

ここまでの話で恒星の進化を追うことができますが、これらの式は数値的にしか解けま

せん。ここはこれ以上深入りせずに、計算結果を説明します。まず主系列星の結果を概観

します。

主系列では 4H →4 He の反応が起こります。この反応は 26MeV の発熱反応なので、

η ≃ 0.7%程度のエネルギー変換効率です。この変換効率で太陽の質量の 10 %が燃える

とするとちょうど 100億年という太陽の寿命が出てきます。寿命は大雑把に

τlife ≃ 1010yr

(
M

M⊙

)(
L

L⊙

)−1

(5.1.7)
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と評価できます。数値計算によるとおおよそ R ∝ M0.57, L ∝ M3.4 であるので、

L ∝ R2T 4
eff に注意すると、

R ≃ 7× 1010cm

(
M

M⊙

)0.57

, L ≃ 4× 1033erg/s

(
M

M⊙

)3.4

,

Teff ≃ 6000K

(
M

M⊙

)0.55

, τlife ≃ 1010yr

(
M

M⊙

)−2.6

(5.1.8)

であることがわかります。つまり、重い星ほど、大きく、明るく、高温で、短命です。恒

星はその寿命のほとんどを主系列として過ごします。

次に星の質量による進化の分類を概観します。

� M ≲ 0.08M⊙

Hが燃えないので主系列にならない。褐色矮星。

� 0.08M⊙ ≲M ≲ 0.45M⊙

Heのコアができるがそれ以上進まない。Heコアの白色矮星が残る。

� 0.45M⊙ ≲M ≲ 3M⊙

さらに He が燃える。この際赤色巨星になる。そして CO コアができる。最後は

COコアの白色矮星が残る。

� 3M⊙ ≲M ≲ 8M⊙

COコアがさらに燃焼する。その後 I型超新星爆発？

� 8M⊙ ≲M ≲ 12M⊙(?)

CO コアの燃焼のあとさらに進んで NeMg コアができる。これが電子捕獲して中

性化し重力崩壊を起こし II型超新星爆発し中性子星が残る。

� 12M⊙(?) ≲M ≲ 30M⊙(?)

NeMgコアの燃焼のあと Feコアができる。このあと吸熱反応である光分解が進ん

で重力崩壊を起こしブラックホールになる。

� 30M⊙(?) ≲M

主系列が不安定。

5.1.3 Hertzsprung-Russel図

まず本題に入る前に、黒体輻射の温度と色指数の関係を考えましょう。以前に 4.2.1節

で、黒体輻射のスペクトルが図 4.2のようになることを見ました。それに、光を周波数帯

に分けて測定する際につけるバンドフィルターの透過率を重ねたものが図 5.2です。この

47



「宇宙物理学概論」講義ノート 2025年 12月 29日

図 5.2 黒体輻射と測光バンド [大朝由美子。工藤哲平「恒星の世界」、岡村、芝井、縣、他「す
べての人の天文学」4章図 4.5（日本評論社）]

図からわかることは、B−Vなどの色指数は、黒体輻射の温度に強く依存するということ

です。実際、温度が高くなると、短波長側の B バンドのエネルギーの寄与が長波長側の

V バンドのエネルギーの寄与よりも相対的に大きくなるので、それらの等級の差である

色指数 B−Vは相対的に小さくなることがわかります。つまり、色指数は温度の指標であ

り、小さいほど温度が高く、大きいほど温度が低いのです。色指数が大きいものを赤い、

小さいものを青いといいますので、青いほど温度が高く、赤いほど温度が低いということ

になります。これはその光源の明るさそのものには依存しません。

次に Hertzsprung-Russel図 (HR図)を説明します。この図は、観測された恒星を一つ

一つ、横軸に色指数（→温度）、縦軸に絶対等級（→明るさ）をとったグラフにプロット

したものです。上が明るい下が暗い、右が赤い左が青いです。主系列星は左肩上がりの直

線に大体沿った領域に分布します。その中でも左上は若くて青くて重い星、右下には赤く

て軽い星が来ます。年老いた星は右下にあります。太陽はその中でちょうど真ん中くらい

の位置にあります。右上には明るくて赤い星が来ますが、

L = 4πR2σT 4 (5.1.9)
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という関係から、そのような星は大きくないといけません。そこでここには赤色巨星と呼

ばれるグループが来ます。左下には暗くて青い星が来ますがそのような星は小さくないと

いけません。そこでここには白色矮星とよばれるグループが来ます。HR図は恒星の進化

の理論でうまく説明できます。

図 5.3 Herzsprung-Russel図 (https://commons.wikimedia.org/wiki/)

5.1.4 演習問題

1. 太陽中心で生成された光子が太陽表面に達するまでの時間を求めよ。

2. 鉄が原子核反応に対して最も安定な原子核であることを各種資料を調べて数値に基

づいて説明せよ。
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5.2 白色矮星と中性子星

5.2.1 Fermi粒子の縮退

白色矮星や中性子星などは Fermi 粒子の縮退圧によって支えられています。統計力学

では、量子 Fermi 気体の縮退について詳しく勉強します。ここでは簡単にこの現象を直

感的に捉えましょう。

Heisenbergの不確定性原理により、粒子の運動量と位置の不確定性には

∆p∆x ≥ ℏ
2

(5.2.1)

という関係があります。これより一辺 L の立方体に閉じ込められた粒子は温度がゼロで

も p ∼ ℏ/Lの運動量を持ちます。粒子が非相対論的なときこの粒子の速度は v ∼ p/mで

あるので、この粒子による圧力 P は

P ∼ p

L2L/v
∼ p2

mL3
∼ ℏ2

mL5
∼ ℏ2n5/3

m
(5.2.2)

と計算できます。ここでmは Fermi粒子の質量、nは Fermi粒子の個数密度です。Fermi

粒子が超相対論的な場合は、v ∼ cですから、

P ∼ p

L2L/c
∼ pc

L3
∼ ℏ
L4

∼ ℏcn4/3 (5.2.3)

となります。このような圧力を縮退圧といいます。

ここで Fermi 粒子として原子核に付随していた電子を考えると、質量の殆どは核子に

よって占められます。 電子一個あたりの核子数 µe という量を用いて、

ρ

ne
= µemp (5.2.4)

ですから、非相対論的な場合、

P ∼ ℏ2

me(µemp)5/3
ρ5/3, (5.2.5)

超相対論的な場合、

P ∼ ℏc
(µemp)4/3

ρ4/3 (5.2.6)

という状態方程式が得られます。これらは温度に依存しません。通常の物質では、1 <

µe < 2です。
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次に中性子が縮退する場合を考えましょう。低温・高密度では、逆ベータ崩壊が進んで

電子数が少なくなって中性子数が増えるので、電子縮退による縮退圧は考えなくてもよい

ものとします。この場合、非相対論的な場合は、

P ∼ ℏ2

µ
5/3
n m

8/3
p

ρ5/3, (5.2.7)

超相対論的な場合、

P ∼ ℏc
(µnmp)4/3

ρ4/3 (5.2.8)

という状態方程式が得られます。ここで µn は中性子一個あたりの核子数で、1 < µn < 2

です。

5.2.2 限界質量

上で調べた Fermi粒子の縮退圧はいずれも

P = Kργ (5.2.9)

という形に書けます。このような状態方程式の場合の球対称星の静水圧平衡の解は数値的

に詳しく調べられていますが、ここでは解析的にオーダー評価してみましょう。ただし、

微分をオーダー評価する際に
dP

dr
∼ ∆P

∆r

のように微分を分子と分母の典型的な変化の比で置き換えて良いことに注意しましょう。

(4.1.4)と (4.1.5)で左辺と右辺をオーダー評価すると、

1

ρ

Kργ

R
∼ GM

R2
, (5.2.10)

M

R
∼ 4πρR2 (5.2.11)

となります。ここでオーダー評価においては、M , R, ρはそれぞれm, r, ρの典型的な値

ですが、星の質量、半径、平均密度とみなして良いでしょう。これらから R を消去すれ

ば、大きさ 1の無次元定数を除いて、

M ∼
(
K

G
ργ−4/3

)3/2

(5.2.12)

という式が得られます。
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これより、γ > 4/3の場合には密度が高いほど質量の大きな星になるのですが、γ = 4/3

の場合には質量は密度に依存せず一定で、その値は

M ∼
(
K

G

)3/2

(5.2.13)

となることがわかります。これより、超相対論的な電子の縮退の場合、超相対論的な中性

子の縮退の場合は、それぞれ

M ∼ µ−2
e

m3
Pl

m2
p

∼ µ−2
e M⊙, (5.2.14)

M ∼ µ−2
n

m3
Pl

m2
p

∼ µ−2
n M⊙ (5.2.15)

となります。この最大質量は星を支える圧力を提供する Fermi 粒子の質量によらないこ

とに注意してください。この質量を超える質量については、これらの縮退圧では重力を支

えきれないということになります。

4.1.2節で議論したように、相対論的な Fermi粒子の縮退圧である γ = 4/3は、星が重

力的に束縛されるかどうかの臨界的な値です。このような場合の星の安定性については、

ここで無視をした電磁気学的効果や一般相対論的重力の効果のために不安定になることが

知られています。

5.2.3 白色矮星と Chandrasekhar質量

電子の縮退圧によって支えられた星が白色矮星です。超相対論的な電子の縮退の場合、

詳細な数値計算をすると、最大質量として

M ≃
(µe

2

)−2

× 1.45M⊙ (5.2.16)

が得られます。これを Chandrasekhar質量といいます。Chandrasekharはこれを始めと

する一連の業績でノーベル物理学賞を 1985年に授与されています。

白色矮星はシリウスの伴星として発見されました。古くからシリウスの軌道のふらつき

が知られており、Keplerの第 3法則から推定されたその質量は 0.98M⊙ でした。1926年

ごろになってその伴星が見えたのですが、その明るさと色から半径は 5000 kmと推定さ

れ、密度が 106 g/cm3 であり、地球程度の大きさの星が太陽程度の質量をもつと推定さ

れました。これは電子が縮退する密度に対応していて、白色矮星と同定されました。
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5.2.4 中性子星とパルサー

電子の縮退圧でも星が支えきれずさらに高密度になって今度は中性子の縮退が起こって

その圧力で支えられた星が中性子星です。中性子星は Baade と Zwickyによって 1934年

に予言されました。1939年に Oppenheimer と Volkoffは理想 Fermi気体の理論を使っ

て中性子星の構造を調べました。そして一般相対論的な効果が重要になること、その構造

は現在 Tolman-Oppenheimer-Volkoff 方程式と呼ばれている方程式をとけば得られるこ

と、最大質量が存在しそれはだいたい 0.75M⊙ になり、その場合の半径はだいたい 10km

程度になるという結果を出しました。

ここで陽子と中性子はベータ平衡にあります。ベータ平衡というのは次のような反応の

平衡状態のことです。
p+ e− ↔ n+ νe (5.2.17)

この反応は (mn −mp)c
2 ≃ 1.3MeV 程度の吸熱反応です。中性子の縮退によるエネル

ギー (Fermi エネルギー)がこれを超えてくると平衡が右に進んで中性子過剰の状況が実

現します。この場合 µn ∼ 1になるので、限界質量は ∼ 3− 4M⊙ 程度であることが予想

されます。

しかし、非相対論極限では

EF ≃ p2F
2mp

(5.2.18)

であるので、この条件は中性子間の平均距離が d ∼ 1fm であるということになります。

これは物質の密度が原子核の密度にほぼ等しいということです。原子核の結合には強い力

による核力という力が重要になってきます。この核力を考慮した高密度物質の状態方程

式が中性子星の構造を決める上で非常に重要です。この状態方程式は量子色力学（QCD）

によって計算できるはずなのですが、現在のところ中性子星で重要になってくる低温高密

度での物質の状態方程式を理論的に決定することはできていません。現在の一般的な理解

では、中性子星の半径は 15 km程度で最大質量は 3M⊙ より小さいと考えられています。

観測的には 1967年に Bell と Hewishが非常に正確な周期 (1.3373011s)の電波パルス

を発する天体を発見し、パルサーと名付けました。1974 年に Hewish はノーベル物理学

賞を受賞しました。その後周期が 1 ms程度のものも発見されました。これらが天体の自

転によるものとすると、星が重力で束縛され遠心力で飛び散らないためには非常に高密度

な天体でなければならないという結論に達します。このため、パルサーは中性子星である

と同定されました。中性子星は、やや重い恒星の進化の最終段階で超新星爆発の残骸とし
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て形成されると考えられており、パルサーのみならず超高エネルギー天体としても重要

です。

中性子星同士が連星を組むと、徐々に重力波を出しながら公転半径が小さくなって公転

周期が短くなり、最後には強い重力波を出して合体します。この際、この連星のどちらか

でもパルサーとして観測されていれば、軌道に関する情報が詳細にわかります。このよう

なパルサーとして PSR1918+16 が発見され、Hulse と Taylor は 1975 年に重力波放射

を含む一般相対論の検証が行い、1993年にノーベル物理学賞を授与されています。また

2017年には中性子星連星からの重力波が GW170817として直接観測され、ほぼ同時にガ

ンマ線バーストが Fermi 衛星によって GRB170817A として観測されたことで、中性子

星連星の合体がガンマ線バーストになるということが観測的に検証されました。

5.2.5 演習問題

1. 白色矮星において縮退している電子が非相対論的であるときと超相対論であるとき

の境目の密度は何 g/cm3 だろうか？また、中性子星ではどうか？

2. 周期 1 msのパルサーが発見されたとする。この周期が星の回転周期に対応すると

した場合、星の密度に対してどのようなことが言えるだろうか？
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第 6章

ブラックホール

6.1 一般相対論

ブラックホールを理解するにはどうしても一般相対論が必要です。しかも、単に重力の

法則がニュートン重力の逆二乗則からずれるといった表面的なことではなく、根本的な理

解が必要になります。一般相対論は 1915-1916年に Einsteinによって提案された重力を

含む時空に関する一般理論です。詳細はここでは述べませんが*1、大まかな考え方を見て

おきましょう。

Einsteinは、特殊相対論において重要であった慣性系が、重力の存在下では局所的にし

かとれないことに気づきました。これは、有名な自由落下するエレベーターの思考実験で

す。エレベーター内の人が手に持ったりんごを静かに放すとどうなるかというと、エレ

ベーターに静止している座標系では静止したままですので、これは慣性系になっているよ

うです。しかし図 6.1から分かるように、エレベーターの大きさを考慮すると、２つのり

んごの間に相対的な加速度が生じるので、慣性の法則が成り立たなくなってしまいます。

そこで

特殊相対性原理� �
1. すべての慣性系において、物理法則は同一である。

2. すべての慣性系において、真空中の光速は一定である。� �
を一般化して、次の一般相対性原理

*1 一般相対論の修得には曲面の幾何学の理論を高次元に一般化した Riemann 幾何学という数学が必要で
す。これまでその知識をほとんど必要としていなかった物理学科の学生には、これを修得するにはそれな
りの時間が必要です。ここではそのための時間がとれないので、一般相対論入門に譲ります。
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図 6.1 地球重力場中では、自由落下するエレベーターは局所的には慣性の法則が成

り立つが、大きさを考慮すると重力が一様でないために慣性の法則が成り立たない。

(Credit: 原田知広・宮本雲平)

一般相対性原理� �
1. すべての局所慣性系において、物理法則は同一である。

2. すべての局所慣性系において、真空中の光速は一定である。� �
を指導原理としました。局所慣性系とは自由落下する観測者に静止した局所的な座標系の

ことです。局所慣性系において物理法則が同一であるためには、すべての物質は同一の重

力加速度を受けていなければならず、これは銅も鉛も鉄も同じ重力加速度を受けるという

ことですから等価原理です。ニュートン重力においては、等価原理はすべての物体におい

て重力質量が慣性質量に同じ比例係数で比例するからであって、それ以上の説明はありま

せんでした。

Einsteinは、重力とは時空の曲がりによって引き起こされるものであると考えました。

そして、Riemann幾何学という曲がった空間に関する数学を我々が生きている４次元時

空に適用しました。曲がった時空を表す量が計量テンソルと呼ばれる場です。Einstein

は、力の働いていない物体は曲がった時空中をまっすぐ進むものとしました。このような

曲線を測地線といいます。そして重力場を決める方程式として、Einsteinは理論が適切な

Newton極限を持つことと、最も単純であることも要請しました。こうして得られた重力

場の方程式は Einstein方程式と呼ばれています。

以上をより正確な言葉でまとめると次のようになります。
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一般相対論の基本的仮定� �
1. 試験粒子は時空の測地線に沿って運動する。

2. 時空の計量テンソルは Einstein方程式に従う。� �
一般相対論は宇宙全体からブラックホール・初期宇宙に至るまで、どんなに強い重力場

も光や光速に近い速度で運動する物体にも適用できる、非常に適用範囲の広い重力理論で

す。これまで多種多様な検証実験が行われており、すべての実験結果は誤差の範囲内で一

般相対論を支持し、一般相対論が誤っていることを示す実験結果はこれまで一つもありま

せん。

一方で、一般相対論は重力の古典理論*2であり、重力が持つであろう量子論的な効果を

記述することはできません。重力の量子化は非常に難しいテーマであり、まだいかなる理

論も成功したとは言えない状況です。

6.2 Schwarzschild解

特殊相対論でも登場するMinkowski時空は平坦な４次元時空であり、その線素（微小

な線分の長さ）はデカルト座標 t, x, y, z または球座標 t, r, θ, ϕを用いて、

ds2 = −c2dt2 + dx2 + dy2 + dz2 (6.2.1)

= −c2dt2 + dr2 + r2(dθ2 + sin2 θdϕ2) (6.2.2)

と表せます。これは Einstein方程式の真空解ですが、自明な解とみなせるでしょう。

Einstein方程式の非自明な解のうち最初に見つかったのが 1916年に Schwarzschildに

よって発見された Schwarzschild解で、その線素は

ds2 = −
(
1− rg

r

)
c2dt2 +

(
1− rg

r

)−1

dr2 + r2
(
dθ2 + sin2 θdϕ2

)
(6.2.3)

で与えられます。この解は静的球対称真空解です。ここで rg は長さの次元をもつ積分定

数で、Schwarzschild半径と呼ばれています。

一般に、線素 ds2 と計量テンソル gµν とは、座標 xµ (µ = 0, 1, 2, 3)の微小変位 dxµ を

用いて、

ds2 =

3∑
µ=0

3∑
ν=0

gµνdx
µdxν (6.2.4)

*2 昔はニュートン力学に基づく理論と相対論的な理論を対比して前者のことを古典的と言っていた時代があ
りましたが、現在ではこのような使い方は完全に時代遅れです。現代物理学では、古典的という語は量子
化されていないという意味で使われ、その意味でしか使われません。
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という関係で結びついています。x0 = ct, x1 = r, x2 = θ, x3 = ϕ ととれば、gµν は、

(6.2.2)の場合には、

g00 = −1, g11 = 1, g22 = r2, g33 = r2 sin2 θ (6.2.5)

となり、それ以外の成分はすべてゼロになります。(6.2.3)の場合には、

g00 = −
(
1− rg

r

)
, g11 =

(
1− rg

r

)−1

, g22 = r2, g33 = r2 sin2 θ (6.2.6)

となり、それ以外の成分はすべてゼロになります。ニュートン極限の議論から、質量を

M とすると、

rg =
2GM

c2
(6.2.7)

と表すことができます。すなわち、Schwarzschild 解は質量 M だけで決定されます。

Schwarzschild 解は r → ∞ で Minkowski 時空という平坦な時空に近づきます。このよ

うな性質を持つ時空を漸近的に平坦であるといいます。

Schwarzschid 時空の計量では r = rg が非常に特別な役割を果たします。r = rg はこ

の座標では計量テンソルが特異になってしまうのですが、これは座標が良くないだけで別

の座標をとればこの特異点は回避することができ、0 < r < rg に拡張することができま

す。このような特異点を座標特異点といいます。

座標を取り替えて新たに r = rg でも正則であるような時空をとると、r = rg は動径方

向*3外向きの光の経路になっていることがわかります。0 < r < rg の領域ではどんな光

でも rg の外側に出ることができず、もちろん無限遠まで達することはできません。この

ため r < rg の領域は無限遠の観測者が原理的に観測できない領域となっており、この領

域のことをブラックホールといい、r = rg を事象の地平線といいます。

r = 0でも計量が特異的ですが、これは座標のとり方によらずに現れる特異点です。こ

のような特異点を時空特異点といいます。

この計量において測地線を考えることで、光や有質量粒子がどのような経路を取るのか

が決まります。この時空には光の円軌道が存在し、それは不安定円軌道であり、その半径

は r = (3/2)rg です。この半径の球を光子球といいます。有質量粒子の場合は、r > 3rg

には安定円軌道が存在しますが、それより内側には存在しません。r = 3rg は最内安定円

軌道の半径にあたります。

「ブラックホール＝光が逃れられない領域」ととらえてブラックホールをニュートン力

学で説明する方法があるので、一応ここで紹介します。ニュートン力学では、質量M・半

*3 θ =一定かつ ϕ =一定を満たす方向という意味です。
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径 Rの星からの、粒子の脱出速度 v は力学的エネルギー保存則より

1

2
v2 − GM

R
= 0 (6.2.8)

によって得られます。ここで v = cとすれば、

R =
2GM

c2
(6.2.9)

と Schwarzschild 半径が得られます。つまり光が脱出できるぎりぎりの半径が

Schwarzschild半径というわけです。一般相対論の観点から見ると上の説明は間違ってい

ますが、G, M , cから長さの次元をもつ量を与えるとそれは Schwarzschild半径の次元し

かないということではあります。

Schwarzschild 解は Einstein 方程式の静的球対称な真空解として一意的であることが

知られています。その後、1968年になって Kerrが回転するブラックホール解を発見しま

した。Kerr解は漸近的に平坦な定常軸対称な真空ブラックホール解として一意的である

ことが知られています。Kerr 解は質量と角運動量に関するパラメータM と a だけで完

全に決定されます。

物体が非常にコンパクトになると自らの圧力で支えきれなくなって重力崩壊を起こしま

す。Penroseは 1965年に重力崩壊が起こると一般には時空特異点がどうしても現れてし

まうという定理（特異点定理）を証明し、その場合ブラックホールができることを予想し

ました。2020年に特異点定理とその他の関連する業績に対してノーベル物理学賞が授与

されました。

ブラックホールは素粒子分野で量子重力や統計力学・量子情報との関係で非常に注目さ

れていて、そこでは天体というよりはむしろ面白い性質をもつ Einstein 方程式の解とし

て捉えられています。しかし、ここでは天体としてのブラックホールを次節で見ていきま

しょう。

6.2.1 演習問題

1. rg = 2GM/c2 が長さの次元をもつことを確かめよ。

6.3 天体としてのブラックホール

前節でブラックホールは観測できないということを見ましたが、天文学者はブラック

ホールを観測していると主張しています。なぜこのようなことになるかというと、天文学
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者はブラックホールという言葉を一般相対論研究者よりも曖昧な意味で使っているからの

ようです。ブラックホールの観測手段として現在のところ可能なものは、以下のようなも

のあるいはこれらの組み合わせがあるでしょう。

� ブラックホール周辺の恒星などの天体を電磁波天文学によって観測し、中心天体が

非常に重くしかも暗く非常にコンパクトであることを示し、中心にあるブラック

ホールに関する情報を得る。

� ブラックホール周辺の降着流などの高温気体が発する電磁波放射を、電磁波天文学

によって観測し、その中心にあるブラックホールに関する情報を得る。

� ブラックホールの背後にある光源がブラックホールによる重力レンズを受けて位置

が変化したり像が歪んだり増光を受けたりするのを電磁波天文学によって観測し、

中心にあるブラックホールに関する情報を得る。

� ブラックホール同士の連星の合体によって放射される重力波を観測し、その波形か

ら、ブラックホールの合体であることを推定し、ブラックホールに関する情報を

得る。

� ブラックホールとコンパクト天体の連星によって放射される重力波を観測し、その

波形から、ブラックホールとコンパクト天体の合体であることを推定し、ブラック

ホールに関する情報を得る。

� ブラックホール連星の合体によって放射される重力波を観測し、その波形から、合

体後に形成されたブラックホールの減衰振動によって放射される重力波を観測し、

ブラックホールに関する情報を得る。

例えば、図 6.2は、イベント・ホライズン・テレスコープによるブラックホールの撮像とさ

れる写真ですが、ブラックホール周辺にある降着流の高温気体が発する電磁波が、ブラッ

クホール周辺の強い重力場の影響で曲げられて円環状に見えていると考えられています。

さて、宇宙にはどのようなブラックホールがあるのでしょうか？

� X線星：恒星質量ブラックホール

12M⊙ 程度以上の重い恒星の進化の最終段階で重力崩壊して形成されると考えら

れています。こうしてできるブラックホールは Chandrasekhar 質量 1.4M⊙ より

重く 30M⊙ 程度より軽いと考えられます。これらは恒星質量ブラックホールと呼

ばれています。周辺にある物質が降着すると高温になって X線を放射し、X線星

として観測されます。その中でも有名なのは Cyg X-1です。

� 銀河中心核：超大質量ブラックホール
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図 6.2 イベント・ホライズン・テレスコープ (EHT) による撮像。左：M87*、右:

Sgr A* (Credit: EHT Collaboration)

多くの銀河の中心には 105M⊙ − 1010M⊙ 程度の非常に重いブラックホールが存

在すると考えられています。これらは、超大質量ブラックホールと呼ばれていま

す。我々の銀河中心は Sgr A*と呼ばれていますが、そこにも 4.0× 106M⊙ または

4.3× 106M⊙ 程度のブラックホールが存在すると考えられています。Genzelらと

Ghez らは Sgr A*の周辺の恒星の軌道を独立に観測してその中心に 106M⊙ の非

常にコンパクトな天体があることを確かめました。二人は 2020年にノーベル物理

学賞を授与されました。イベントホライズンテレスコープで撮像されたM87*はア

ンドロメダ銀河中心の 6.5 × 109M⊙ の超大質量ブラックホールです。超大質量ブ

ラックホールがどのようにしてできたのか、現在もよくわかっていません。

� 重力波源の連星ブラックホール

数M⊙から 100M⊙程度のブラックホールが連星を組んで重力波を出しながら合体

するというイベントが LIGO, Virgo, KAGRA などの重力波観測によって日々観

測されています。最初に見つかったイベントは GW150914 です。Weiss, Barish,

Thorne は 2017 年にノーベル物理学賞を授与されました。ブラックホールと中性

子星の連星も見つかっています。これらのブラックホールの多くは恒星進化起源と

思われていますが、原始ブラックホールなど他の起源のものも混ざっているかもし

れません。

また、まだ見つかっていませんが、理論的に予想されているブラックホールとして以下

のようなものがあります。
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� 原始ブラックホール

恒星ができる前のごく初期の宇宙に何らかの原因で重力崩壊が起こって生成された

とされるブラックホールを原始ブラックホールと呼びます。1971年に Hawkingに

よって提案されました。なかでもインフレーション時に生成されるゆらぎのうち非

常に大きな振幅を持つものが重力崩壊してブラックホールになるというシナリオが

代表的な例です。その質量は Chandrasekhar質量より非常に小さいものも可能で

す。小さなものは Planck質量 10−5 gから大きなものは 1055 g ≃ 1022M⊙ のもの

まで議論されています。

� 中間質量ブラックホール

恒星質量ブラックホールは恒星進化の理論から 30M⊙ 程度までと予想されてい

て、一方超大質量ブラックホールは観測的に 105M⊙ 程度以上なので、その間の数

100M⊙ から数 1000M⊙ の質量のブラックホールがあるかないかという問題が提

起されています。このようなブラックホールは中間質量ブラックホールと言われて

います。

また、しばしば誤解されていますが、ブラックホールと見られている天体が本当にブ

ラックホールであることを観測的に証明することは原理的に不可能です。なぜなら本来の

ブラックホール領域や事象の地平線は遠方の観測者の因果的過去にはないため原理的に観

測できないからです。そこでブラックホール疑似天体というものが議論されています。例

えば、グラヴァスター、ワームホール、超回転星、ボゾン星、裸の特異点、ファズボール

などが挙げられます。またブラックホールだけれども Schwarzschild解や Kerr解では表

されないものである可能性も議論されています。このような非標準的なブラックホールと

しては、荷電ブラックホール、有毛ブラックホール、正則ブラックホールなどが挙げられ

ます。可視光・重力波などによるブラックホール様天体の観測が進むにつれて、このよう

な可能性が熱心に調べられています。

6.3.1 演習問題

1. M⊙ に対する rg を求めよ。

2. Planck質量mPl ≃ 10−5 gに対する rg を求めよ。

3. 1055 g ≃ 1022M⊙ に対する rg を求めよ。
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第 7章

ビッグバン宇宙論

7.1 膨張宇宙論

7.1.1 観測的発見

1929 年に Hubble は遠方の銀河からの光ほど本来の光の波長より長くなっており、そ

の波長の伸びが我々からその銀河までの距離に比例することを発見しました。光の波長が

長くなることを赤方偏移といいます。これが光の Doppler 効果*1によるものであるとす

ると、銀河の後退速度 v が我々からの銀河の位置 xに比例することになります。比例係

数を H0 とすると
v = H0x (7.1.2)

です。実は 1927 年に同様の法則を Lemaitre が見出していたことが最近わかったので、

この法則を Hubble-Lamaitre の法則といいます。H0 は Hubble 定数といいます。観測

値は
H0 = 100hkm/s/Mpc (7.1.3)

と書いたときに h ≃ 0.7です。また一般に赤方偏移は波長の伸びを

λobs
λsrc

= 1 + z (7.1.4)

*1 いま観測者に対して波源が進行方向前方に存在するとする。波源における波長を λsrc とし観測される波
長を λobs とし、波源の媒質に対する速度を vsrc とし観測者の媒質に対する速度を vobs とすると、

λobs

λsrc
=
cs + vsrc

cs + vobs
(7.1.1)

が得られる。ただし cs は波の伝播速度である。
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と書いて、z のことを赤方偏移ということが多いです。Hubble-Lemaitreの法則は図 7.1

のように宇宙全体が一様に膨張していると考えると自然に説明できます。

図 7.1 Hubble-Lemaitreの法則は一様に膨張する風船の上に描かれた銀河の運動に
よって自然に説明できる。(Credit: 原田知広・宮本雲平)

この後退速度 v が光速 cに達する距離 r を宇宙の地平線といいます。地平線長 ℓH は

ℓH = cH−1
0 ≃ 4

(
h

0.7

)−1

Gpc (7.1.5)

と計算できます。これより遠い領域は観測できないと考えられます。正しい理解には一般

相対論が必要ですので、ここではこれくらいにします。

7.1.2 一様等方宇宙モデル

宇宙全体を研究する学問を宇宙論といいますが、宇宙は大変複雑であるため現在実験・

観測されている事実だけを使って論じるのは非常に困難です。そこで大胆な仮定を採用し

て問題を簡単にしてそれを解き、実験・観測との整合性を調べるという戦略をとることに

なります。このような仮定は一般に作業仮説と呼ばれます。宇宙論の基本的な作業仮説は

「宇宙に特別な場所・方向はなく、一様等方である」というもので、宇宙原理といいます。

これを採用すると、宇宙の線素は座標 t, r, θ, ϕを用いて、

ds2 = −c2dt2 + a2(t)

[
dr2

1−Kr2
+ r2(dθ2 + sin2 θdϕ2)

]
(7.1.6)
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という形に書くことができます。ここで a(t) はスケール因子と呼ばれる関数です。

K = 0,±1は宇宙の空間曲率です。図 7.2では２次元の曲面で表していますが、K = 0は

平坦で、K = 1は正曲率、K = −1は負曲率です。この計量は Friedmannによって 1922

年に初めて書かれたもので、この時空を Friedmann-Lemaitre-Robertson-Walker時空と

いいます。

図 7.2 宇宙の空間曲率と対応する２次元曲面 (Credit: 原田知広・宮本雲平)

a(t)を決める方程式は Einstein方程式から(
ȧ

a

)2

=
8π

3
Gρ− K

a2
(7.1.7)

と得られます。これを Friedmann方程式といいます。ここで ρは、エネルギー密度を c2

で割ったもので質量密度といいます。

一応この方程式はニュートン力学的考察で得られるので、それを紹介します*2。いま物

質が一様等方に分布しているとします。適当な点を中心 O とし、銀河 Pの Oからの距離

を r(t)とします。Pの力学的エネルギー保存則は

1

2
ṙ2 − GM

r
= ϵ (7.1.8)

となります。ここで

M =
4π

3
ρ(t)r3(t) (7.1.9)

は Pの内側の質量で、ϵは定数です。現在の時刻 t = t0 で Hubble-Lemaitreの法則

ṙ(t0) = H0r(t0) (7.1.10)

から、

ϵ =
1

2

[
H2

0 − 8πG

3
Gρ(t0)

]
r2(t0) = −K

2
r2(t0) (7.1.11)

*2 一般相対論の観点からは、このニュートン力学的導出を完全に正当化することは困難です。
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となります。ただし、

K = −
[
H2

0 − 8πG

3
Gρ(t0)

]
(7.1.12)

とおきました。ここで宇宙が常に一様等方であるためには、

r(t) = a(t)r(t0) (7.1.13)

となっていなければなりません。これを用いて (7.1.8) を書き直すと Friedmann 方程式

(7.1.7) が得られます。

ρ = ρ(t)はどう決まるかというと、半径 r(t)の球体の内部のエネルギーの変化が外か

らなされる仕事に等しいので

d

(
4π

3
ρ(t)r3(t)c2

)
= −Pd

(
4π

3
r3(t)

)
(7.1.14)

となります。これを書き直すと

ρ̇+ 3

(
ρ+

P

c2

)
ȧ

a
= 0 (7.1.15)

が得られます。これはエネルギー保存則です。

また膨張宇宙において光の伝播を調べると波長が λ ∝ a となることがわかります。つ

まり時刻 tで放射された光を現在観測したとすると

λobs
λsrc

=
a(t0)

a(t)
= 1 + z (7.1.16)

これより、z を宇宙のスケール因子が現在の 1/(1 + z)倍の時期を指すものとして、tの

代わりに使います。現在は z = 0ということになります。

7.1.3 膨張則と宇宙論パラメータ

宇宙の主な構成要素は、物質 (P ≃ 0)、輻射 (P ≃ ρc2/3)、宇宙項 (ρ = const) である

と観測的に示唆されています。密度はそれぞれの成分に関するエネルギー保存則 (7.1.14)

から

ρM = ρM0

(a0
a

)3
, ρR = ρR0

(a0
a

)4
, ρΛ = ρΛ0 (7.1.17)

となります。ここで添字の 0 は t = t0 での値を表しています。ここで ρR ∝ T 4 とする

と、T ∝ a−1 となります。ρは、

ρ = ρM0

(a0
a

)3
+ ρR0

(a0
a

)4
+ ρΛ0 (7.1.18)
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と書けます。現在これらの宇宙の組成がどうなっているのかを表すために以下のような量

を定義します。

Ω0 =
ρ0
ρc0

, ΩM0 =
ρM0

ρc0
, ΩR0 =

ρR0

ρc0
, ΩΛ0 =

ρΛ0

ρc0
, k0 =

K

a20H
2
0

. (7.1.19)

ただし

ρc0 :=
3H2

0

8πG
(7.1.20)

は臨界密度と呼ばれています。Friedmann方程式で t = t0 とした式から、

Ω0 = 1 + k0 (7.1.21)

が成り立ちます。観測的には

ΩM0 ≃ 0.3, ΩR0 ≃ 0.00004, ΩΛ0 ≃ 0.7, k0 ≃ 0 (7.1.22)

ですので、宇宙はほとんど平坦であるということになります。図 7.3 は宇宙の全エネル

ギー密度に占める各成分の割合を示しています。

図 7.3 宇宙の全エネルギー密度に占める各成分の割合。 (Credit: 原田知広・宮本雲平)

このことから宇宙は以下のような進化をたどったことがわかります。

� z ≳ 20000: 輻射優勢期
a ∝ t1/2 (7.1.23)
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� 20000 ≲ z ≲ 1: 物質優勢期
a ∝ t2/3 (7.1.24)

� z ≲ 1: 宇宙項優勢期
a ∝ eH0t (7.1.25)

実際には現在はまだ宇宙項優勢にはなりきっていないので、まだ指数関数ではない

のですが加速膨張は起こっています。1998年から 1999年にかけて Perlmutterら,

Schmidtら, Riessらは超新星爆発の詳細観測によって我々の宇宙が加速膨張して

いることを明らかにしました。この三人は 2011年のノーベル物理学賞を授与され

ています。

7.1.4 演習問題

1. (7.1.3)を用いて (7.1.5) を示せ。

2. (7.1.22)における ΩR0 の値を、観測されている CMBの温度 2.7 Kと (7.1.3) で与

えられる Hubble定数から計算し、hを残した形で求めよ。

3. (7.1.23), (7.1.24), (7.1.25) を導け。

7.2 ビッグバン理論の概要と問題点

7.2.1 ビッグバン理論の概要

ビッグバン理論は 1946年から 1950年ごろに Gamow, Alpher, Hermanによって提案

されたシナリオです。基本的な仮定は以下の 3つです。

� 宇宙は高温高密度の熱平衡状態から始まった。

� 宇宙膨張は一様等方模型で記述される。

� 宇宙の構造は重力不安定性によって形成された。

その観測的証拠は以下のものです。

� Hubble-Lemaitreの法則

� 宇宙の軽元素組成

恒星大気の組成は重量比で Hと Heが 0.7と 0.25-0.28でありそれ以外の重い元素
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が 0.02− 2× 10−5 程度となっている。星の元素合成では Heをこれほど多く作る

ことは不可能であり、H, Heは宇宙論起源と考えることが自然です。

� 宇宙背景マイクロ波放射 (CMB)

1965年に Penzias とWilson は全天から 2.7 K の黒体輻射が一様に降り注いでい

るのを観測しました。これは宇宙が過去に一様で高温高密度の熱平衡状態であっ

たことの証拠です。Penzias とWilson は 1978 年にノーベル物理学賞を受賞しま

した。

7.2.2 宇宙の熱史

宇宙膨張とともに温度 T は下がってきます。そこで温度が下がってくるにつれてどの

ような反応が進むかが重要になってきます。以下のようなイベントが起こったと考えられ

ています。

� T ≫ 200GeV

すべての標準理論の粒子は超相対論的で対生成・対消滅に関して熱化学平衡にあ

り、黒体輻射として振る舞う。

� T ≃ 200GeV

電弱相転移。電磁気力と弱い力が分離する。

� T ≃ 150MeV

クォークハドロン相転移。クォークがハドロンに閉じ込められる。

� T ≃ 8× 108K

元素合成が開始される。

� T ≃ 104K

物質輻射等密度時刻 (ρM = ρR)。輻射優勢から物質優勢に切り替わる。

� T ≃ 4000K

水素再結合。宇宙が中性化する。

� T ≃ 2700 K

光が直進するようになる。晴れ上がり。この際の光が CMBとして観測される。

特に重要なのが元素合成です。温度が 8× 108K程度まで下がると

2p+ 2n→4 He (7.2.1)

という反応が起こって元素合成が進みます。しかし、質量数 5,6,8の安定な原子核が存在
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しないので、7Liと 7Beが作られてそこで打ち止めになります。詳しい計算によると He

の生成量が 0.23 となります。またバリオンの存在量が Ωb0 ≃ 0.02 − 0.04 と予言されま

す。これは物質のほとんどが非バリオンのダークマターであることを意味します。

7.2.3 ビッグバン理論の問題点

ビッグバン理論は様々な観測的な事実を説明できる非常に優れた理論ですが、原理的

な問題もあります。また、最新の精密な観測データと合わないと主張されることがあり

ます。

以下では原理的な問題を上げていきます。このうち次の 3つは 1980年代に発展したイ

ンフレーション理論の動機となり、ある程度まで解決されました。

� 地平線問題

ビッグバン理論では初期宇宙は常に減速膨張します。この際、宇宙の地平線の広が

りは宇宙膨張よりも早くなるので、宇宙は今まで見えていなかった部分がだんだん

見えてくるようになります。実際、現在観測されている CMBには宇宙の晴れ上が

り時の地平線長の半径の円が多数入っています。そうすると、この円より大きな波

長の非一様性をならす機構が存在しないのでこれより長いスケールで大きな非一様

性が見えていてもよいのに、観測されている CMB は非常に一様に近いことがわ

かっています。これは非常に不自然です。これは一様性問題とも呼ばれています。

� 平坦性問題

Friedmann方程式の右辺では、物質の項は a−3 に、輻射の項は a−3 に比例します

が、曲率項は a−2 に比例します。これは初期宇宙では曲率が重要ではなくても、時

間が経ってくると曲率項が重要になってくるということです。現在の宇宙の曲率が

無視できるほど小さいということは、初期宇宙には物質の寄与と比べて曲率の寄与

がとんでもなく小さいということです。なぜ宇宙が曲率の寄与がこのように不自然

に極めて小さい状態から始まったのかというのが、平坦性問題です。

� モノポール問題

素粒子の大統一理論では宇宙の温度が下がってくる際の相転移時に大量の磁気モノ

ポールが生成されることが予想されます。この磁気モノポールは非常に安定なので

その後宇宙にたくさん残っているはずですが、現在そのようなものは全く観測され

ていません。

また以下の問題はビッグバン理論の問題というよりは現代物理学全体の未解決問題とし
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て認識されています。

� 宇宙項問題

宇宙項の値が量子重力によって決まっているとすると、自然な値は Λ ∼ l−2
Pl とな

りますが、現在観測されている値はそれより 122 桁も小さいことがわかっていま

す。しかし、なぜこのように不自然に小さい値をとったのかはわかりません。また

関連する問題として、なぜ現在物質のエネルギー密度と宇宙項の密度が同程度であ

るのかという問題もあり、これは一致問題と言われています。

� ダークマター

ビッグバン理論では元素合成の議論から物質のほとんどはバリオンではないダー

クマターからなると結論されます。また銀河や銀河団の観測などでもダークマター

が物質の多くの質量を占めることがわかっています。さらにダークマターは現在見

られるような宇宙の構造が形成される際にも不可欠な要素です。ところがダークマ

ターがなんであるかについてはビッグバン理論は答えません。素粒子論ではダーク

マターの役割を担う粒子の候補がありますが、そのような候補は非常にたくさんあ

る上、多くの候補は実験的に否定されています。一方、未発見の素粒子ではなく原

始ブラックホールがダークマターであるという可能性も提案されています。

一方、観測データとの不整合についてはいろいろな問題が指摘されてきました。

� 宇宙年齢問題

20世紀末に球状星団にある古い星の観測によって 130億年以上の年齢のものがあ

ることがわかり、一方物質と輻射だけの平坦な宇宙では宇宙年齢が 100億年程度に

なってしまい、観測的に許される程度の負曲率を入れても 130億年程度にしかなら

ないというのが宇宙年齢問題です。宇宙項を導入すると宇宙年齢が 137 億年程度

まで伸びることで、この問題は一応解決されました。

� ダークエネルギー

現在の宇宙が加速膨張しているとしてその最も簡単な説明は宇宙項なのですが、そ

うであるとは限らないというのがダークエネルギーの考え方です。実際、最近の

Dark Energy Spectroscopic Instrument (DESI) による遠方銀河の赤方偏移の精

密観測では宇宙項による加速膨張ではデータに合わないという主張もなされていま

す。実際には、宇宙項ではなくても ρc2 + 3P < 0を満たす物質であれば宇宙を加

速膨張させることはできるので、そういうものをひとくくりにダークエネルギーと

読んでそういうものの性質を理論的・観測的にしらべようという研究が行われてい
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ます。また、重力理論を変えてしまえばエキゾチック物質を考えなくても加速膨張

させることができるかもしれません。そのような試みは修正重力理論とよばれてい

ます。

� ハッブル緊張

H0 = 100hkm/s/Mpcを精密に観測するのは非常に難しいのですが、Planck衛星

などによる CMBの非等方性観測から決められる値 h ∼ 0.68と超新星爆発観測か

ら決められる値 h ≃ 0.72とで、2つの観測値が統計的に有意に異なっているように

見えます。いまこれらの方法と独立な方法による観測の誤差も小さくなっており、

観測の進展によって解決される可能性もあります。一方、理論的なモデルによって

これを解決しようとする試みも行われています。

7.2.4 演習問題

1. 地平線問題に関連して、観測されている全天の CMB に宇宙の晴れ上がり (last

scattering) 当時の地平線長に対応する円がいくつほど入っているだろうか。次の

手順で求めよ。ただし、ここではオーダー評価することが目的なので、宇宙は物質

優勢であるとし、地平線長は lH ≃ ctと評価して計算して良い。

（a）物質優勢期にはスケール因子 aが t2/3 に比例することを示せ。

（b）晴れ上がり時の輻射の温度は約 3000Kである。この際の赤方偏移 z を求めよ。

（c）晴れ上がり時のスケール因子は現在の何倍か？

（d）晴れ上がり時の時刻 tを現在時刻 t0 を用いて表せ。

（e）晴れ上がり時の地平線長と CMB全天の半径の比を求めよ。

（f）CMB全天に晴れ上がり時の地平線長に対応する円がいくつ入っているか計算

せよ。
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