

MAGIC VHE γ-ray observations of (some) binary systems

D. Hadasch on behalf of the MAGIC collaboration

Looking for new Gamma-ray binaries

→ Coordinated campaign (with H.E.S.S.) to observe the super-critical accretion system SS433

Using Gamma-Ray Burst alerts to follow up rapidly flaring systems

- LMXB V404 Cygni
- Deep studies on microquasars

 - Cyg X-1Cyg X-3

SS433

SS433 - the system

- Precessional and orbital periods constant over decades
 - P_{or} ~13 days, P_{pre} ~162 days
- Only galactic super-critical accretor
- Strongly-collimated persistent hadronic relativistic jets
- Embeded in W50 nebula
 - Interaction between jets and nebula: east & western blobs
 - X-ray emission & radio non-thermal emission
- Absorption of putative emission in ~80% of the orbit
 - Best opportunity for observations: Фрге=0.91-0.09

SS433 campaign

H.E.S.S. & MAGIC Coll., accepted for A&A

- Observation campaign performed in collaboration with H.E.S.S.

 - Upper limits (CL=95%) compatible with predictions by Reynoso et al., 2008
- Efficient proton acceleration constrained by lack of TeV emission

Discussion: hadronic scenario

- MAGIC and H.E.S.S. observations: wide coverage of relevant precession phases from 2006 to 2011
 - If long-term super-orbital variability exists due to varying jet injection power or to changing conditions of the absorber in the surroundings of the central compact object → not detected: no enhancement of TeV flux detectable
- γ-ray flux predicted by Reynoso et al. (2008) depends on efficiency in transferring jet kinetic energy to relativistic proton population: q_p
 - We can **constrain** fraction of power carried by relativistic protons in SS 433 jets: q_p≤ 2.5 × 10⁻⁵
- Hadronic scenario: expect neutrinos from decay of charged pions.
 - No detection in IceCube : limit on $q_p \sim 3.3 \times 10^{-5}$ marginally less restrictive
- Note: Different values for the magnetic field, target proton densities and/or adiabatic expansion velocities in acceleration region imply variations in predicted γ-ray and neutrino fluxes.

Discussion: leptonic scenario

- At interaction regions of the jets with the surrounding W50 nebula: Xray spectra from the extended lobes represented by power-law model
 → synchrotron origin → presence of electrons up to ~50 TeV
- Bordas et al. (2009) considered non-thermal emission produced in microquasar jets/ISM interaction regions.
 - Providing γ-ray flux estimates as a function of the kinetic power of the jets, the age of the system, and particle density of the environment.
 - Application of this model \rightarrow fluxes at level of ~10⁻¹³ erg cm⁻² s⁻¹ for E > 250 GeV: roughly at level of the upper limits reported here.
- However: **e**'s accelerated at interaction region shock interface could **loose most of energy** through synchrotron emission for ambient magnetic fields $\geq 10 \mu$ G \rightarrow preventing effective channeling through IC scattering that is relevant for the production of γ rays at HE and VHE.
- Our new ULs: We constrain the magnetic fields in shocked jets/ISM interaction regions \rightarrow lower limit on the magnetic field of 20–25 μ G.

V404 Cygni

Low mass X-ray binary: V404 Cygni

- Nearby system (2.39 ± 0.14 kpc) (Miller-Jones et al. 2009)
 - ~9-15 M_{\odot} black hole + ~1 M_{\odot} companion star (Khargharia et al. 2010)
 - Orbital period: 6.5 days (Casares et al. 1992)
- Major outburst in June 2015 after 26 years in quiescent state
- MAGIC was triggered by INTEGRAL
- MAGIC observed the source in Gamma-
 - Observations for several nights between June 18-27 → about 11h
- Time intervals with highest INTEGRAL flaring activity (gray bands) used in MAGIC analysis are defined following the Bayesian Block method.

V404 Cygni MAGIC results

- Selection of the flaring times done from the INTEGRAL light curve to avoid increasing trials
 - 7h of observation distributed in different nights \rightarrow No signal found (0.08 σ)
 - UL of 4.8x10⁻¹² ph cm⁻²s⁻¹ (E= 200-1250 GeV) was computed (few percent of Crab flux)

Discussion

- Evidences of jet emission given by the optical observations
 - Hint of detection in Fermi-LAT data ($\sim 4\sigma$) + giant radio flare + increase of hardness ratio in X-ray band + optical fast variability
 - \rightarrow jet environment dramatically changed on that day
 - Temporally coincident: No detection in MAGIC data.
- Luminosity MAGIC upper limits $\sim 2 \times 10^{33}$ erg s⁻¹, **in contrast** with extreme luminosity emitted in X-ray band $\sim 2 \times 10^{38}$ erg s⁻¹
- Estimated γ-ray opacity during flaring period & non-detection → inefficient acceleration in V404 Cyg jets if VHE emitter is located >1×10¹⁰ cm from the compact object.

Microquasars

Cygnus X-1 & Cygnus X-3

General information

Cygnus X-1

25-35 M_{\odot} O9.7 lab supergiant + 15 M_{\odot} BH

Distance ~ 1.86 kpc

Orbital period = 5.6 days

SUPC @ phase=0

X-ray and radio orbital modulation

5 pc ring-like radio structure (@ 10¹⁹ cm)

Cygnus X-3

Wolf Rayet + 1.4 M_{\odot} NS or <10 M_{\odot} BH

Distance ~ 7 kpc

Orbital period = 4.8 hr

SUPC @ phase=0

X-ray and HE gamma-ray orbital modulation

Unusual high absorption

Detected @ HE by AGILE and Fermi-LAT

Cygnus X-1: HE & VHE emission

- Three transient episodes (~1-2 d) detected by AGILE (>100 MeV): two during hard state (HS), one during intermediate state (IS) (Bulgarelli+2008;Sabatini+2010, 2013)
- Hint @ TS=16 with 3.8 yr Fermi-LAT data during HS (Malyshev+2013)
- Detection during HS: 7.5 yr PASS8 Fermi-LAT data → detection TS=53 (Zanin+2016)
- Evidence of emission @ VHE with MAGIC (mono): Sept 2006, ~4 σ in 80 min (Albert+2007)
 - Simultaneously with hard X-ray flare (INTEGRAL, Swift-BAT and RXTE-ASM)
 - During HS and SUPC

Cygnus X-1: lightcurve

- MAGIC observations between 2007-2014, for ~100 hr (focused on HS)
- Search for steady and variable emission >200 GeV, at each X-ray state (~83 hr HS, ~14 hr SS)
- No significant excess was found for steady, orbital modulated or daily basis emission
- Grey: hard state; blue: soft state

MAGIC Coll.,

Cygnus X-1: Implication of VHE results

- Jet-medium interaction discarded as possible region for VHE emission above MAGIC sensitivity level: not affected by γ-γ absorption
- @ binary scale (~R_{orb} = size of the system) less conclusive: Transient event, as reported previously, cannot be ruled out (no observations simultaneously with hard X- ray flare)
 - Radio-emitting-blobs during IS (like in Cygnus X-3)

Cygnus X-3: new results

- Radio and HE gamma-ray flare in Aug-Sept 2016
- MAGIC observations between Aug 23rd and Sept 22nd: ~70 hr during SS
- Searches for steady, orbital modulated and daily basis analysis: no significant excess

Cygnus X-3: new results

Non-negligible absorption,

- $\tau \sim \sigma_{\gamma\gamma} \cdot n_{NIR} \cdot R$, up to $R \sim 10^{13}$ cm
- assuming $\sigma_{\gamma\gamma} \sim 10^{-25} \, \text{cm}$, $L_{\text{NIR}} = 10^{38} \, \text{erg/s}$
- Possible VHE emission could be related with HE production site (@ binary scales, R>10¹¹ cm)
- Observation with radio flare, but no MAGIC detection --> VHE emission originated inside binary scale and not at radio-emitting regions of the jets far from compact object
- Already very constraining ULs: further investigation with Fermi-LAT data

Cygnus X-1 & Cygnus X-3

Cygnus X-1

Cygnus X-1 emits up to ~20 GeV, most likely related to relativistic jets

- Probable mechanism anisotropic IC on stellar photons
- ♦HE Emission site constrained at 10¹¹ cm < R < 10¹³ cm from the BH

No cutoff detected => TeV component not excluded, but expected @ binary scales

Cygnus X-3

MAGIC observed Cygnus X-3 for an entire radio and HE flare

 \bullet Given the high γ - γ absorption, MAGIC non-detection could point to VHE emission inside the system

Open questions

- Are we at the limit with our VHE instrument sensitivity?
 - Next generation of telescopes (CTA) needed for detection?
- Or do these systems simply not emit at VHE?
 - No emission detected due to absorption effects/ high magnetic fields, …?
- If VHE γ-rays are produced...
 - Where? Close to compact object? Outside of binary scale?
 - Hadronic or leptonic?

Open questions

- Are we at the limit with our VHE instrument sensitivity?
 - Next generation of telescopes (CTA) needed for detection?
- Or do these systems simply not emit at VHE?
 - No emission detected due to absorption effects/ high magnetic fields, …?
- If VHE γ-rays are produced...
 - Where? Close to compact object? Outside of binary scale?
 - Hadronic or leptonic?

THANK YOU