

High-energy emissions from pulsar/Be binaries

P. H. Thomas Tam Sun Yat-sen University

Jumpei Takata (HUST), K S Cheng, Ruby Ng (HKU) Albert Kong (NTHU), Ray Li (Michigan State) 4 July 2017, Tokyo

References

1. Takata, J., Tam, P., Ng, C. et al., ApJ (2017) 836, 241 2. Li, K.L., Kong, A., Tam, P. ApJ, in press, arXiv:1705.09653

Contents

Probing pulsar wind with Gamma-ray binary

• PSR J2032+4127

• PSR B1259-63

- Probing pulsar wind with Gamma-ray binary
- PSR J2032+4127 (HE flares in coming periastron in 2017?)
- PSR B1259-63 (GeV flare?)

Gamma-ray binaries

Currently known high-mass gamma-ray binaries

name	binary components		P_{orb} (d)	HE	VHE	refs (\star)	notes					
(high-mass) gamma-ray binaries												
PSR B1259-63	pulsar	Be	1236.7	\checkmark	\checkmark	[12, 13]	$47.7 \mathrm{\ ms}$					
$\rm HESS~J0632{+}057$?	Be	315		\checkmark	[14, 15]						
LS I $+61^{\circ}303$?	Be	26.5	\checkmark	\checkmark	[16, 17]	magnetar ?					
1FGL J1018.6-5856	?	Ο	16.6	\checkmark	\checkmark	[18, 19]						
LS 5039	?	О	3.9	\checkmark	\checkmark	[20, 21]						

Dubus (2015)

New-comers:

- PSR J2032+4127 (Be star, P_{orb} 50 years!)
- LMC P3(O star, P_{orb} 10 d)

Long orbital period binaries

- After -9 years of operation, Fermi/LAT, being an all-sky monitor, has accumulated a large data base -> good time to probe these long orbital period binaries
- Finding more will help us understand these systems and probe the environments in the binaries and magnetization of pulsar wind

Emissions from Pulsar/Be star binary *Three emission regions normally considered modeling* 1. Magnetosphere (<10⁹cm, pulsed) 2. Pulsar wind region (<10¹³cm, no synchrotron, only I.C.). 3. Shock accelerated pulsar wind (synchrotron & I.C.).

8

Pulsar

Relativistic pulsar wind

Stellar wind **B**star or disk outflow

Probing pulsar wind

 Pulsar wind: relativistic electrons/positrons + magnetic field.

Magnetization parameter:

$\sigma -$	Magnetic energy
) —	Kinetic Energy

• At the light cylinder, • Pulsar wind nebulae $\sigma(10^{8-9} {
m cm}) = 10^{2-3}$ Ipc $\sigma(0.1 {
m pc}) < 10^{-2}$

Magnetization parameter evolves with the distance. But how?

Probing P.W. with Gamma-ray binary

1. Magnetization parameter affects the shock emissions (synchrotron emission). $B_s \propto \sigma^{1/2}$

10

Probing P.W. with Gamma-ray binary

- **2.** Probing radial dependency of σ
- → Pulsar/Be orbit is extremely elongated.
- → Shock distance varies ~0.1-1 AU along the orbit.
 - Testing radial evolution of σ .

3. Probing cold-relativistic pulsar wind
 → Stellar radiation (L-10⁴⁻⁵L_{sun}) illuminates the pulsar wind.
 → Inverse-Compton scattering process produces GeV emissions.
 Direct measurement of cold-relativistic pulsar wind.

11

PSR B1259-63/LS 2883

- comprising of a pulsar and an Oe star, at d-2.3 kpc
- orbital period: 3.4 years
- Interaction between the stellar wind/disk and the pulsar wind => non-thermal radiation close to periastron

Mysterious GeV flares

- Delayed compared to X-ray/TeV peak
- Next periastron passage at 2017-09-22

PSR J2032+4127

A gamma-ray pulsar (Camilo et al.2009)

 pulsar in a binary orbit best explains the 'timing noise'(Lyne et al. 2015)

PSR J2032+4127/MT91 213

 Pulsed emission in Radio/GeV
 P ≃ 143 ms L_{sd} ≃ 1.7×10³⁵ erg/s

 Very long orbit binary: Po-50 years.
 (Ho et al. 2016)

• Next periastron passage in late 2017.

X-ray/GeV data

17

Takata, Tam et al. (2017)

 X-ray flux has increased for a factor of ten in last -3 years

(see also Ho et al 2016)

 What cause the increase of X-rays? Shock?

Model calculation

- Emissions from pulsar wind/stellar wind interaction.
- Isotropic pulsar wind and stellar wind.
- Magnetization parameter:

 $\sigma(r) \propto r^{-\alpha}.$

α and normalization are model's free parameters

18

Stellar wind parameter

$$v_w = 10^8 \mathrm{cm/s}$$

$$\dot{M}_w \sim 10^{-9} - 10^{-7} M_{\odot} \mathrm{yr}^{-7}$$

Power law distribution of the shocked particles

$$f_0(\gamma) = K_0 \gamma^{-p}, \quad \Gamma_{PW,0} \le \gamma \le \gamma_{max},$$

$$m_e c^2 \int_{\gamma_{min}}^{\gamma_{max}} \gamma f_0(\gamma) d\gamma = \varepsilon_2(\sigma)$$

Evolution of particle distribution. $\frac{d\gamma_e}{dr} = \frac{1}{v_{pw}} \left[\left(\frac{d\gamma}{dt} \right)_{ad} + \left(\frac{d\gamma}{dt} \right)_{syn} + \left(\frac{d\gamma}{dt} \right)_{ICS} \right].$

Model Results

• Size of system

- -- Separation 1AU-30AU
- -- Shock distance from pulsar
 - -0.1AU-5AU
- Case for $\sigma(r)$ =constant
- -- Pulsar \rightarrow periastron.
- \rightarrow shock distance from the pulsar decreases
- → Increase X-ray emissions
- -- In the model

19

 $F_X \propto B^2(r_s) \times \text{Volume} \propto 1/r_s$

Effect of Doppler boost

-- The pulsar is close to inferior conjunction.

-- Shock pulsar wind moves toward the Earth.

--Doppler boost:

 $\mathcal{D} = \frac{1}{\Gamma_{pw}\sqrt{1 - (v_{pw}/c)\cos\theta_{pw}}},$

Recent X-ray light curve

XRT corrected count rate (cts/s)

Instead of a monotonically increase in X-ray flux, the light curve may be characterized by:
1) a long-term increase trend from 2013-2015: the low state
2) short-term (weeks-months) flares: the flaring

2) short-term (weeks-months) hares: the hard state

Recent X-ray light curve

Instead of a monotonically increase in X-ray flux, the light curve may be characterized by:
1) a long-term increase trend from 2013-2015: the low state=> lower nH
2) short-term (weeks-months) flares: the flaring state=> higher nH

Some thoughts

- It would ease the difficulties faced by too rapid increase of magnetic field at the shock (proportional to binary separation)
- Local clump(s) of clouds from stellar wind, consistent with high nH required

PSR J2032+4127 & PSR B1259-63 are two similar systems

PSR/Companion	P (s)	L_{35}	P_o (yrs)	e	a (lt-s)	T_*	R_*
J2032+4127/MT91 213	0.143	1.7	25-50	0.96	9022	30000K	$10R_{\odot}$
B1259-63/LS2883	0.048	8	3.4	0.83	1296	$\sim 30000 \mathrm{K}$	$\sim 9 R_{\odot}$

TABLE 1

GeV flares in 2011 & 2014!

Tam et al. (2011, 2015) see also Caliandro et al.(2015) Chernyakova et al. (2015)

X-ray light curves

Li et al. (2017) *PSR 2032+4127*

Tam et al. (2015) *PSR B1259-63*

Future perspective

Spectrum of I.C. from pulsar wind

- Relativistic pulsar wind
- --I.C. scattering off the stellar photons.
- -- Predicted flux ~10⁻¹⁰ erg cm⁻²s⁻¹ at periastron.
- -- Good target for Fermi.

Summary(I): general

- It's now a good time to study gamma-ray binaries with orbital period of years
- Pulsar/Be binary : laboratory of the pulsar wind, studying magnetosphere/Pulsar wind/Shock emissions.
- Prototype: PSR B1259-63/LS2883, origin of GeV flare still not solved

Summary(2): PSR J2032+4127

- PSR J2032+4127/MT91 213 : what causes the X-ray flares?
- Prediction from the shock model: Orbital modulating GeV/TeV emissions in the next periastron passage (late 2017, Takata, Tam et al., 2017).

• The first and last chance for us.

Thank you!

PSR J2032+4127

- Gamma-ray pulsars with radio timing solutions (Camilo+ 2009)
- It has TeV and X-ray counterparts (PWN?)

X-ray/GeV connection?

