

MWL behavior of Cyg-X1: a review

New results in the gamma-ray energy band

Roberta Zanin (Max Planck Institute für Kernphysik Heidleberg)

Outline

- Introduction to microquasars
- Cygnus X-1: the prototype black hole microquasar and its peculiarities
- Cygnus X-1 in the gamma-ray band: new results

Microquasars

Microquasars: MWL emitters

TRANSIENT SOURCES: USUALLY DISCOVERED IN X-RAYS WHEN FLARING

THE FORMATION OF THE CORONA IS DUE TO INCOMPLETE THERMALIZATION CAUSED BY A LOWER ACCRETION RATE

3

The X-ray spectral states

ILLUMINATING THEM

The X-ray spectral states

THE RELATIVE CONTRIBUTION OF THE TWO ACCRETION FLOWS DETERMINE THE 2 MAIN X-RAY SPECTRAL STATES

THE INTERMIDIATE STATE IS SHORT-LIVED

Disk-jet coupling

THE SEQUENCE OF THE STATES FOLLOWS A HYSTERESIS

(Fender 2004)

IN THE HARD STATE: WEAK BUT STEADY JETS WITH A FLAT SPECTRUM AND LOW LEVEL OF POLARIZATION (continuously replenished alá FSRQ jets) (Fender 2001, Brocksopp 2013, Russell+ 2014)

IN THE HARD-TO-SOFT TRANSITION: STRONG DESCRETE EJECTA (RADIO KNOTS: INTERNAL SHOCKS IN A FLOW OF VARIABLE SPEED) (Mirabel+94, MillerJones+2012)

Disk-jet coupling

THE SEQUENCE OF THE STATES FOLLOWS A HYSTERESIS

(Fender 2004)

IN THE HARD STATE: WEAK BUT STEADY JETS WITH A FLAT SPECTRUM AND LOW LEVEL OF POLARIZATION (continuously replenished alá FSRQ jets) (Fender 2001, Brocksopp 2013, Russell+ 2014)

IN THE HARD-TO-SOFT TRANSITION: STRONG DESCRETE EJECTA (RADIO KNOTS: INTERNAL SHOCKS IN A FLOW OF VARIABLE SPEED)

(Mirabel+94, MillerJones+2012)

Cygnus X-1

▶ 15 M_☉ BH (Oroz+2011)

- O9.7lab SUPERGIANT (Walborn 1973) WITH 25-35 M_O (Ziolkoswki2014)
- 1.86 kpc (Reid+2011)
- ORBITAL PERIOD: 5.6 d
 T₀=52872.788 @ SUPC
 (Brocksopp1999,Szstek2007, Gies 2008)
- SUPERORBITAL MODULATION WITH A 300 d PERIOD (Rico2008, Zdziarski+2011)

Corrected hardness

VGRS Workshop 2017

Cygnus X-1: X-ray states

SHOWS THE USUAL SOFT/HARD STATES

(Done+07, Belloni+ 2010)

credits to T. Belloni

Corrected count rate

Cygnus X-1: an extra-tail

Zdzizarski+2012

EXPERIMENTALLY SOME SPECTRAL DISCREPANCES BETWEEN DIFFERENT INSTRUMENT RESULTS

Cygnus X-1: an extra-tail

EXPERIMENTALLY SOME SPECTRAL DISCREPANCES BETWEEN DIFFERENT INSTRUMENT RESULTS

BOTH IN THE HS OR IN THE SS? VARIABLE?

(McConnell+02,Zdzizarski+12,Rodriguez+15)

Cygnus X-1: an extra-tail

EXPERIMENTALLY SOME SPECTRAL DISCREPANCES BETWEEN DIFFERENT INSTRUMENT RESULTS

ONLY IN THE HS OR ALSO IN THE SS?

(McConnell+02,Zdzizarski+12,Rodriguez+15)

THE ORIGIN OF THE TAIL IS NOT CLEAR: **1.** SYNCHROTRON EMISSION FROM THE JET **2.** HYBRID COMPTONIZATION
(Zdziarski+12,Laurent+12, Romero14)

Cygnus X-1: an extra-tail

STRONGLY POLARIZED > 400 keV PF= 75±16% PA = 42°±3° (Laurent+11, Jourdain+12) → JET SYNCHROTRON

SYNCHROTRON FROM THE JET ONLY UNDER VERY EFFICIENT ACCELERATION (flat electron spectrum) & B ABOVE THE EQUIPARTITION LEVEL (Zdziarski+14)

THE ORIGIN IS STILL AN OPEN QUESTION

Cygnus X-1 jets

Gallo+2005

Bow shock front

LESS THAN 10% POLARIZATION IN RADIO

(Stirling 2001)

Cygnus X-1 at high energies

(Sabatini+2010)

10

THREE 1-2 DAY LONG FLARES HINTED BY AGILE with a F(>100MeV) =2x10⁻⁶ ph/cm²/s (Sabatini+10, Bulagarelli+13)

 3σ 1-day FLARES in Fermi/LAT

(Bodaghee+13)

Cygnus X-1 at high energies

Cygnus X-1 at VHE

- 4or POST-TRAIAL 80' ON
 2006.09.24
 ABOVE 150 GeV (MAGIC 2007)
- > IN THE **HS**
- ONE DAY BEFORE A FLARE DETECTED BY INTEGRAL (Malzac+2008)
- 3.2 POWER LAW SPECTRUM (MAGIC 2007)

PASS8 Fermi/LAT analysis

Simultaneous X-ray flux

HS and SS states

Spectral energy distribution

Spectral energy distribution

16

Orbital variability

Flux variability

18

Flux variability

The origin of the E<100MeV emission

THE TWO SPECTRAL POINTS 40-100 MeV AS THE TAIL OF THE MeV POWER LAW

(*Zdzizarski+ arxiv:1607.05059*)

Theoretical expectations at VHE

LEPTONIC: IC ON THERMAL, STELLAR, ISM PHOTONS (Khangulyan+2008, Bosch-Ramon+2008, Zdziarski+12, 14)

LEPTONS ACCELERATED UP TO TeV ENERGIES

HADRONIC: p_{jet} - p_{jet} p_{jet} - p_{\star} & p-γ
with γ either stellar or synchrotron (*Romero2003,2008, Vila+2012*)

PROTRONS ACCELERATED UP TO 10¹⁵ eV

Theoretical expectations at VHE

VHE observations

The VHE non-detection

EMISSION FROM JET-ISM INTERACTION EXCLUDED BELOW 6x10³² erg/s LEVEL (MAGIC submitted to MNRAS)

ON BINARY SCALES LESS CONCLUSIVE BECAUSE OF ABSORPTION

TRANSIENT EMISSION AS THE ONE HINTED IN 2006 IS STILL A POSSIBILITY.

IF REAL, THIS OCCURRED

* IN SUPC (MAX ABSORPTION) THUS EMITTED AT z >= 10¹³ cm (MAGIC 2007)
 (UNLESS EXTENDED PAIR CASCADING IS CONSIDERED, BoschRamon+2008, Zdziarski+14)
 * SIMULTANEOUS TO HARD X-RAY FLUX INCREASE (Malzac+2008)
 → CHANGE AT THE BASE OF THE JET

Perspectives for the future

(MAGIC, submitted to MNRAS)

Conclusions

Cygnus X-1, the prototype BH microquasar. With many peculiarities:

- Persistent X-ray source: CORONA emission always present
- MeV tail. If highly polarized synchrotron from the jet and produced in a different region than radio, but not established.
- Gamma-rays most likely produced by anisotropic inverse Compton on stellar photons by electrons accelerated in the jets
- At VHE perspectives to detect the cutoff of the steady emission are really poor. Transient emission cannot be ruled out. MWL is needed to understand the origin.

Thank you

The Tulip and Cygnus X-1 Image Credit & <u>Copyright</u>: <u>Ivan Eder</u>

Orbital variability

Cygnus X-1 versus Cygnus X-3

CYGNUS X-1

- ➢ 15 M_☉ BH
- > 09.7lab supergiant
- ➤ 1.86 kpc
- orbital period: 5.6 d
- persistent X-ray source: never fully disk-dominated

CYGNUS X-3

- unknown compact object, most probably BH
- Wolf Rayet
- ➢ ~7 kpc
- Orbital period: 4.8 h
- bright radio source

Cygnus X-3 at high energies

(Tavani+2009, Abdo+2009, Piano+2012, Corbel+2012)

- 7 flaring events from 2009 to 2016 (each ~30o)
- orbital periodicity found
- Iasting 10-20 days
- Flux peaks 1-2 days long
- ➢ in the SS

Correlated with radio

triggering condition is:

- > minimum 0.2-0.4Jy radio
- ➤ raising radio emission

PL with 2.7 index

Cygnus X-1 versus Cygnus X-3

CYGNUS X-1

- steady emission
- persistent jets
- emission inside the binary system
- anisotropic IC on stellar photons

CYGNUS X-3

- flaring activity correlated with radio
- discrete jets
- emission inside the system
- anisotropic IC on stellar photons

The X-ray spectral states

SOFT

HARD

OUTDATED DEFINITION at beginning measurements only in the 2-10 keV→ F_{SOFT}>5*F_{HARD} but bolometric luminosity is comparable *(Gierlinski+99)* LET'S USE THE DEFINITION BASED ON SPECTRA

Disk-jet coupling

L_x-L_{radio} CORRELATION POWERFUL TOOL TO TEST THE DISK-JET COUPLING NOT CONCLUSIVE (Corbel+2013,Gallo+2003,2013)

Orbital variability

17

Cygnus X-1: the HARD state

L/L_{Edd} ~ 0.01-0.02 CUTOFF at 200-300 KeV → THERMAL/NON-THERMAL (HYBRID) COMPTONIZATION Disk spectrum at 0.2-0.5 keV

Frascati Workshop 2017

Cygnus X-1: new results at HE

(Zanin+ 2016)

7.5yr PASS8 Fermi/LAT data from 20-60 MeV to 500 GeV