

Outline

Theoretical and observational motivation

Steady gap solutions: structure and emission

Can steady gap exist?

Motivation

Theoretical: what is the plasma production mechanism in BZ outflows?

Spark gaps produce HE emission (seen in pulsars, speculated in BHs)

Plasma injection in the magnetosphere

- plasma source between inner and outer Alfven surfaces
- escape time ≈ few r_a/c

 $\gamma\gamma \rightarrow e^{\pm}$ in AGNs $\nu\nu \rightarrow e^{\pm}$ in GRBs mass loading

How to produce the required charge density?

Protons from RIAF?
Protons from n decay?
e[±] from γγ annihilation?
Other source?

Protons have to cross magnetic field lines. Diffusion length over accretion time extremely small.

> instabilities or field reversals. But intermittent spark gaps may still form.

Direct pair injection

Low accretion rates (RIAF): AC may be hot enough to produce gamma-rays above threshold (Levinson +Rieger 11, Hirotani + 16)

Conditions for gap formation (From Hirotani+16)

Direct pair injection

- Intermediate accretion rates: Disk is cold, but

corona may scatter photons to MeV energies.

Model SED of a 5 M_o BH at different states (from Chakrabarti + 95)

Activation of a spark gaps

AL 00; Neronov + '07, AL + Rieger '11, Broderick + 15; Hirotani+ 16

• activated when n < n_{GJ} . Expected in M87 when accretion rate < 10⁻⁴ Edd.

must be intermittent. particle acceleration to VHE by potential drop.

Structure of inner magnetosphere

Stagnation surface: separates plasma inflow/outflow null surface: GJ density vanishes (owing to framedragging)

Steady gap

Characterized by global current

 invoke B field geometry + properties of seed photon source,

• solve $\partial_{\mu}\left(rac{\sqrt{-g}}{lpha^2} F^{\mu}_t ight) = 4\pi\sqrt{-g}(ho_e - ho_{GJ})$

+Eq of motion for pairs

- + radiative transfer (with IC and curvature sources)
- + pair production (continuity Eq)
- iterate until all boundary conditions are met.

example

Levinson + Segev in prep

Gap location is fixed by magnetospheric current and disk luminosity

Gap spectra (Hirotani + 16)

Inherent intermittency?

If pp rate exceeds Max value, gap is intermittent

Inherent intermittency: 1. local condition

$M_{BH} = 10^9$ solar, $R_{rad} = 30 r_q$, power law spectrum

Inherent intermittency: 2. global condition

A steady gap must include the stagnation surface

Inconsistent with MHD flow

consistent with MHD flow

1D intermittent gap – analytic model

Cyclic gap in pulsars – PIC simulations

Pair cascades in NS – Timokhin 2012

t = 5.48310 η -10=6.68330 η -30=7.683=7.4833 η .2 .2 T x

Conclusions

> spark gaps may form if survival time of coherent magnetic domains exceeds a few dynamical times. May be the production sites of variable VHE emission.

> gaps are inherently intermittent.

PIC simulations can better probe gap dynamics and emission, and are underway