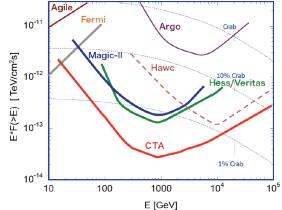


Status of CTA and Crab Flare

Takayuki Saito (ICRR, Japan) for the CTA consortium

Outline

Status of CTA


- Introduction
- Configuration of array and telescopes
- Sensitivity
- Some examples of expected physics
- Simulation Study for Crab Flare for CTA
 - GeV Flare in April 2011
 - Moving blob model
 - Prospects with CTA

Cherenkov Telescope Array

- New Generation VHE Gamma-ray Observatory
- North and South
- >30 countries
- > 1200 scientists
- x10 sensitivity
- above 20 GeV

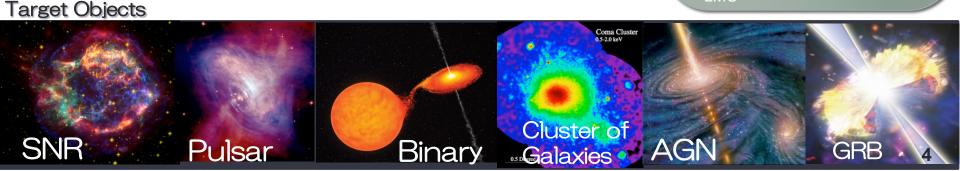
cta cherenkov telescope array

CTA Scientific Cases

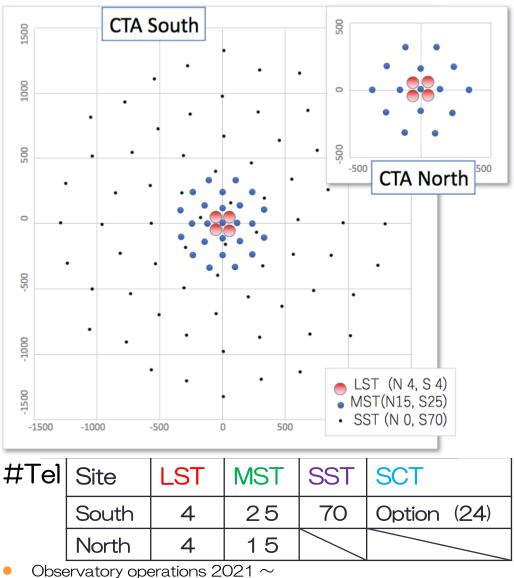
Understanding the Origin and Role of Relativistic Cosmic Particles

- Acceleration site & mechanism
- Feedback of accelerated particles on star formation and galaxy evolution

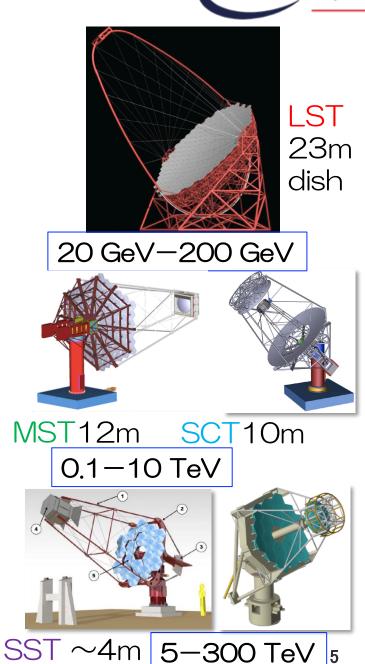
Probing Extreme Environments


- Physical process at vicinity of neutron stars and black holes
- Characteristics of Relativistic jets, winds and explosions

Exploring Frontiers in Physics


- Nature of Dark Matter
- Effect of Quantum Gravity on photon propagation
- Existence of Axion-like particles

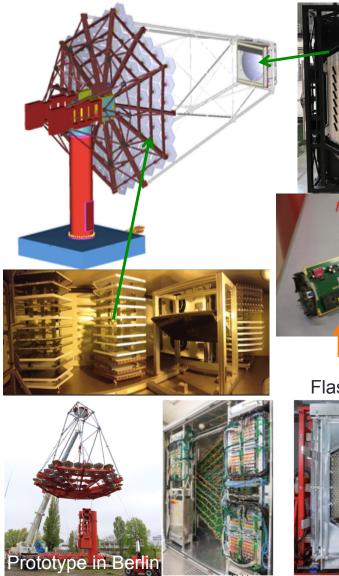
Key Science Project

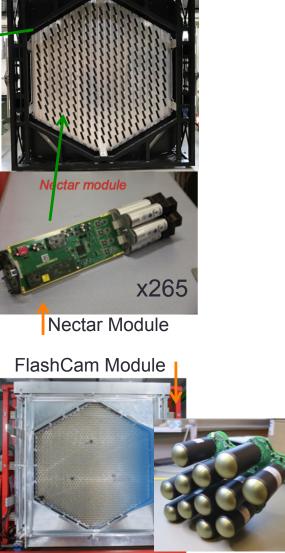

- Galactic Plane Survey
- Galactic Center
- Extreme Particle Accelerators
- Star Forming System
- Active Galaxies
- Galaxy clusters
- Transients
- Extragalactic Survey
- Dark Matter
- Cygnus
- LMC

Array Configuration

• Full array operations 2024 \sim

cherenkov telescope array


Large–Sized Telescope (N: 4, S: 4)


Re-	8		
	23m 23m 7 PMT module	Dish Size	23 m
		Dish Shape	Parabola
		Focal Length	28 m
		Camera Size	2.3 m 4.5 deg
		Pixel Size	5 cm 0.1 deg
		Photo Sensor	1855 PMTs
Mirror panel	x265	DAQ	1 GHz sampling.
	Foundation at LaPalma	Energy Coverage	20 – 200 GeV
x198			
			,

1st Telescope at LaPalma is being build.

Mid-Sized Telescope (N: 15, S: 25)

Dish Size	12 m	
Dish Shape	Davies-Cotton	
Focal Length	16 m	
Camera Size	2.3 m 8.2 deg	
Pixel Size	5 cm 0.18 deg	
Photo Sensor	1855 PMTs	
DAQ	1 GHz/ 250MHz digtization	
Energy Coverage	0.1 – 10 TeV	

SC-Mid-Sized Telescope (N: 0, S: 24)

	Dish Size
	Dish Shap
	Focal Leng
	Camera S
	Photo Sen
	DAQ
TARGET 7 module	Energy Coverage
Charge Spectrum • 4 mV/pe • at room temperature (focal	
support of the second s	

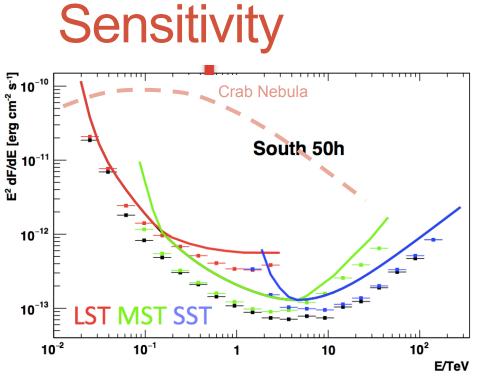
X (mm)

Charge (mV)

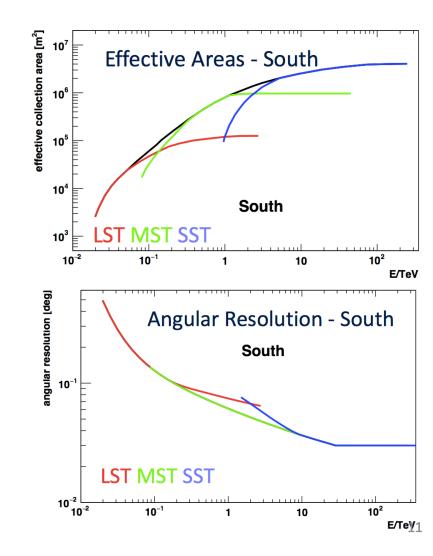
DISIT SIZE	9.7 111	
Dish Shape	Schwarzschild- Couder	
Focal Length	5.6 m	
Camera Size	8 deg	
Photo Sensor	11328 SiPM	
DAQ	1 GHz digitization	
Energy Coverage	0.2 – 10 TeV	

07m

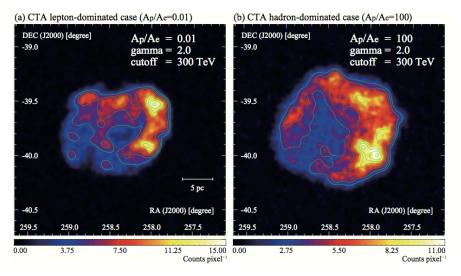
8

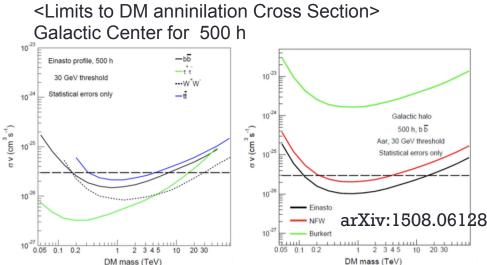

Small-Sized Telescope (N: 0, S: 70)

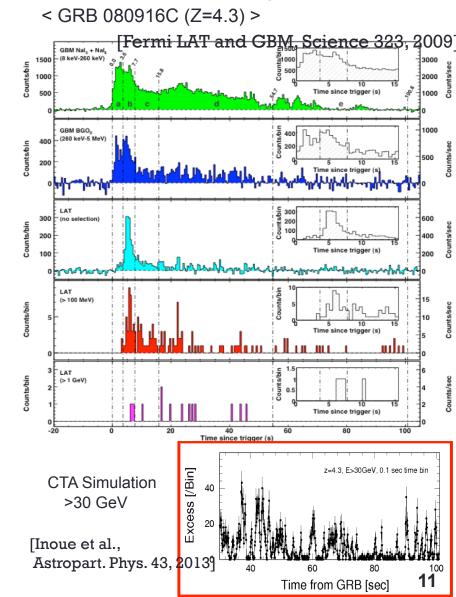
cherenkov telescope arrav


GCT SST-1M **ASTRI** Lightning rous Green: ok Overview Red: in prog Global FEA Towe Counte -Adapt to common SS - Reinfor foundations. Prototype in Catania - Enhanc -Resistance to earthquakes - Resista and gusts of winds at max and gust speed speed.

	GCT	ASTRI	SST-1M
Dish Size	4 m	4 m	4 m
Dish Shape	Schwarzschild - Couder	Schwarzschild - Couder	Davies-Cotton
Focal Length	2.3 m	2.15 m	5.6 m
FoV	8.6 deg	9.6 deg	9 deg
Photo Sensor	2048 SiPM	1984 SiPM	1296 SiPM
Energy Coverage	5 – 300 TeV	5 – 300 TeV	5 – 300 TeV 9


- a few 10 mCrab above 100 GeV
- 10000 times larger effective area than Fermi LAT@ 30 GeV
- 3 km² > 10 TeV
- Angular resolution 0.1 deg @ 100 GeV
- Angular resolution 0.3 deg above 10 TeV




cherenkov telescope array

Some examples of expected physics

<RX J1713 Morphology > Leptonic vs Haaronic

Crab Flare

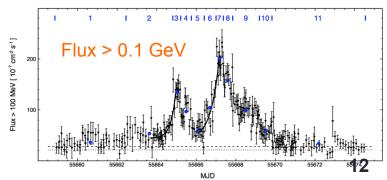
Crab Nebula exhibit Flaring activity at GeV range.

- Time scale of Variation (hours ~ days) << nebula size scale (months ~ years) ۲
- Peak Energy > the Synchrotron limit (160 MeV) •

(acceleration rate = energy loss rate)

$$\eta eBc = 2\sigma_T c\gamma^2 U_B$$

$$E_{sync} = \frac{3}{2}\hbar \varpi_B \gamma^2 \le \frac{9}{4} \frac{mc^2}{\alpha} \cong 160 MeV \quad (\text{e.g. de. Jager et al. 1996})$$


In order to explain this phenomena,

- Moving Blob models (Doppler boost) •
- Magnetic reconnection models ۲
- others.. •

 $\mathbf{n} \mathbf{n} \mathbf{D} \mathbf{n}$

have been proposed.

In this talk, a moving blob model is adopted and discuss how CTA would see IC component.

10³ 10^{2} 60 Me

Moving Blob Model (Kohri et al., MNRAS 424, p2249, (2012)

- Radiative Blob moves relativistically toward observer_
- Variation time scale (Δt) ~ the size of blob (R) / Doppler factor (δ).
- Larmor radius of electron in the blob < R
- Then, maximum energy of electron in the blob is

$$E'_{\rm max,e} = 790 \,{\rm TeV}\left(\frac{B'}{3 \,{\rm mG}}\right) \left(\frac{\delta}{10}\right) \left(\frac{\Delta t_{\rm obs}}{8 \,{\rm h}}\right)$$
(1)

Snchrotron Energy is

$$E_{\rm syn} = 95 \,{\rm MeV}\left(\frac{\delta}{10}\right) \left(\frac{E'_{\rm max,e}}{500 \,{\rm TeV}}\right)^2 \left(\frac{B'}{3 \,{\rm mG}}\right) \quad (2)$$

Observable: Δt , E_{syn}

Unknown: δ, B'

• From (1) and (2)

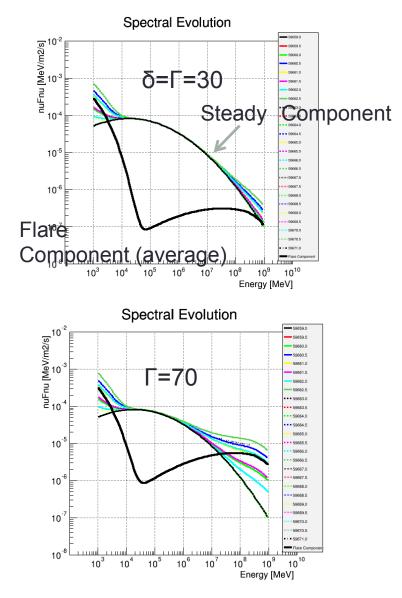
$$E'_{\text{max},\text{e}} = 480 \,\text{TeV} \left(\frac{E_{\text{syn}}}{10^2 \,\text{MeV}}\right)^{1/2} \left(\frac{\Delta t_{\text{obs}}}{8 \,\text{h}}\right)^{1/3}$$

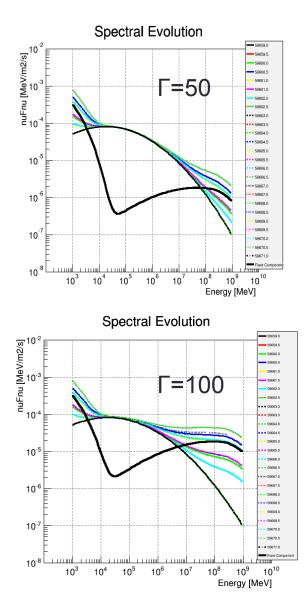
Unknowns cancel out.

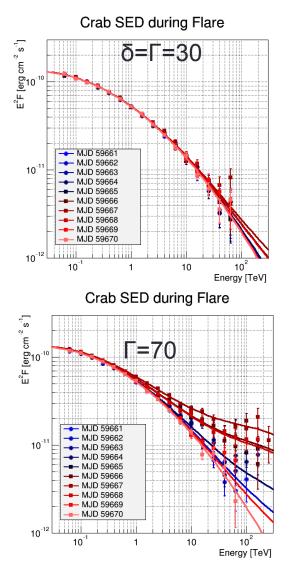
- $E_{max, e}$ can be inferred from E_{syn} and Δt .
- The same electron causes IC on CMB and Synch photons producing TeV-PeV photons.
- δ and B' can be determined only with IC componet measurement.

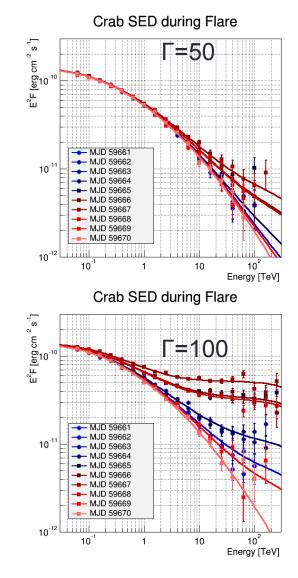
How would CTA have seen the Crab Flare in April 2011?

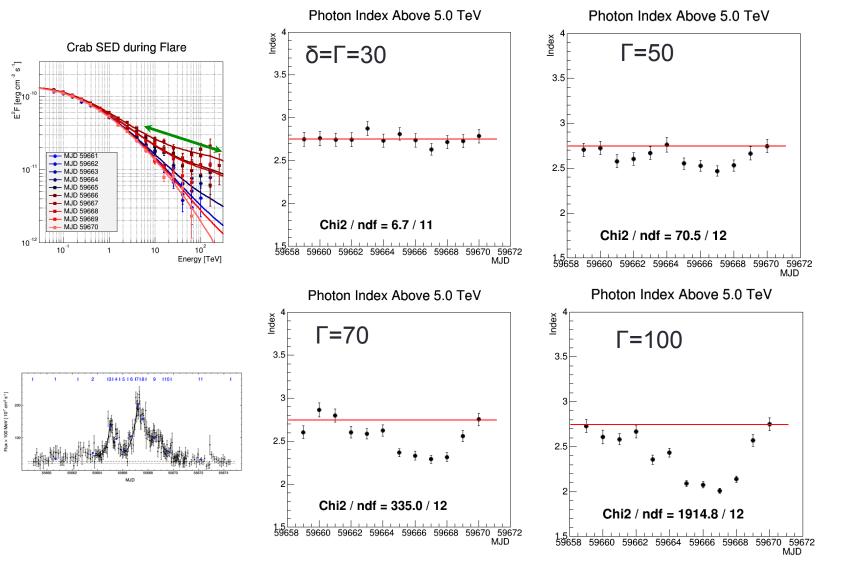
Using "CTOOL", http://cta.irap.omp.eu/ctools/admin/download.html study how TeV-PeV emission would have been with CTA.

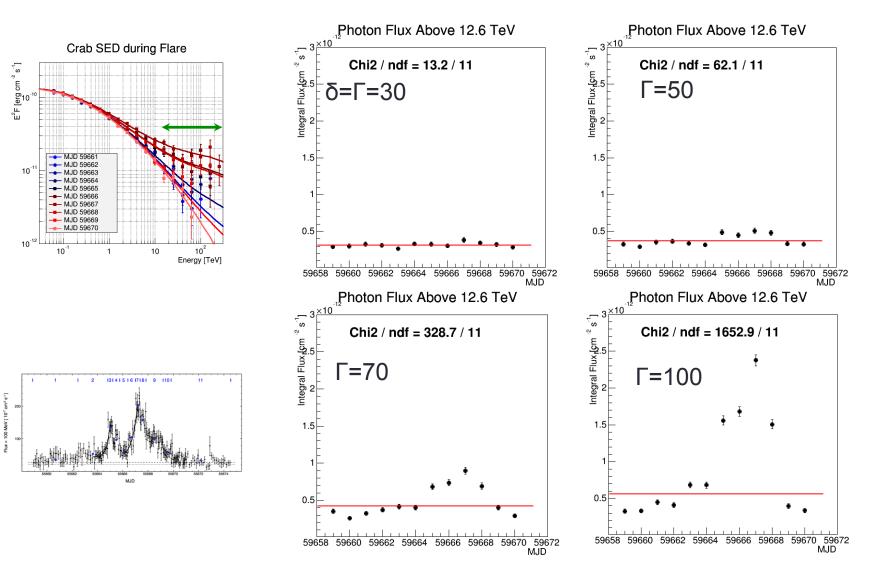

Assumptions:


- Flaring component changes every half day.
- Flaring component has the same spectral shape and only normalization changes.
- CTA observe Crab 3 hours every day.
- Lorentz factor Γ = Doppler factor δ

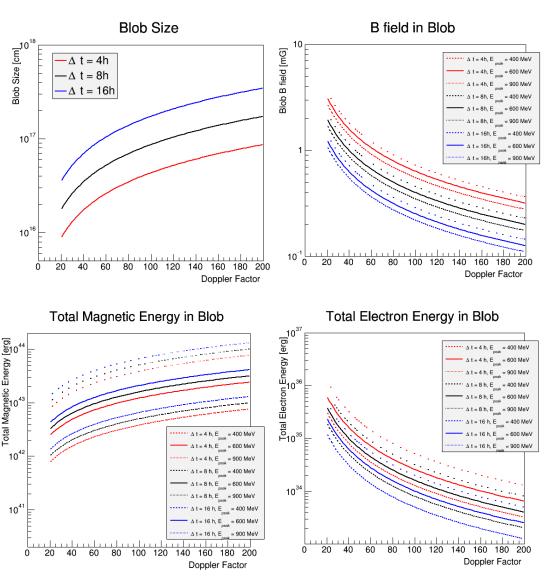

Input Spectrum




Spectra Observed by CTA



Spectral Index Variation above 5 TeV



Flux Variation above 12.6 TeV

Determined Blob Parameters

 Δt and E_{syn} are measured at GeV. If Doppler Factor δ is determined by CTA observations, then following parameters of the blob could be known.

Blob Size: δcΔt

Magnetic filed strength:

$$B' = 2.2 \,\mathrm{mG} \left(\frac{E_{\mathrm{syn}}}{10^2 \,\mathrm{MeV}}\right)^{1/3} \left(\frac{\delta}{10}\right)^{-1} \left(\frac{\Delta t_{\mathrm{obs}}}{8 \,\mathrm{h}}\right)^{-2/3}$$

Total magnetic field energy:

$$U'_{\rm B} = \frac{B'^2}{8\pi} \times \frac{4}{3}\pi (\delta c \Delta t_{\rm obs})^3 = 4.8 \times 10^{41} \text{erg}$$
$$\times \left(\frac{E_{\rm syn}}{10^2 \,\text{MeV}}\right)^{2/3} \left(\frac{\delta}{10}\right) \left(\frac{\Delta t_{\rm obs}}{8 \,\text{h}}\right)^{5/3}$$

Total electron energy

$$U'_{\rm e} = N'_{\rm e}(E'_{\rm max,e})E'_{\rm max,e} = 1.3 \times 10^{37} \rm erg$$
$$\times \left(\frac{E_{\rm syn}}{10^2 \,\rm MeV}\right)^{-7/6} \left(\frac{\delta}{10}\right)^{-2} \left(\frac{\Delta t_{\rm obs}}{8 \,\rm h}\right).$$

Conclusion

- CTA is the next generation gamma-ray observatory.
 - 10 times better sensitivity above 20 GeV
 - Construction is going on.
 - Partial operation is expected in the up-coming years.
 - Observatory operations will start in year 2021
 - Full operations will start in year 2024
- CTA will be a powerful tool for understanding the Crab flares
 - Based on Moving blob model (Kohri et al., MNRAS 424, 2012), IC Compton component is expected at >10 TeV range.
 - If Doppler factor of the blob is >50, then CTA will clearly detect the modulation of flux above 10 TeV.
 - Then, several physics parameter of the blob could be determined, which should shed light on the mechanism of the Crab flare.