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Abstract

This thesis is devoted to the study of the Gauge/Bethe correspondence between a topo-
logical gauge theory and a integrable system.

In the first part of this thesis, we show the correspondence between the G/G gauged
Wess-Zumino-Witten model on a Riemann surface and the phase model. When we apply
equivariant localization methods to the G/G gauged Wess-Zumino-Witten model, the
diagonal components of a group element satisfy Bethe Ansatz equations for the phase
model. We show that the partition function of the G/G gauged Wess-Zumino-Witten
model coincides with a summation of norms with respect to all the eigenstates of the
Hamiltonian with the fixed number of particles in the phase model.

In the second part of this thesis, we generalize the G/G gauged Wess-Zumino-Witten
model to the one with additional matters. We show that this model corresponds to the
g-boson model as with the first part. Also, we consider the Gauge/Bethe correspondence
from a general point of view.
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CHAPTER 1

Introduction

It is well known that there exists various connections between topological or supersym-
metric gauge theories and integrable systems. In this thesis, we consider “Gauge/Bethe
correspondence”’ between a topological gauge theory and a quantum integrable system.
A simplest example in this correspondence is the equivalence between the BF theory with
the U(N) gauge group on a Riemann surface and the system of N free non-relativistic
fermions on a circle. As a generalization, Moore, Nekrasov and Shatashvili discovered
a correspondence between the topological Yang-Mills-Higgs theory with the gauge group
U(N) and the non-linear Schrodinger model [1]. The topological Yang-Mills theory is
the BF theory coupled to a one-form valued adjoint Higgs field and describes the U(1)-
equivariant intersection theory on the Hitchin’s moduli space [2], [3] , just as the BF
theory describes the intersection theory on a moduli space of flat connections on a Rie-
mann surface [4].

In (1], they applied the equivariant localization to the topological Yang-Mills-Higgs
theory and found that the localization configurations lead to Bethe Ansatz equations for
the non-linear Schrodinger model. Later, Gerasimov and Shatashvili discovered that the
partition function of this model is related to norms of wave functions in the non-linear
Schrodinger model [5], [6]. Therefore, we expect that the partition functions of other
topological gauge theories are also related to norms of wave functions for the corresponding
integrable systems.

The Gauge/Bethe correspondence is realized for not only a topological gauge theory
but also vacua in a supersymmetric gauge theory. This is natural because the vacua of the
supersymmetric gauge theory transfers to physical states in the topological field theory
by the topological twist. Nekrasov and Shatashvili discovered that coulomb branches
in a supersymmetric gauge theory corresponds to some integrable system. Especially,
they found that a twisted superpotential in N' = (2, 2) supersymmetric gauge theory in
two dimensions coincides with a Yang-Yang function for XXX model [7], [8]. Further,
this correspondence is not restricted to two-dimensional topological gauge theory. Three
dimensional N/ = 2 gauge theory compactified on a circle and four dimensional N' = 2
gauge theory compactified on a torus also correspond to the XXZ model and the XYZ
model, respectively.

In this way, it expects that the Gauge/Bethe correspondence works well for various
models. However, this correspondence is not investigated in detail yet. An underlying
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CHAPTER 1. INTRODUCTION

mathematical principle for this correspondence also is not known. In this thesis, we take
the G/G gauged Wess-Zumino-Witten (WZW) model which is a topological field theory
as an example and study the Gauge/Bethe correspondence. The G/G gauged WZW
model is constructed from G WZW model which is a two-dimensional conformal field
theory. The G WZW model has rich structures and various applications in mathematics
and also in physics. For example, the Hilbert space of the Chern-Simons (CS) theory with
a gauge group G on R x ¥, is equivalent to the space of the conformal block for the G/G
gauged WZW model on a Riemann surface ¥,. The partition function of the CS theory
on a three manifold can be obtained by sewing the boundary Riemann surfaces which
is implemented by an inner product of states on . One can also calculate Wilson loop
expectation values which give knot invariants in terms of fusion coefficients and modular
matrices [9)].

In the WZW model, one can construct the G/H gauged WZW model by gauging an
anomaly free subgroup H of the global symmetry group G. The G/H gauged WZW
model is an explicit lagrangian realization of the coset construction in the CFT. When
H = G, the G/G gauged WZW model becomes a topological field theory [10], [11], [12].
There exists a method for calculating the partition function and correlation functions
without relying on the CFT techniques nor the representation theory of the affine Lie
algebra. Actually, these were derived by a field theoretic approach in {13], [14]. In this
approach, it is important for the G/G gauged WZW model to possess a certain BRST-
type symmetry whose square generates a G-gauge transformation. This symmetry makes
it possible to work out the path integrals with insertions of BRST closed operators via
equivariant localization procedure. In higher rank of the gauge group, the localization
configurations for the diagonal components of G-elements are complicated. However, the
final expression for the partition function is simply expressed by modular matrices.

In this thesis, we will firstly show that the integrable system corresponding to the
U(N)/U(N) gauged WZW model is the phase model [15]. The phase model is a quantum
integrable field theory on one-dimensional lattice [16]. We can apply the algebraic Bethe
Ansatz . For example, see [17], [18] for the Algebraic Bethe Ansatz method. It is known
that the phase model appears in the SU(N) WZW model. Recently, Korff and Stroppel
established the su(/N) Verlinde algebra [19] in terms of the algebraic Bethe Ansatz for the
phase model and derived an efficient recursion relation for calculating fusion coefficients
[20], [21]. See also a short review [22]. We will consider relations between the Gauge/Bethe
correspondence and [20]. We also point out that the partition function of the CS theory
on S! x ¥, is related to norms of eigenstates of the Hamiltonian in the phase model.

We further consider a generalization of the Gauge/Bethe correspondence for the G/G
gauged WZW model and the phase model. The phase model is realized by a strong
coupling limit of the g-boson model [16]. Therefore, it is natural that G/G theory corre-
sponding to the g-boson model also exists. We call a model like this as the G/G gauged
Wess-Zumino-Witten-Higgs (WZW-Higgs) model. The G/G gauged WZW-Higgs is the
G/G gauged WZW model coupled to additional scalar matters and is regarded as a non-
linear deformation of the BF theory with the gauge group G coupled to additional scalar
matters. Then, we will show that an integrable system corresponding to this model in



fact is the g-boson model. Further, we consider relations with the commutative Frobenius
algebra constructed by Korff [23]. See [24] for the content in this chapter.

This thesis is organized as follows. In chapter 2, we study the integrable system,
especially the g-boson model and apply the Algebraic Bethe Ansatz to this model. We also
study the phase model which is a strong coupling limit of the q-boson model. In chapter
3, we study relations between the G/G gauged WZW model and the phase model. To
investigate this, we calculate the partition function by applying the localization method
to the U(N)/U(N) gauged WZW model. We then find relations between the partition
function of the U(N) /U (N) gauged WZW model and the Bethe norms in the phase model. |
In chapter 4, we consider a generalization of Chapter 3. We introduce the G/G gauged
WZW-Higgs model. We apply the localization method to this model and study relations
between the G/G gauged WZW-Higgs model and the g-boson model. The chapter 5 is
devoted to conclusion. In appendix A, we summarize a convention for G/G gauged WZW
model and it’s generalization in Chapter 3 and 4. In appendix B, we prove a expression
for a Bethe norm in detail.



CHAPTER 2

Integrable System

In this chapter, we study “Bethe” part of the Gauge/Bethe correspondence, that is,
integrable systems. The integrable system is usually defined as a system which possesses
as many commuting conserved charges as a degree of freedom of the system. Therefore,
the system has a number of symmetries and becomes exactly solvable. Further, there
exists characteristic methods to calculate various observables, the energy eigenvalues, the
eigenvectors and the correlation functions and so on in the integrable system.

In this thesis, we especially study the g-boson model and the phase model. The g-
boson model is a quantum integrable field theory on one-dimensional lattice and a strongly
correlated boson system. The phase model is defined as a strong coupling limit of the
g-boson model. These models is firstly introduced by [16] to study a strongly correlated
system. See also [17], [18], [20] and [23]. These models are the quantum integrable systems
which can apply the Bethe Ansatz methods [25]. The Bethe Ansatz is a general term for
methods to calculate the observable of the quantum integrable system. In this thesis, we
consider the Algebraic Bethe Ansatz based on the algebraic commutation relations [26].
See e.g. [27], [28] and [29] for the Algebraic Bethe Ansatz.

We study the g-boson model in the section 2.1 and the phase model in the section
2.2. See the Appendix B for the derivation of a norm between eigenvectors in the g-boson
model.

2.1 The g-boson model

In this section, we define the g-boson model and apply the Algebraic Bethe Ansatz to
this model. The g-boson model is considered as the quantum group deformation of the
ordinary boson because the g-boson model becomes the free boson model by taking a
limit g — 1.
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2.1.1 The g-boson model

Firstly, we define the g-boson model. Consider the operators {qifV , 8, 8"} satisfying an
algebra called by the g-boson algebra or the q-oscillator algebra H,

qu—N _ q—NqN =1, ({N,B _ ﬂqN_l, NI@T ﬂf N+1
BET— B8 =(1—-@)¢N, B6'-¢88=1-¢, (2.1)

where ¢* denote generators and ¢**** is shorthand for (¢* )Pq The parameter ¢ is
a generic c-number and 0 < ¢ < 1. We see that the operators N, B and B also serve as
the number operator, the annihilation operator and creation operator, respectively.

We change the operators obeying the g-boson algebra to the operates {a, af, N } obey-
ing the free boson algebra or the harmonic oscillator algebra

[N,a] = —a, [N,al]=df, [g,al] =1, (2.2)
as follows
1 — g2(N+1) ; ;1= QPW+1)
=4/ ————a, =o' ————— 2.3
b 1+ N b 1+ N (23)

where these are defined as formal power series. Thus, this algebra is the g-deformation
of the harmonic oscillator algebra. Therefore, we see that the g-boson is regarded as the
g-deformation of the usual free boson.

Next, we construct a Fock space F for the g-boson algebra given by (2.1). A set
{Im) = (BN)™/(¢*)m|0) | m € Zso} forms the basis of the Fock space. Here, (), is
(@)m = [T (1 — 2#+1). It also holds the following relation,

qN|m) =q™my, Blm)=1-F™)m+1), Blm)=|m—1). (2.4)

The Hamiltonian of the g-boson model on the lattice size L is defined by

= —% Zf: (/8118 i1 T /8 ﬁj+1) (2'5)

where we impose the periodic boundary condition L + 1 = 1 and set the lattice spacing
A = 1. The operators {,(31,,8Jr ¢"i}iz1,... obey the L-fold tensor product H®L of the
q-boson algebra (2.1). H®% is defined by

BB — BB = BB —818 = ™% — g™ =0

gNB = BV, g "ﬁ}=ﬁ}qu+‘5“,
BB - BB = 651 -, BBl —@BIBi=(1-). (2.6)
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where the index i labels the sites of a lattice. Therefore, the Hamiltonian belongs to H®*
and acts on the L-fold tensor product of the Fock space F®~. The basis of F©F are the
sets {|m1, <o ,mL) = |m1) & & |77'IvL> lTIli € ZZO}'

We rewrite the Hamiltonian (2.5) by using the substitution (2.3) as

1 — 2WV;+1) 1 — 2WNVj41+1)
Hoo (e, et
. 1+ N; 1+ Njn

— 2N+l — 2Nyl
-f—aj.\/l q (AJ )\/1 q (AJ+ )aj+1) ' 27)
1+ N i 1+ N j+1
Thus, we see that the Hamiltonian has infinite interaction terms in front of the hopping
term. Therefore we find that the g-boson model is the strongly interacting system and
the field theory with non-local interactions on the lattice.

When we set ¢ = €" and expand it around 7 = 0, we see that the Hamiltonian of the
g-boson model reduces to the one of the free boson at the leading order of 7. Therefore, ¢
or 7} serve as a coupling constant. On the other hand, there exists a strong coupling limit
¢ — 0 and the g-boson model becomes the phase model. We will consider this model
at the next section. There also exists a continuum limit because the g-boson model is

the field theory on the lattice. In this limit, the gq-boson model becomes the non-linear
Schrodinger model.

J=1

2.1.2 The Algebraic Bethe Ansatz for the g-boson model

In this subsection, we apply the algebraic Bethe Ansatz to the g-boson model. If there
exists a vacuum in a model which we would like to consider, we can apply the algebraic
Bethe Ansatz to this model. Hence, we can apply the algebraic Bethe Ansatz to the g-
boson model. Since a norm between eigenvectors of the Hamiltonian of the g-boson model
becomes most important in the Gauge/Bethe correspondence, We will give a formula for
the norm between the eigenstates of the Hamiltonian. See the Appendix B for the detailed
derivation of this quantity.

We firstly define a L-matrix. The L-matrix of the g-boson model at the site n (n =
1,---, L) is defined by

Ln(u) = ( [31n ’Lf’t ) € End[C?*(u)] ® H, (2.8)

where p € C is a spectral parameter and 3, and 31 obey the g-boson algebra (2.6). Here,
the L-matrix is a matrix in an auxiliary space C2. This L-matrix satisfies the Yang-Baxter
equation:

R(p, v)(£(w) ® L(v)) = (L(v) @ L(1)) R(u, V), (2.9)
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with the R-matrix

fv, ) 0 0 0
_ 0 9(p, v) 1 0 2 2
R(v,p) = 0 ; (v, 1) 0 € End[C*(1) ® C*(v)] (2.10)
0 0 0 fv, 1)
where
ut—v (=t o
flu,v) = pt g(p,v) = pry— and t=q". (2.11)
The monodromy matrix is defined by
» A(p) B(p) )
PO = Lol L (1) Lol) = . 2.12
() = Lal)o)+ i) = (209 28 (212)
From the Yang-Baxter equation (2.9), the monodromy matrix satisfies a following relation:
R, v)(T(1) ® T(v)) = (T() ® T(w) R(p, v). (2.13)

From this relation, we can derive 16 commutation relations for the monodromy matrix

elements, A(u), B(u), C(u), D(u):

CAWAW) = AWAW (2.14)
Bu)B(v) = BB (2.15)

CCw) = CWICW) (2.16)

D(u)D(v) = D(v)D(u) (2.17)

(b= AWBY) = (tu—-v)BHAW+ (1 -vBWAY)  (218)
Hi— AWCH) = (5—)CW)AW) - (- YuC(AY)  (219)
Hu— V) B AW) = (ts— ) AW)B) + (1 - OpA@B()  (2.20)
Hu—v)B)D(v) = (u—t)DW)B() - (1 - OuDWBW)  (221)
(14— VCWAY) = (u=t)AW)C(H) - (1 - wAWCH)  (2.22)

(- )CWDW) = (tu—)DECE) + (1 - DECH)  (2.23)

(b= )DW)B() = (u—w)BWDW) - (1-HrBEDE)  (2.24)
Hi— V) DECW) = (tu—-v)CE)DW) + (1 - HuCWD)  (2.25)
CBO) = Bw)CG) = =L (D) AwW) - D) Aw) (2.26)
= E=40)D() - AGDW) 2.27)

(A0, D)) = = (vBIC() = uBr)C(w) (2.28)

= 12t wew) B - kW BW)  (229)
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The algebra defined by this commutation relations is called as the Yang-Baxter algebra.
Taking trace with respect to the auxiliary space, the monodromy matrix becomes the
transfer matrix

T(u) = trT(u) = A(u) + D(p). (2.30)

As we take a trace with respect to the auxiliary space for the both sides of (2.13), we can
show that the transfer matrices at the different spectral parameters commute:

[r(w), 7(¥)] = 0. (2.31)
When we expand the transfer matrix 7(u) as a power series, 7(u) = ZaL=O H,pu®, the all
operators {Hp, Hy,--- , Hp} commute. Therefore, the transfer matrix can be regarded

as a generating function of the conserved charges. Noticing that Hy and Hy are not
independent conserved charges Hy = H; = 1, we see that the g-boson model possesses as
many commuting conserved charges as a degree of freedom of the system. Hence the g-
boson model is a quantum integrable system. In general, it becomes a sufficient condition
for the quantum integrability that L and R-matrix which satisfy the Yang-Baxter equation
exist. The Hamiltonian of the q-boson model (2.5) is expressed by the conserved charges
as

1
H = —5(H + Hy). (2.32)

Next, we will construct the eigenvalues and the eigenvectors of the transfer matrix.
First of all, we have to define the vacuum state. The vacuum state |0) and it’s dual
vacuum state (0| are defined by

C(u)|0)=0 and (0|B(u) =0, (2.33)

because C(u) is a creation operator and B(u) is an annihilation operator. a(u) = 1
and d(u) = ul are the eigenvalues of operators A(u) and D(u) on the vacuum state |0),
respectively:

A(w)0) = a(w)]0) = 10),  D(w)[0) = d(1)|0) = u*|0). (2.34)
We consider a vector constructed by successive actions of operators B(A) on the vac-
uum state |0). Now, {Ay,---, Ay} are generic complex numbers. Let us compute the

action of the operators A(u), C(u) and D(u) on the vector H;‘il B();)|0) by using the
commutation relations (2.14)-(2.29). The final result is

M M M
AW T BN = a(w [T £ 1) T] BOWIO)
j=1 j=1 j=1

M M
1170w 2B [T BOWIO), - (235)

J:
J#k ik

M
+> - a(A)g(u, M)
k=1
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M M

M
D(w) [TBOWIO = dw [[ £y, [] BOWIO)
j=1 j=1 j=1
M
—Zd Ae)g(i, /\k)Hf (Aj» M) B(p) HB (2.36)
]#k J#k
M M M
cw I B0 = ZX (g 3) TT (£ 10 e 1))
M M
—a(m) )9, W) TT (£ A O M)HIB
fat ];ék
M
=3 {adOg Adats 37O 3 TT (70 3070w 1)
i
M
+a(0)d)g(t gt ) fOe ) TT (£ M) 1)) }
J'J;kl,f
H B(\ (2.37)
J#kf

In the same way, we consider a vector constructed by successive actions of operators C( )
on the dual vacuum state (0|, (0| H C();) by using the commutation relations (2.14)-

§2.29) 1 | The action of the operators A(,u) B(u) and D(u) on the vector (0] HJ= C(A))
is

M
][ cOnAw = u)Hfu, OIHC

—Z (Ak)g( A, Hf/\ka/\) <O|HC Cu), (2.38)

Jsék Jaék
M M
TP = d(u)Hf(Aj,uMOIHC(/\J)
M
+3 " d(M)g( e, Hf Ay M) O|HC (),  (2.39)
= Tk g

Notice that the vector (0] Hj\il C(A;) is not the dual vector of H;\il B(X;)|0) where {A1,---, A}
are generic complex numbers. In other words, this means (B()))' # C(\).
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M M M
OTTconBm = Y- {-endwgem [T w0 )
j=1 k=1 ;;—;i
M
+a()d)gOe ) TL (£ 205 M) | OIHC
g;; ];ék
M
=5 {a 0 K £ ) TT (70300 )
o fiy,
M
oM)W 19O 1) O A T (F05 2070 A1) ) }
finy
x (0| H C(A (2.40)
J#kf

Let us construct eigenvalue and eigenstates of the transfer matrix. When the transfer
matrix acts on the state Hj‘il B();)|0), we obtain a following expression by using (2.35)
and (2.36):

M M
rwTBOI0 = Aw O) [T BO))

# 3 {a TT £ ) v Hf (M} (241
k=1 Jj=1
J#k J#k

where

M M

s D) = et [T 00+ [T S04 (2.42)

Suppose that the state HJ . B(A;)|0) is eigenstates of the transfer matrix. Then, we find
that the second term of (2.41) must vanish and the spectral parameters {A;};=1... as must
therefore satisfy equations

M M
) TTF 0 A) =dO) T] Fs dy)  for=j=1,--- M. (2.43)
k2 =

This equations are referred to as Bethe Ansatz equations. Also, the spectral parameters
which satisfy the Bethe Ansatz equations are called by Bethe roots. Thus, we can have
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constructed the eigenvectors of the transfer matrix. At the moment, (2.42) becomes the
eigenvalues of the transfer matrix. The Bethe Ansatz equations concretely are

1 for=9=1,---, M. 2.44
HA_M or=j=1--, (2.44)
k#]

Notice that the Bethe roots assign a ground state or excited states in the g-boson model.

From now on, we consider properties of the Bethe Ansatz equations. For convenience,
we change a parametrization of the Bethe roots as \; = ™% for j = 1,--- , M and of
the coupling constant ¢ as t = e 2™ where n > 0 because 0 < ¢ < 1. Then, the Bethe
Ansatz equations become

amie; _ T SBlm(2; — 2 + i) .
e ‘TJ:H - g _ forj=1,---, M. (2.45)
i sinfm(z; — z — )]
k]
From this equations, we can prove that the Bethe roots {1, - ,2n} are real numbers

by using a similar manner with the Bose gas model [27]. A logarithmic form of (2.45) is

sin[r(in + (z; — wx))]

M
2milx; = 2mwil; 1
miLe; = 2l + ) o8 G e 2]

k=1

(2.46)

where I; is (half-)integers when M is (even) odd. In a similar manner as the Bose gas
model [27], we can also show the existence and uniqueness of the solutions of the Bethe
Ansatz equations once we assign {[1,---, I}

We ﬁnally consider an inner product between the two vectors [[o-, B(i,)|0) and

<0| Ha:l C Va :

M M
O TT o) [T Bwa)l0) (2.47)

a=1 a=1
where {u1,- -+ ,up} and {vy,--- ,vp} are generic complex numbers. The inner product
is rewritten as a determinant formula if either of {ui,---,unm} or {v1,--- ,va} satisfy

the Bethe Ansatz equations (2.44). This calculation essentially only use the commutation
relations (2.14) - (2.29). See Appendix B for the detailed derivation.

We define a Bethe vector and the dual Bethe vector which is the eigenvector of the
transfer matrix, as

M M
W({A) = [[BOWDIO) and  (({A}ar)l = (O [JCM) (2.48)
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where {1, -+, Ay} satisfies the Bethe Ansatz equations (2.44) 2. When { - - - ups } are
generic complex numbers, the inner product becomes (B.53):

M

WO TT B0y = TT(5) -0 TT o)t

a=1

_ Hd ;) {u},{A}mdﬁt(é—'i;A(uk,{A})) (2.49)

where A, {A}) is the eigenvalue of the transfer matrix (2.42) and xp ({1}, {A}) is the
Cauchy determinant:

12, (e = M) (116 — f2a)
Hilb 1( )‘b)

Furthermore, when {u1,--- ,ua} in (2.49) also satisfies the Bethe Ansatz equations
(2.44), the scalar product becomes (2.70):

xn({p} {A}) =

. (2.50)

W)WY = <0|HO(AG)HB(AG)|0>

(At — A
= 11__[[@ (()\ _Ab)) ~det &5 ({Ahw) (2.51)
al;é— b
where the Gaudin matrix @}, ({A}a) is
- L
Fuh) = otoe{y H e e

M

- L (2= DA (£ = 1)\,
= doy * Z o= R0w =)~ o= gt =1y 25

From now on, we refer to this inner product as the Bethe norm throughout this thesis.
This Bethe norm will become most important quantity when we study the correspondence
between the g-boson model and a topological field theory.

We comment on the relations between the g-boson model and the infinite spin XXZ
model. When the number of sites is even, the Bethe Ansatz equations (2.45) and the Bethe
norm (2.51) coincide with the one of the infinite spin XXZ model under an appropriate
rescaling of the parameters. See the algebraic Bethe Ansatz for the higher spin XXZ
model, e.g. [30] and [31]. The agreement of the Bethe Ansatz equations in the g-boson

ZNotice that the vector (0] H;\il C(A;) becomes the dual vector of Hﬁl B(A;)|0) when {A1,---, Aar}
satisfy the Bethe Ansatz equations, because (B(A))T = C()).
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model and the infinite spin XXZ model is not accidental. This is because the g-oscillator
representation is equivalent to the infinite limit of spin-s representation in the quantum
group. In the case of su,(2), this fact is proved at [32].

Finally, we state applications for the integrable system. In the integrable system, one of
the most challenging problem is a derivation of the correlation function for the integrable
field theory or the integrable spin system at a continuum limit or a thermodynamic
limit. In the XXZ model, the correlation function has calculated by taking advantage
of the scalar product, the Bethe norm and the inverse scattering formula [33] at the
thermodynamic limit, e.g. [34] and [35]. Therefore, one will be able to use the scalar
product (2.49) and the Bethe norm (2.51) at the calculation of the correlation function
in the g-boson model.

2.2 The phase model

In the previous section, we have defined the phase model by taking a strong coupling
limit of ¢ — 0. Therefore, the phase model is a quantum integrable field theory on one-
dimensional lattice and a strongly correlated boson system. In this section, we study
the phase model. We also apply the algebraic Bethe Ansatz to this model as well as the
g-boson model.

2.2.1 The phase model

In this subsection, we define the phase model. First of all, we define the phase algebra
by taking the limit ¢ — 0 for the g-boson algebra. Therefore, the phase algebra & is an
algebra such that operators {IV, ¢, '} obey

[N, g = —p, [N,¢']=0!, vl =1 (2.53)

The operators  and ' serve as an annihilation operator and a creation operator, re-
spectively. Next, we define a Fock space F for the phase algebra given by the equations
(2.53) by acting the creation operator ¢! on a vacuum [0) which is defined as ¢|0) = 0.
The set {|m) := (¢7)™|0) | m € Zxo} forms the basis of the Fock space . The action of
the operators N, ¢!, ¢ on a state |m) also are

Nim) = mjmy, of|m) =|m+1), @|m)=|m—1). (2.54)
The Hamiltonian of the phase model on the one-dimensional lattice with the total site

number L is given by

L
H=- Z (%SDIH + 90;[90141) (2.55)
i=1

B =

where we imposed a periodic boundary condition L + 1 =1 and set the lattice spacing
A = 1. The operators {p;, gpl , N;}iz1.... 1, obey the L-fold tensor product ®® of the phase
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algebra (2.53). ®©L is defined by

vios = pioi ol = ol NN; = NN,
Nipj — ;N = —0i0i s Ni@} - T‘]Vi = 57:1903

J
ol =1 . gl =l ifi#]
N1 =plp) = 0 =(1— gl (2.56)

where the indices 7, j label the sites of the lattice. Therefore, the Hamiltonian belongs to
®°L and acts on the L-fold tensor products of the Fock space F¢L. The basis of F©L
consists of {|my,---,mr) :==|m1) &+ |mp) |m; € Z>p}-

To better understand this model, let us change the operators obeying the phase algebra
to the operators {a;, a}, N;}i=1... . obeying the free boson algebra

[N,j, aj] = —(5713‘@]‘, []vi, a;] = 57;ja;f., [(L,j, (Lj] = 5ij, ]V,j = CLILL,‘,, (257)

as follows

o=t =l
where (1 + Ni)‘l/ 2 is defined as formal power series. Substituting (2.58) into the Hamil-
tonian (2.55), we found that the Hamiltonian has infinite interaction terms in front of the
hopping term. Therefore we found that the phase model is the strongly interacting sys-
tem and the field theory with non-local interactions on the lattice as well as the g-boson
model.

(2.58)

2.2.2 Algebraic Bethe Ansatz for the phase model

In this subsection, we apply the algebraic Bethe Ansatz to the phase model. As the all
result is obtained by setting ¢ — 0 for the coupling constant of the g-boson model, we do
not repeat the calculation in detail.

The L-matrix of the phase model at a site n (n = 1,---, L) is defined by

L) = ( wln ulst > € End[C?(u)] ® &, (2.59)

where p € C is a spectral parameter. Here, the L-matrix is a matrix in an auxiliary space
C2. This L-matrix satisfies the Yang-Baxter equation

R(p, v)(L(p) ® L(v)) = (L(v) & L(1)) R(p, v), (2.60)

with the R-matrix

€ End[C?(n) ® C*(v)].



16 CHAPTER 2. INTEGRABLE SYSTEM

The monodromy matrix is defined by

T = £x)o (- £a0 = (A4 D). 262)

Taking trace with respect to the auxiliary space, the monodromy matrix becomes the
transfer matrix

() = 1T (u) = A(k) + D(w). (2.63)

Eigenstates of the transfer matrix can be constructed by repeated actions of the operators
B(A) on the vacuum state |0), that is to say, a state Hﬁl B(\;)|0) is the eigenstate of
the transfer matrix

M M
() [T BOWI0) = A, {31 [T BOW)I0) (2.64)
a=1 a=1
where
Mo
Alp, {A}) = 2 2.65
(1 {A}) H e (265)
if the spectrum parameters {Ay,-- -, Ay} satisfy Bethe Ansatz equations
M
()Mt AMED TN =1 (2.66)
b=1

When we set \; = ™% the logarithmic form of this equations becomes

(L+ M)é Z $o =1, (2.67)

where I, is (half-)integers when M is (even) odd. We can easily solve this equation because
this equations are linear algebraic equations unlike the g-boson. The solutions is given as

1 1 M
=TT <1a+ Z;I“> . | (2.68)

The fact that the Bethe Ansatz equations can be exactly solved becomes important when
we study the correspondence with the topological gauge theory.
Finally, we consider a Bethe norm

M

Ol JTJc) T B(A)I0) (2.69)
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where {1, -, Ay} satisfy the Bethe Ansatz equations. The Bethe norm in the phase
model is also given by ¢ — 0 of (2.51) as
M \M-1
WA A M) = = L(L+ M)M-1. (2.70)
a,b;bl()\a — Ap)

This coincides with a result calculated by [18].



CHAPTER 3

(/G gauged Wess-Zumino-Witten
model

In this chapter. we study the (/G gauged Wess-Zumino-Witten model on a genus-h
Riemann surface 3,. We will establish the Gauge/Bethe correspondence for this model
and the phase model introduced at Section 2.2. To see this, we apply the equivariant
localization method to this model and calculate the partition function. Then, we will
see that the localization configuration coincides with the Bethe Ansatz equations in the
phase model and the partition function is related to the Bethe norm in the phase model.
Finally, we consider relations with [20]. See [15] for the contents in this chapter.

In section 3.1, we define the G/G gauged WZW model on ¥,. In section 3.2, we
explain the equivariant localization method for this model with the gauge group U(N).
In section 3.3, we investigate relations between the [V(N)/U(N) gauged WZW model and
the phase model. See Appendix A for the convention which we use in this chapter.

3.1 (/G gauged Wess-Zumino-Witten model

In this section, we introduce the (G/G gauged WZW model on a genus-h Riemann surface

Y. Firstly, we consider the G WZW model which is a two dimensional conformal field

theory. The action of the G WZW model is given by
k [ » LB
li'.s'“'z“'(.(/) = —4—. / (I-ZTI'(.([ l():.(] *q l():.([) — 1kl ((/) (31)

and the Wess-Zumino term I'(¢) which is a topological term, is defined by

’

I'(g) =

NS

11

— / d*ye?*Tr (9 '0,9-9 ' 0,9 - g 'Org) . (3.2)
T JB

Here, a field ¢(z, z) is a map ¢ : ¥, — G from a genus-h Riemann surface to a compact
Lie group ;. B is a three dimensional manifold with the boundary 0B — ;.

One can construct the G/ H ganged WZW model by gauging an anomaly free subgroup
H of the global symmetry group i in the WZW model. The /H gauged WZW model is
regarded as an explicit Lagrangian realization of the coset construction in the CFT. When

19
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especially H = G, the G/G gauged WZW model becomes a topological field theory [10],
[11], [12] . Therefore, observables of this theory is topological invariants. For example, the
partition function counts the dimensions of the space of conformal block, the number of
conformal blocks in the G WZW model with level k on ¥;,. Also, a three point function of
g(z, z) gives fusion coefficients which is the number of the fusion with the WZW primary
fields. Thus, one can consider that G/G gauged WZW model only has information of
topological part in the WZW model with the global symmetry G. The partition function
of the G/G gauged WZW model on ¥, is defined by

ZGuwpw(Zh) = / DyD ADAe56/66AN (3.3)

where the action is defined as

1
Sewzw(9, A, A) = Swzw(g) ~ 5 d?2Tr(\)z)

3/

—QL d?2Tr(A.0:997" — Asg7 10,9 — g1 AgA; + AL 4;) (3.4)

7T2h

where Swzw(g) is given by (3.1). Here, A = A,dz+ A;dz is a two-dimensional gauge field
and A = \.dz + A\;dZ is a one-form adjoint fermion. We also denote the holomorphic part
of Aas ALY = A,dz and anti-holomorphic part as AV = A;dz and so on. This model
has the BRST symmetry which is generated by a scalar BRST charge Q defined by

QA =2, QN0 = (4910 _ ALO - OAO) = _(Ag‘l)(O,l) + AOD Qg=0 (3.5)

with A9 = ¢g~'dg + gAg~. The partition function (3.3) is invariant under the BRST
transformation. The square of the BRST transformation generates gauge transformations

LAL0) = (490 _ 400 poAOD —(A497HOD L 400
LA = gmINOO g ALO £ AOD — g0t L NOD £ 9 =0, (3.6)

where Q% = £, . Then, the partition function is of course invariant under this transfor-
mation.

Finally, we comment about relations between G/G gauged WZW model and other
theories. As a first relation, we consider the BF theory. The partition function of the BF
theory measures a volume of a moduli space of a flat connection. When we set g = e?™¢/*
and expand them at the leading order of 1/k, the G/G gauged WZW model on ¥, reduces
to the BF theory with the gauge group G on ¥y, [36]. Therefore, G/G gauged WZW model
is considered as a non-linear deformation of the BF theory.

Further, there is a relation with the Chern-Simons (CS) theory. The Hilbert space of
the CS theory with a gauge group G on R x ¥, is equivalent to the space of the conformal
block for the G/G gauged WZW model on % [9]. Therefore, the partition function of
both models coincides [13].
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3.2 Localization

In this section, we calculate the partition function of the G/G gauged WZW model on
the Riemann surface by using the equivariant localization method. This calculation is
originally carried out by Blau and Thompson {13] in the case of a gauge group SU(N).
See also [37].

We consider the case of the gauge group U (N) for simplicity and evaluate the partition
function under this gauge group. First of all, we must gauge fix. We take a diagonal gauge
on t(z,2) = y(z,z) € U(N) at (3.3), that is, ¢ is an element of the maximal torus T of
the gauge group U(N). Here, notice that we do not completely gauge fix yet and the the
abelian gauge symmetry remains as the residual gauge symmetry.

The functional of g that one obtains after having performed the path integral over the
gauge fields is locally and pointwise conjugation invariant:

Flg) = / DAexp{—kSwzw(g, A)} = F(h~"gh). (3.7)

Therefore, one can formally apply the infinite-dimensional Weyl integral formula to the
partition function of the gauged WZW model:

/Dg}'(g) = |—Vl[—/—| / DtD ADeto(1 — Ad(t)) exp(—kSewzw (t, A)). (3.8)

where |W| = N! is the order of Weyl group for the gauge group U(N). Det, is the
Faddeev-Popov determinant for the gauge fixing.
The action (3.4) under the diagonal gauge also becomes

1 1
Sewzw(t, A) = —— / d22Tr(t 0.t - t7105t) — — [ dP2Tr(A.0:tt7! — A;t710,1)
4 5 2 o
1
+%/ d2Tr(t A tA; — ALA:) +T(1). (3.9)
Zh
We set t(z, 2) = exp(2mi Z;vzl ¢;H’) where H',--. , HY are the Cartan generators in

the Lie algebra u(/N) and 0 < ¢1,--- ¢y < 1. Then we expand the gauge field over the
Cartan-Weyl basis {H?, E*, E~°} where « is positive roots. Then, the first term of (3.9)
becomes

N
_i. 2 =194 2-19 3y _ / 2.9 409 ia
y A hd ZTr(t28,t - t18st) _27ra§=; Ehd 20,0°0:¢ (3.10)

and the second and third terms of (3.9) become

N
—2i d?2Tr(A,0:tt 7" — Ast710,t) = Z / d*2(A%0:¢" — A20,¢%)
a=1 En

’/TEh

N
> /E d22¢°Fe, (3.11)
j=1 " %h
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where we have put the partial integral from the first line to the second line.
By making use of the Baker-Campbell-Hausdorff formula

adA(B) = [A, B
Beh = (B)=B+[A B+ A A B+, (3.12)

the forth term of (3.9) becomes

1 2 -1 N 1 / 2 = a A 2mic (@) A—o po
5 /EhdzTr(t AtAs) =~ Ehdz ;AZAE—FZe AeAs | (3.13)

acA

where a(¢) = Zfzvzl a®@® and A is a set of the roots.
The fifth term of (3.9) becomes

N
! 2 = ! 2 a AC — A
5 /zh.d ZTr(A:As) = o~ /zhd z (Z ATAZ+ YA AZ) : (3.14)

a=1 a€A

Finally, we consider the WZ term. The WZ term I'(t) naively vanishes but as a
topological term it only depends on the winding numbers of the field ¢. The reason for
the appearance of this contribution is, that maps from ¥ to T with non-trivial windings
can not necessarily be extended to the interior N of ¥ within T, as some (half) of the
non-contractable cycles of XX become contractible in the handle-body N. The general form
of this term is [38]

L) = | d*2u™8,0:0:¢, (3.15)

Ep
where p® is some antisymmetric matrix. As we will show below that the non-trivial
winding sectors do not contribute to the partition function, we will not have to be more

precise about this term here.
When we put all the result (3.10), (3.11), (3.13) and (3.14) together, we obtain

N N
Sewzw(t, A) = 271’2 d2z82¢“8zd>“+z / d22¢°F2
a=1 "7 Zh a=1"2n
i 2 ar1 _ ,—2mio(d) —a
o S| d*zA(1-e JAZS + D). (3.16)

acA Y Eh

The first and last term vanish in (3.16) because zero modes of ¢ only contribute to the
partition function, as we will show below. Thus, we see that the partition function of
U(N)/U(N) gauged WZW model reduces to the BF-type action.

Let us consider in (3.16):

/ H ’DAQG_% ZaEA fzh dzZAgM—aAz_a (317)

acA
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where M, = 1 —e?"@(®)_ We path integral with respect to the off-diagonal components of
the gauge field A,(o € A). Noticing that (A2)* = A7“, we find that the path integration
is factorized to a holomorphic (1,0) and an anti-holomorphic (0, 1) part:

/HDAOI'DA ¢ & Toso s, P?2(ATM_0 AT +AL " MaA2)

a>0
= /DA°D4 ¢ 7 Jo, F2ATM 0 45 /DAODA o35 s, AT Ma AT
a>0 .
= H[Det(o,l)M_a]_l[Det(lﬁo)Ma]_l. (3.18)
a>0

Similarly, the Faddeev-Popov determinant also is rewritten by

Deto(1 — Ad(t)) = [ [ DetoM,DetoM_, (3.19)

a>0

As we put (3.18) and (3.19) together, we thus see that

Detg M, DetoM_,
3.20
H Det(1 o)M H Det(o I)M—a ( )

This factorization property exhibits the chiral nature of the (gauged) WZW model.
From now on, let us evaluate the holomorphic part in (3.20):

DetoMo,

—_. 3.21
Det(lfo)]\fa ( )

We see that each functional determinants diverge when we recall that the diagonal gauge
fixing remains partly. However, the ratio of them (3.21) becomes finite by some kind of
supersymmetry between the ghost fields and gauge fields. To see this, we must consider
the residual gauge invariance, the abelian gauge invariance and regularize it in a way such
that we do not break the residual gauge invariance to evaluate (3.21). Here, we make
use of a heat kernel (or (-function) regularization based on the t covariant Laplacian
Ay = —(8LZ9A + 8A8L) where A is the gauge field taking value at the Cartan subalgebra
t. For an operator O we set

log DetO = Tr (e 7?4 1og O) (3.22)

where Tr is a functional trace and the regularization parameter ¢ is a positive real number.
Then, (3.21) becomes

Det()]\la

= ~€AA _ . —*EAA
%% Detg oMy (674 log Ma) — Tr ) (674 log M,) . (3.23)

We consider the case which M, is constant for the convenience, although M, actually is
not. Then,

log M, [Troe™ 44 — Tr(y gje 4] (3.24)
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where the Laplacian A 4 acts to the right on one-forms taking values in g(_o). Therefore,

N
Oal(_ay = 000 =i AT (3.25)

=1

so that the “charge” is ay. Since the term in square bracket is just the index of the
twisted Dolbeault complex, the Dolbeault complex coupled to a vector bundle V_, with

connection A, 0 24 QOO g V_, B4, o) g v_ 24, .

1
[Troe™ 24 — Troe 4] = ) (—1)?6"° = Index 4. (3.26)

p=0

We can calculate this index from the Hirzebruch-Riemann-Roch theorem

Index 04 = / TA(TEO(M))ch(V_,) (3.27)
M

where Td(T™M9(M)) is the Todd class of some manifold M and ch(V) is the Chern
character of some vector space V. In two dimensions, this reduces to

= 1
Index 8,4 = §X(Eh) — C‘1(V_a) (328)

where x(2) is the Euler number of the genus-h Riemann surface and ¢;(V') is the Chern
class of V. Therefore, in the case at hand, one finds that (3.24) equals to

. 1 1 ¢
Index 04(—a)log M, = [8—7r /Eh, R— %/zh CY@F} log M, (3.29)

where R is the curvature two-form. In the case that M, is constant, this term gives the
Euler number of a genus-h Riemann surface, 2 — 2h. Physically, The fact that the index
theorem holds, owe a kind of supersymmetries between the ghost fields and the gauge
fields and non-zero modes of both fields cancel out.

We similarly consider the anti-holomorphic part in (3.20):

DetoM_a
Det(o’l)M_a . (330)

In this case, we use the index of the twisted Dolbeault complex 0 2, 00 g v, 2
QoD g v, 24 . Here, we make use of a heat kernel regularization based on the t
covariant Laplacian Ay = —(5115,4 + 8ABL) unlike the holomorphic part. Also, 04 =
0 — icey AY. We use the Hirzebruch-Riemann-Roch theorem

[Troe_éA" — Tr(o,l)e_d"] = Index 04. (3.31)
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Thus, (3.30) is

= 1
Index 04(—a)log M_, = [—X(Zh) + C1(V(_c,))] log M_,

2
1 i

= |— R+ — FtllogM_, 32
[8# ., +27T/Ehag }og (3.32)

When M, is not a constant, one simply has to move log M, into the integral, so that one
obtains

1 1 M,
— log M, M_, + — F*1 = .
H exp {87r g Rlog M, + ), e F* log T } (3.33)

We firstly consider the first term in (3.33). This term can be regarded as contributions
to the partition function from the background gravity. When we define “dilaton” & as

® = log MoM_, = log Det(1 — Ad(¢*?)), (3.34)

a>0

we recognize the first term of (3.33) as a dilaton like coupling to the metric:

exp{siW/Zh R-cp}. (3.35)

If ¢ is constant, (3.35) becomes
det(1 — Ad(e*™¢))»! (3.36)

where we have used a fact that the Euler character of the genus-h Riemann surface is
2 —2h.
Next, we consider the the second term in (3.33):

AR A
[T exp Z% | uFtlog 7= 0 (3.37)
=1 2 a

a>0 [4

Since

M, ‘
= —e2mial®) (3.38)

(3.37) becomes

N
exp {izz L aF () + log(—l))} . (3.39)

a>0 (=1 v~
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Since the Killing-Cartan metric b of the Lie algebra g, restricted to the Cartan subal-
gebra t,

b(X,Y) = —tr(ad(X)ad(Y)) (3.40)
can be rewritten in terms of the positive roots as
HX,Y)=2) a(X)(Y), (3.41)
a>0

the exponent of (3.39) becomes

N

N N
> a(F)e(e) =) -;-b@s, a)F =Y <h¢g -3 ¢,,) F* (3.42)

a>0 =1 =1

where h = N is the dual Coxeter number of u(N). Here, we used a explicit formula for
the Killing-Cartan metric of u(/N) (A.8). Thus, we obtain

exp{ Z/ (N-l—ﬂqb ;qﬁ;ﬁ—%)} (3.43)

Thus, the level-shift £ — k + N is produced by quantum effects.
Together with (3.35), (3.43) and the fermion bilinear term AA A, the resulting expres-
sion of the partition function becomes

N N
1 1
7 sy - / Dge DA“exp{—/ R® + — )\a/\,\a}
awzw (2n) al;[l };[1 87 Js, dm Jy,
N N N —
Xexp{iZ/ Fa(N+k Z¢b+ )} (3.44)
a=1 P

Here we note the fermion bilinear term AAA. The effective action, the exponent of (3.44),
is not invariant under the BRST transformation restricted to the abelian part. Therefore,
we have to add appropriate counter terms to restore the BRST symmetry [1}, [39] and [40].
However, the such renormalization does not make influence on the later calculation at all
because the fermion bilinear term enters in the effective action freely. The renormalization
effect becomes crucial when we couple the theory to additional matters, as we will consider
at Chapter 4.

By the Hodge decomposition theorem, Fj can be always decomposed to a harmonic
part Fb(o) and an exterior derivative of a one-form da; such that

F,=F? + da,. (3.45)

where 1, is an b-th diagonal U(1)-charge of the background gauge field:

27

1
—/ Fb(o) =ny € Z. (3.46)
Py
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Integrating a, by part puts delta functional constraints on de,, the fields ¢,(z, Z) reduce
to constant fields. Thus, we obtain

00 N N
1 T P — _
Zg\({/vz)w(zh) = W Z /quﬁa H (1 — 2mi(Ga—90))1=h
Y e oyt
) aI;éb1
= Al N-1
X eXp {27” D M <(N +k)da = D _u+ — ) } . (347)
a=l1 b=1
We rewrite (3.47) by using the Poisson resummation formula
Z 6271'111‘( _ 777) nez (348)
as
1 > N i
u Ti(pg — —
ZG\(ivz)w(Eh) = M Z /quﬁa H (1 — e2milPa—e)y1=h
My, ,MN=—00 a=1 a,b=1
a#b
XH5<N+k Z¢b+———ma>. (3.49)
a=1

The partition function (3.49) is invariant under the interchange k < N because the
N)/U(N) gauged WZW model on ¥, has a property of the level-rank duality [41].
Therefore, we can rewrite (3.49) as

1 i — iy —
Zg\(){rvz)w(zh) = H Z /Hd¢a — 2milta—dn)yI-h o
FaM =00 aal;bl
XH5<N+I\ Z¢b+——m). (3.50)
a=1

Integrating (3.50) with respect to ¢,s, the partition function localizes to configurations
which the constant fields ¢, satisfy constraints

(N + k)¢, Z@, + —1 — 1y = 0. (3.51)

Let us consider solutions of these equations. We immediately find that the solutions
are

1 1
o= gy (o + 1) (352
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where J, = m, — %, m, € Z and ||J|| = ZZ=1 J, fora=1,--- k. Note that range of
the each field ¢, is 0 < ¢, < 1. The fields in this range only contribute to the partition
function. Therefore, we count the number of solutions of these equations in the range
0 < ¢y < 1. We immediately notice that when ¢, = ¢, for a # b the configurations do
not contribute to the partition function. All the ¢, are contained in the range, even if
we interchange the all solutions ¢,. So we can set ¢; < ¢y < - -+ < ¢ and a factor k! in
the partition function cancels out. The number of piecewise independent solutions of the
equations in the range of 0 < ¢, < 1 is

(k+ N —1)!
B (3.53)
This number just coincides with the number of WZW primary fields of the SU(N), WZW
model. The each solution (3.52) is in one-to-one correspondence with the WZW primary
fields of the SU(N);, WZW model or the highest weights of the integrable representation
in the affine Lie algebra éu,(/N). When the set of this solutions is denoted by {Sol}, the
partition function is

TTE i (€270 — e2mity) 1=h

U(n) _ o al-h #b
Zawaw(Xn) = off Z al—[k e2mi(k—1)¢a (3.54)
@1, ¢ €{Sol} a=1

where o and (§ are a genus independent and dependent constant, respectively.

Finally, we determine the normalization for the partition function of the G/G gauged
WZW model on ¥, which is compatible with the number of the conformal blocks in the
G WZW model on X;. The partition function of the G/G gauged WZW model on 33,
also can be represented by the modular S-matrix for the character in the G WZW model
as follows

Z&waw(Eh) = Z(S(?R)Q_%a (3.55)
R

where R denotes an integrable highest weight representation in the affine Lie algebra g
corresponding to a WZW primary field in U(/N) WZW model and the summation runs
through all the WZW primary fields in the G WZW model. Therefore, we determine the
normalization such that the partition function (3.57) matches with (3.55) in G = U(N).
When h = 1, the partition function of the G/G gauged WZW model coincides with
the number of the WZW primary fields in G WZW model. The genus independent
normalization factor « is (N + k)/N because {Sol} only runs through the WZW primary
fields in the su(N), WZW model and the number of the WZW primary fields in the (N ),
WZW model is

(k+ N)!

S (3.56)
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The resulting partition function of the U(N)/U(N) GWZW model on ¥, is

TTE pon (€27 — e2mion) L=k

ZUWN) N+k 1 kb .
Zawzw (En) = N . ;{Sol} (k+ N)k Hk | €2milk=1), - (357)
1o g a=

Thus, we can have evaluated the partition function by the equivariant localization. In
next section, we will show a relation between U(N)/U(N) gauged WZW model and the
phase model.

3.3 Gauge/Bethe Correspondence

In this section, we clarify connections between the U(N)/U(N) gauged WZW model and
the phase model. First of all we have to identify parameters of both theories. We identify
the level k and the rank N of the gauge group U(N) in the U(N)/U(N) gauged WZW
model with the total particle number M and the total site number L in the phase model,
respectively. Under these parameter identifications, we can show that the constraints
(3.51) coincide with the Bethe Ansatz equations (2.66). Taking the parameterization of
the Bethe roots as A\, = €2*% the logarithm form of the Bethe Ansatz equations becomes

(N + K Z¢b Bl (3.58)

where m, € Z implies branches of the logarlthm. Once we identify the constant field
¢q in the U(N)/U(N) gauged WZW model with the Bethe roots ¢, in the phase model,
we found that these equations coincide with the localization configurations (3.51) in the

N)/U(N) gauged WZW model.

Next, let us consider solutions of the Bethe Ansatz equations. The solutions are (3.52)
because the Bethe Ansatz equations are equal to the localized configurations (3.51). Then
we can show that piecewise independent solutions of the Bethe Ansatz equations coincide
with the solutions to be included in the range of 0 < ¢, < 1 and to satisfy the condition
0< 1 <o <+ < ¢y <1inthe UWN)/U(N) gauged WZW model. Thus, we found
that this solutions of the Bethe Ansatz equations coincide with {Sol}. The solutions
(3.52) also imply the completeness of the state in the phase model because the number
of the solutions is (N + k£ — 1)!/(N — 1)1k!.

Since the Bethe norm in the phase model (2.70) becomes

{ 27rz¢>} |w { 2m¢>} > H’:L—l 2rilk—1)da (k‘ + N)k~1N (3 59)
Hab 1 (€2mida — 2midy) ’

a#b

under taking the parameterization of the Bethe roots as A\, = ¢2™% | the partition function
(3.57) of the U(N)/U(N) gauged WZW model can be represented as

N
28 = (T3E) X e (360

é1, 91 E{Sol}
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Why the partition function of the U(N)/U(N) gauged WZW model can be represented
by the Bethe norm in the phase model? To understand this, we recall that the partition
function is represented by using the modular S-matrix (3.55). Thus, we can expect that
there is a relation between the modular S-matrix in U(N)/U(N) gauged WZW model
and the Bethe norm in the phase model. Actually, Korff and Stroppel constructed the
Verlinde algebra in the SU(N) WZW model on the sphere from a viewpoint of the phase
model and showed that the modular S-matrix in SU(N) WZW model coincides with
the Bethe norm in the phase model [20]. So, let us derive the partition function of the
SU(N)/SU(N) gauged WZW model from the one of the U(N)/U(N) case. There are
two differences between these partition functions. Firstly, the modular S-matrices in each

model are related to
(N) | N  aw
Sor ' = N+k.SOR( ) (3.61)

where R and R denote the WZW primary field in the U(/NN) and the SU(N) WZW model,
respectively [41]. Secondary, a range which the summation runs through is different
because the number of the each WZW primary field is different. Taking account these
two differences, we find that the partition function of the SU(N)/SU(N) gauged WZW
model is

Hﬁ,b:l (ezm‘.% _ e27rid>b) 1-h

1 b
Zowra(Sn) = Y ——— (3.62)
e 501} (k+ N)e—IN [1F_, e2mitk—1)en

and can be represented by the summation of the Bethe norm with respect to all the
eigenstates of the transfer matrix in the phase model;

Zompw(En) = > (@ h)lp({Em L)) (3.63)

P1,e 7¢k‘€{801}

This shows that the modular S-matrix of the SU(N) WZW model coincides with the
Bethe norm;

Sor ™ = (Y({e¥ Y [W({e* 1)) (3.64)

This is considered as a reason why the partition function of the U(N)/U(N) gauged WZW
model can be represented by the Bethe norm in the phase model. Therefore, we found
that the Gauge/Bethe correspondence between the G/G gauged WZW model and the
phase model is also considered as the gauged WZW model realization of [20].

Finally, we comment relations between the CS theory and the phase model. The par-
tition function of the G/G gauged WZW model coincides with the partition function of
the CS theory with the gauge group G on S! x ¥ [13]. We can apply equivariant local-
ization methods to the CS theory in a similar way with G/G gauged WZW model. Thus
in the CS theory with the gauge group U(N) on S x 33, , the localization configurations
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coincide with the Bethe Ansatz equations and the partition function is represented by the
Bethe norm in the phase model:

N
ZgéN’(Slxzh)=<N; A) > WS RS L (3.65)

@1, . E{Sol}

Further, when the gauge group is SU(N), the partition function of the CS theory is

ZEgM(S x )= YT @)l ({em b)), (3.66)

@1, ,¢rE{Sol}

We have shown the Gauge/Bethe correspondence between CS theory on S* x ¥, and
the phase model. The equivariant localization for the CS theory on wider class manifolds
(Seifert manifolds) is derived in [42], [43] and [44], see also [45] for generalization to the
Chern-Simons-Matter theories. To describe the partition function of the CS theory on
these manifolds, not only modular S-matrix but also modular T-matrix is needed.

Remark. Recall that we have interchanged the level k with the rank N in (3.50) because
the partition function of the U(N)/U(N) gauged WZW model has level-rank duality. In
this circumstance, we have then investigated the relations between the U(N)/U(N) or
SU(N)/SU(N) gauged WZW model and the phase model. This is because we can identify
the WZW primary fields as the Bethe roots and the modular matrix in SU(N) WZW
model completely coincides the Bethe norm in the phase model in this circumstance.
However, this substitution is not indispensable when we consider the correspondence
between the gauged WZW model and the phase model. To see this, let us return to (3.50).
Integrating the delta function at (3.50) and setting a correct normalization, we obtain
TTVpmr (€27id — e2mits) 1=h

N+ k\" 1
U(N) _ a#b
ZGWZW(Zh) - ( k ) Z (k' + N)N I—L]l\;l eZ’IFi(N~1)d>(,, ' (367)

¢1,"'>¢N€{§g]}
Here, {§51} is defined by a set which ¢y, , ¢n satisfy a constraint
N
N-—1
(N+k)pa— D ¢+ —— = (3.68)

and the conditions 0 < ¢; < ¢ < -+ < ¢y < 1. The partition function of U(N)/U(N)
gauged WZW model can also reduce the one of the SU(N)/SU(N) gauged WZW model
as above:

H{zvb=1( e2mida _ ezni¢b) 1=h

h

SU(N) _ (N 1 b

Zawzw(En) = < k.) 2. _ | e+ N)NUe o TN e2ritN-1)s. - (3:69)
@1, ,¢n E{Sol} a=1
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From now on, we investigate relations between the SU(N)/SU(N) gauged WZW
model and the phase model by using this expression. Here, we identify the level k£ and
the rank N with the total site number L and the total particle number M, respectively.
Note that this identification is different from the above case. Under this identification,
we thus see that the localization constraint (3.68) coincides the Bethe Ansatz equation in
the phase model. The Bethe norm can further be expressed by

2 omid HiV:l e2mi(N=1)¢a
WJ({e }N)W({e }N)> B fobﬂ(e%wa — e27ri¢b)

a#b

(k+ N)N-1k. (3.70)

Hence, we can express the partition function as a summation of the norm between the
eigenstate in the phase model with respect to the all eigenstates up to a overall factor:

h
Zgaw(Eh) = (%) > W) ({ e N)) (3.71)

é1, ,dnE{Sol}

Thus, we have established the Gauge/Bethe correspondence between the SU(N)/SU(N)
gauged WZW model and the phase model as the case of substituting the level with the
rank. Notice that the number of the WZW primary fields in the SU(N) WZW model
does not coincide with the number of the elements in the set {Sol}, (N + &k — 1)!/(k —
1)IN!. Therefore, we see that the WZW primary fields can not identify the the elements
{¢1,+- - , PN} in the set {§51}. Further, we find that the modular matrix in SU(N) WZW
model does not coincide with the Bethe norm in the phase model under the identification:
k=Lad N=M.

Thus, we see that the identification ¥ = M and N = L is more natural than the one
k=L and N = M. However, all models does not have the level-rank duality. In fact,
such duality is unlikely to exist in the G/G gauged WZW model with additional matters,
as see in next chapter. Therefore, this remark will become important for the Gauge/Bethe
correspondence to work well.




CHAPTER 4

/G Gauged
Wess-Zumino-Witten-Higgs model

In this chapter, we study a generalization of the Gauge/Bethe correspondence for the
(/G gauged WZW model and the phase model in the previous chapter. In chapter
2, we have introduced the phase model as a t = 0 limit of the g-boson model. Since
the Gauge/Bethe correspondence is a correspondence between some topological gauge
theory and some integrable system, it is natural that a topological gauge theory which
corresponds to the g-boson model exists. In this chapter, we will construct such a model.
This model is the G /G gauged WZW model coupled to additional matters and is called
by the G/G gauged WZW-Higgs model. In fact, we will show that this model corresponds
to the g-boson model by utilizing the equivariant localization method as with Chapter 3.
See [24].

In section 4.1, we firstly introduce the G /G gauged WZW-Higgs model. In section 4.2,
we apply the localization to the V(N) /U(N) gauged WZW-Higgs model and calculate the
partition function. In section 4.3, we numerically give a value of the partition function. In
section 4.4, we study the correspondence between the U(N)/U(N) gauged WZW-Higgs
model and the g-boson model. See Appendix A for the convention which we use in this
chapter.

4.1 (/G gauged Wess-Zumino-Witten-Higgs model

In this section, we introduce the G /G gauged WZW-Higgs model on a genus i Riemann
surface. It is a model of matters coupled to the /G ganged WZW model on a genus
h Riemann surface. The additional matters are an adjoint complex scalar boson ®, an
adjoint complex scalar fermion v, an adjoint 1-form auxiliary boson ¢ and an adjoint
1-form auxiliary fermion y ' .

From now on, let us construct the action of the /G gauged WZW-Higgs model on
a genus h Riemann surface. Since this model is a topological field theory, the matters
should enter in the action as a BRST-exact term. Therefore, we firstly define the BRST

'Notice that this matter contents is different form a matter contents of [5]. In [5], the additional
matters are an adjoint 1-form boson etc.

33
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transformation generated by a BRST charge Q(g,4):
' QunA=\ Q(g,t))\(lﬂ) — (Ay)(LO) — A0 Q(g,t)/\(ﬂ,l) — _(Ay“l)(O,l) + AOD,
Qungd =0, Qun®=1v, Quyd® =v¢', Quyv=1tg'®g— 2,
Qo' = —tg®Tg™ + @', Quax™” =", QuEyx®Y = 7,
Q™ =tg7'x Vg —x10, Q™) = —tgx Vg7t + XY (4.1)
where 0 < ¢ < 1. This is a natural generalization of the BRST transformation for the

G/G gauged WZW model.
Next, we define the partition function:

Zawzwn(Zh, t) = / DADAD®D gDy DypDye FSewzwn(Znt) (4.2)
where the action is defined as
)
Sewzwiu(Zn, t) = Sawzw(Zs) + E/ Tr(A A A) + Smatter(Zn, 1) (4.3)
Zh

where Sgwzw (Zr) is the action of the G/G gauged WZW model (3.4). Here, the matter
part of (4.3) is represented as BRST-exact form:

Smatter(En, 1) = Qg.ty - R (4.4)
where R is defined as

R = % /Eh {duTr(dy! — ®'Y) + R1+ Ra} . (4.5)

Here, R, and R, are defined as

Ry = Tr{x®VA (VIO - aX + X3)}, (4.6)
Ry = Tr{x"O A (VOYe - Yo'+ oY)} (4.7
where X and Y are defined by
X = Y Xa=D g9 V), (48)
n=0 n=0
n=0 n=0

Here, we define a covariant derivative as VA0 X = 910X 4 [A00 X1 and so on. The
square of the BRST transformation @4+ generates the bosonic transformation L s):
Loy AMO = (A9)10 _ 400 £ AOD = _ (470D 4 400
L 0 = g A0 g _ A0 £ 30D = _ga@D =l L \OD £ 0
Lign® =tg7'0g— &, Ligyd' = —tgdlg™" + &,
Lignl =tg g —1, Ly =—tgylg™" + ¢,
Lgyx0 =tg7x10g — x10, L yx®V = —tgx
Ligye™? = tg7 100 — o0 £ 50V = —tgyl

(0,1) o,

g+ x
01) =1 4 O (4.10)
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where Q%g ty = L(g.)- The matter part of the action (4.4) is invariant under the transfor-
mation Ly . The bosonic transformation L1y generates the finite gauge transformation
at ¢t =1:

C(g,nA(l’O) — (Ag)(l,ﬂ) — A0 ﬁ(gyl)A(o’l) — _(Ag‘l)(Oyl) + ALO)
ﬁ(g,1)/\(1’o) = gm0y _ A0 [’(g’l)/\(o,l) — —gAOD g1 O

Lgng =0

Lon® =g 'dg—& Lo =—gdlg~" + &,

Loyl =g""Yg—v, Lyny'=-—gyig™t+yl,

Lgnx? =g M0 — x00 L xO = —gxOVg~1 4 x O
[I(g’l)w(l,O) — g lp0g _ LU0, ‘C(g’l)(p((),l) = —gp@Dg 1 4 O (41])

where Q%g,l) = Lg,)- Similarly, the bosonic transformation L, at ¢ € G = 1 generates
the finite U(1) transformation:

AC(M)A = 0, L(l,t)/\ = 0, /J(l’t)g = O,

Lan®=1t®—d, LD = —td! + &,

Lan =t -1, Lay¥'=—ty' + 91,

E(u)x(l’o) = ¢y L0 X(m)’ [:(l,t)X(O,l) _ _tX(O,l) + X(O,l)’

E(u)w(m) _ wu,()) — 0 E(l,t)w(o’l) = 40D | g0(0,1)‘ (4.12)

where Q%Lt) = L(14)- Thus we see that £, ;) generates the gauge and U(1) transformation.

For convenience, we explicitly rewrite the action (4.4) by carrying out the BRST
transformation as follows.

1
Smacar(Bnst) = 5= [ duTs (881 + i — 1819 0g)
p

+% Tr {w(o,l) A (V(I,O)(I) + [X, @]) _ X(O’l) A (V(I’O)T/) + [X, d’])
Eh

HO A (V0D [, 81]) - x DA (VOO [V} (413)

We see from this that a interaction term between the fields of the G/G gauged WZW
model and the additional matters disappears when we set ¢t = 0. Hence, the G/G gauged
WZW-Higgs model becomes the G/G gauged WZW model at t = 0. We can regard this
model as some kind of a one-parameter deformation of the G/G gauged WZW model.

Since the action is written as the action of the G/G gauged WZW model plus the
BRST-exact term, the G/G gauged WZW-Higgs model will become the topological field
theory. Thus, the partition function will be a topological invariant. In chapter 3, we have
seen that the partition function of the G/G gauged WZW model counts the number of
the conformal block of the G WZW model. Therefore, we can expect that the partition
function of the G/G gauged WZW-Higgs model counts the number of the building block
of some underlying field theory. However, we do not know what field theory is.




36 CHAPTER 4. G/G GAUGED WESS-ZUMINO-WITTEN-HIGGS MODEL

In next section, we will calculate the partition function of the U(N)/U(N) gauged
WZW-Higgs model by using the equivariant localization method like the case of the
U(N)/U(N) gauged WZW model.

4.2 Localization

From now on, we set the gauge group G as U(N) for simplicity. We evaluate the partition
function of the U(N)/U(N) gauged WZW-Higgs model by using the equivariant local-
ization method. However, we can not directly evaluate the partition function with the
action (4.3).To simplify the calculations it is useful to consider the more general action
given by

Sma.ttcl‘(zh) t)
1
= Qo) - {E /E ,, {d/m- (By! — @) + 71 (R1 + Ra) — 2 Tx(x A *w)}} (4.14)

where dy = —d?z is a volume form. For 7, = 1,75 = 0, (4.14) matches (4.4). From
a viewpoint of cohomological localization for the path integral, one can expect that the
partition function for the 71 = 1,7 = 0 coincides with one for the 7, = 0,7, = 1.
Therefore, we consider the case of 7, = 0,72 = 1 from here. In this case, the action (4.14)
becomes

1
Smaner(Tnt) = Qo [E / {duTr(cbwf—W)—Tr(mw)}]

1
= — / duTr{@@T—tq)gcl)Tg_l—i-z/)sz}
27 Js,
1 _
5 / d*2Tr (9205 — XaXz + EX29Xz0 ) - (4.15)
u Eh

The action will become quadratic in terms of ®, , 1 and ¥ after we take a diagonal
gauge. Thus, we can evaluate the partition function in a similar manner with Chapter 3.

Let us take a diagonal gauge g(z, Z) = exp {2m’ 25:1 da(2,2)H a}. Then, the partition
function under the diagonal gauge becomes

Zowzwu (g, t)

- ﬁ / DADAD¢DMDet(1 — Ad(e™?))
ik
X exp {—kSGWZW(QS, A) - 4217 Tr(AA X) — ESmatter(d: @, 9, X, so)} (4.16)
Xp

where the measure DM = D®D®'DyDy!DpDy. Also, Det(1 — Ad(e*™?)) is the
Faddeev-Popov determinant for the diagonal gauge fixing as with Chapter 3. Here, the
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action (4.15) becomes
, 1
Sewzwa(Zn,t) = Sewzw(Zn) + E/ Tr(A A A) + Smatter (2. ) (4.17)
. o
where the gauged WZW part is given by (3.16) and the matter part is

1 1
S 1) = o / ATr{u) — 5- / PoTr(p.00) +

+% {1—tzcb¢>*+aez; te?™ ) o_, @
N

+(1-1) Z,\ X2+ Y (1 — te?e@ \"\‘“} (4.18)
a=1 acA

Firstly, we can evaluate the path integral with respect to x.. and Yz, as

/D\GDX exp{——/d22\ 27rm )\z—a}
aEA

~ [y e {—— R ® b X2 Mo(t) )}

a>0

= H Det(l,o)Ma(t) . Det(l,o)M_a(t)‘ (419)

a>0

where M,(t) = 1 — te**(®)_ Similarly, we can evaluate the path integral with respect to
&, and &, as

/ DO, DD_, DI, DD, [] exp { / d2®% (1 — te?o(®) <1>_a}

a€A

/ D3,Dd_, DI DY Hexp{—— / &z c1>T Ma(t)®_o + &, M_o(t)®a )}
a>0
=[] IDetoMa ()] ™" - [DetoM o(£)] " (4.20)

Ca>0

Putting together with (4.19) and (4.20), the contributions to the partition function from
® and y become

Det(1 O)M Det(l 0) M_, )
H DetoM H Deto]\/L ) (421)

We can evaluate this ratio of the functional determinant by using the Hirzebruch-Riemann-
Roch theorem for the twisted Dolbeault complex as well as the case of the gauged WZW
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model in Chapter 3. Here, we utilize the complex O a—> Q0.0 & V 24, Quo gy, 240

at the first part and the complex 0 04, QO gV, 24, Q1O gV, 24, 0 at the second part.
Thus, we obtain

s

H exp {S%Rlog M, (t)M_,(t) + QL /\:h aeF*log ]\%a((tt)) } . (4.22)

a>0

Evaluating the path integration in terms of ®, ®!  v¢ and x2, we obtain
g g ar Xz z

N

[[a-o=" (4.23)

a=1

The contribution to the partition function from ¢ and 1 also cancel out. Since the action
of the gauged WZW part is equal to (3.16), we obtain

[Tos=1 (1 — e2mita=t) o

a a a#b i ¢ ‘
/HDﬁb ;!:[DA N =1(1 _ t627ri(4>a—d>b)) X exp {+47T /Eh AAA }
N
Xexp{iz/ Fa<N+k Z¢b+ )} (4.24)
a=1"YZn

Here, we have used the fact that the constant modes of {¢;,- - ,¢n} only contribute to
the partition function as we will show below.

Thus, the partition function of the U(N)/U(N) gauged WZW-Higgs model on a genus-
h Riemann surface becomes

Hg{b=1 (1 — 627”'(%—(;5,,)) 1-h

ZGWIWH Eh’ /H DQS“D)\ DA, HNaaéb (1 _ t627ri(¢a—¢b))
ab=1

X exp {z i:: /E h (5,,(¢)Fa + %)\a A /\a) } (4.25)

where §,(¢) is defined by
27ri¢a teQﬂ’id)b
Ba(@) Zl ( e2mida _ e2m¢,,>' (4.26)
b;éa
When we define an abelianized effective action by

o k
Ser(py A, N) = —i (ﬁa(qS)Fa F A A /\a> , (4.27)
ft g Lh 47
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we see that this is not invariant under a following abelianized BRST transformation:

QAa = /\aa Q/\a = 27Tdd)m Qqsa =0 (428)

where @ is an abelianized BRST charge. Although the effective action (4.27) should be
invariant under the abelianized BRST transformation, it is not. Therefore, we have to
add appropriate counter terms to restore the BRST symmetry by requiring the effective
action such that it satisfies descent equations.

Now, we explain the decent equations and how to restore the BRST invariance of the
action. Firstly, we define a local operator O as

0O = W(¢) (4.29)

where W (@) is an arbitrary function of ¢y, - - , ¢ on the Riemann surface. Let oW (n=
0,1,2) be n-form valued local operators which satisfy a following relation

do"=Y = QO™ (4.30)

(4.30) is called by the descent equations. Note that the 3-form local operator O® does
not exist because we consider the Riemann surface as the base manifold. Then, we see
that the integration of O™ over a n-cycle 7,, namely f% O™ becomes the BRST-closed
operator under the abelianized BRST transformation (4.28):

Q- o™ =0 (4.31)

il

In fact, we can construct the BRST-closed operators as follow:

00 = W(¢>) (4.32)
1n _

on = 2WZ a ¢a (4.33)
@ 1 PW (¢

0P = 57 2= 3,0 ¢b)\ AN+ Z a ¢a (4.34)

In our case, by defining the function W{¢) as

1 oW (9)
21 A,

= Ba(®). (4.35)

the operator @ becomes

N
0® =3 ( el Z dgl;sa Ao A /\b) : (4.36)

a=1
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To restore the BRST invariance in the effective action (4.27), we must replace (4.27) with
(4.36):

eff ¢>A /\ Z/ (6a F + —Z agl;) /\ /\/\b) . (437)

As a result, we have restored the BRST symmetry in the effective theory. Hence, the
partition function becomes

Htjz\,lb=1 (1 — ¢2mi(¢a —qsb)) 1—h

N
. 1 a#b
Zewzwh(Ep, 1) = W] /ng’aD’\aDAa T, (1 — te2ritoa—cu))

Xexp{ Z/ (ﬂa(¢F +4 Zagiﬁa Ao /\/\b)}. (4.38)

By using the Hodge decomposition theorem, the two-form Fj, can be decomposed to a
harmonic part F © and an exterior derivative of a one-form da, such that

F, = F° + da, (4.39)
where kp is an b-th diagonal U(1)-charges of the background gauge fields:

1 0 _

o s F,7 =k (4.40)

Integrating a; by part puts delta functional constraints on d¢, , the fields ¢,(z, z) reduce
to constant fields.

We also decompose A 1nto Ao = A 4+ §), where A ) is a harmonic 1-form and ) is
fluctuation orthogonal to )\ 0 by using the Hodge decomposition theorem. Determinants
from integral of d\, are completely canceled with Jacoblans induced from the integral
of ap. Since the number of fermionic zero-mode of each AL equal to the number of the
harmonic form 2A on the genus-h Riemann surface, the path integration with respect to
/\(0), . /\(O) gives an additional factor

9Bs(4)\ |"

Lg (@) = |det ( 56, (4.41)

Thus, the resulting expression of the partition function becomes

1
ZGWZWH(Zh, t) = W Z /Hd¢auq h TZa_l kaBa(®)
~Lky=—00
1-h

1 27rz¢a _ 27r1,¢b

x (]_ — t)N e2rida _ fo2midy ' (442)

a#b
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Since we ignore the overall factor for the partition function in our calculation, we can
replace the functional determinant in j,(¢) with the determinant:

o(6) = ‘det (8?;55’)) ‘ . (4.43)

By using the Poisson resummation formula, we rewrite (4.42) as

Zowawn(Fat) = |W| Z / Hd¢aH5 (Ba(9) — o) 1gl)"

vN=—oc
1-h
N . .
1 627”¢a _ 6271'1(1;,,
(1—t)N e2mida _ ta2midy (4.44)
a,b=1
a#b
Here, let us utilize a property about the delta function
1
)) = Z —|f'(.Tz)| 5(;17 — ;l?i) (4'45)

where w; is solutions of f(x) = 0. Then the delta function in the partition function
becomes

N
[16Ba(®) ~ ta) = ola H(;(d,a (4.46)
a=1
where 21, - - , oy satisfy
) N 27”"¢a 27Ti¢h
¢ e —te
Ko o ;log (W) = Lo. (4.47)
b

If a number of solutions exists in (4.47), one must sum up all solutions in a region 0 <
o1, ,¢n < 1. In our case, we can show that the solution is unique up to permutations.
The partition function is invariant under the permutation and the contribution to the
partition function from the permutation therefore cancel out the order of the Weyl group
|W|.

By integrating with respect to ¢;,---,¢n, we obtain a final result for the partition
function:

h—1

N N 2k _ o2midy
Zowzwh (En, t) = Z (1 =8)" pg() H

{#1, o~ }€{Sol} a,b=1
aF#b

e2mida _ p2midy (4.48)
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Here, {Sol} is a set of the solution which satisfies 0 < ¢ < --- < ¢n < 1 and the
constraint
N 2midha 2mich
. e — e ™ .
2mikg, + bz:log (W) = 2mil,. (4.49)
-1

b;_éa

Also, we explicitly can express u,(¢) as

0
pe(d) = djst gl;ﬁ(b)
N .
) (t2 _ 1)627r1(¢>b+¢c)
= d]st [{k - z:; (tegm‘,% _ 627ri¢c)(t627777¢c — e2ﬂ'i¢>b) 5a,b

{2 _ 1)e2mildaton)
(= Le ] . (4.50)

(te2rida — e2mitn)(te2mits — g2rida)

Thus, we see that the path integral of U(N)/U(N) gauged WZW-Higgs model reduces to
the finite sum of the solutions which satisfies the localization configuration.

Finally, we comment about a normalization of the partition function. The partition
function with a general normalization becomes

h-1
i N N e2mida _ po2midy
Zowzwn(Zn,t) = a(t)B(t) > (1= )pg(x) T P (4.51)
{¢1, ,@n}E{Sol} a,l;:bl

where «a(t) and G(t) are a genus independent and dependent function of ¢, respectively.
Note that this partition function should coincide with (3.57) at a limit ¢ — 0 at least.

However, we can not completely determine the normalization of the partition function of
U(N)/U(N) gauged WZW-Higgs model unlike the gauged WZW model.

4.3 Numerical Simulation

In this section, we numerically investigate the partition function of the SU(N)/SU(N)
gauged WZW-Higgs model at level k. We have not determined the normalization of the
partition function as we have discussed it at previous section. Therefore, we assume that
the normalization of the partition function of the gauged WZW-Higgs model coincides
with the one of the gauged WZW model. In other words, we assume that the partition
function of the U(N)/U(N) gauged WZW-Higgs model becomes

U(N
Zedw i (Sn, t)
h—1

— (‘T ) > 1= ] o (0 (452)

1, 0N }E{Sol a,b=1
{#1 ~ }E{Sol} i
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In the same way, we assume that the partition function of the SU(N)/SU(N) gauged
WZW-Higgs model becomes

SU(N
Zowy pv e (Shnt)

h—1
N h N 621Ti¢,1 . t€27ri¢b
:<?> > (1—”N%“0II;%at:mg' . (4.53)
" {¢1,,0n}E{Sol} a,z;=b1 : :

From now on, we calculate a value of the partition function of the SU(N)/SU(N) gauged
WZW-Higgs model under this normalization by utilizing the Mathematica 2.

Firstly, let us consider the case of genus-1, a torus. In the gauged WZW model, the
partition function counts the number of the WZW primary fields and is (N+k—1)!/(N —
1)1kl In the gauged WZW-Higgs model, we will expect that the partition function counts
the number of some fields in an underlying theory and becomes integer value. In fact, we
found that the partition function is not modified from the gauged WZW model by the
numerical simulation:

N+k-1
253 (.0 = S (4.54)

Next, we investigate the partition function on a sphere, a genus-0. By the numerical
simulation, we conjecture that the partition function behaves as

ZEN) (Pt = 4.55

GWZWH( t) = Hiv=1(1 — ) | (4.55)
Notice that this does not depend on the level & and coincides with the partition function
of the gauged WZW model in & limit ¢ — 0.

In the case of genus-2 and above, we can not conjecture how the partition function
behaves in arbitrary & and N. Therefore, we consider special cases where N = 2, k =
arbitrary, h =2 and N = k = 2, h = arbitrary. We list the result in the former and later
case at Table 4.1 and Table 4.2, respectively.

In the former case, we conjecture that from Table 4.1 the partition function becomes

k+3)k+2)(k+1
28 Gun(Eakt) = (- o (DR RELD
k—TNkk+1 kE-3)k—-2)(k-1
DM, (DR (g

2We must solve the localization constraints (4.49) to numerically find the partition function. Note
that we change the localization constraint (4.49) as

N

_ [tan(m(x; — xx)) 1
2rka; = 27d; — Z <2tan ! {W +27 (& —zp + 3

k=1

where [- - -] is the Gauss’ symbol because it is necessary to choice correct branches of the logarithm. See
[46]
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In the later case, we also conjecture that from Table 4.2 the partition function becomes
Zommn(Th k= 2,8) = 2271 (2" + 1)(1 — )2 (1 + )P (4.57)

We can not conjecture a general form in other case but list the result of the other case at
Table 4.3. As see Table 4.1, Table 4.2 and Table 4.3, we see that all expansion coefficients
in terms of ¢ of the partition function are integer. The partition function itself change but
this nature does not change, even if one changes the normalization such that the partition
function of the gauged WZW-Higgs model becomes one of the gauged WZW model at the
limit t — 0. Therefore, this implies that the partition function is a topological invariant.

Genus | k£ | N Partition Function
2 2|2 (1 —1)2(10 + 10¢)

3 (1 —1)%(20 + 16¢)
4 (1 —1)%(35 + 20t + )
5 (1 —)%(56 + 20t + 4t?)
6 (1 — t)%(84 + 14t + 10¢%)
7 (1 —1)2(120 + 20t?)
8 (1 —t)%(165 — 24t + 35¢t2)
9 (1 —t)2(220 — 60t + 56¢2)
10 (1 —t)2(286 — 110t + 84¢?)
50 (1 —1)%(23426 — 36550t + 18424¢2)

Table 4.1: The partition function of the SU(2)/SU(2) gauged WZW-Higgs model with
the level k on the genus-2 Riemann surface

Genus | kK| N Partition Function
2 |22 10(1 — £)2(1 + ¢)
3 36(1 — 1)4(1 + t)?
4 136(1 — )8(1 + ¢)3
5 528(1 — t)3(1 + ¢)*
10 524800(1 — t)'8(1 +¢)®

Table 4.2: The partition function of the SU(2)/SU(2) gauged WZW-Higgs model with
the level k = 2 on the genus-h Riemann surface



o p

Genus | L

I
=
I

2

Partition Function
(1 — £)3(45 + 99t + 99¢% + 45¢t%)
(1 —£)3(166 + 332t + 252t% + 861> + t4)
(1 — £)3(504 + 810t + 396t + 1263 + 36t*)
(1 —¢)3(1332 + 1512t + 369t + 2433 + 144¢4)
(1 — t)3(3168 + 2046t + 112t + 593t> + 339t* + 5¢t° + 19)
(1 —¢)3(6930 + 1188t + 162t* + 1188t + 648t + 18t° + 9¢5)
4(1 — t)*(1 + )%(35 + 50t + 86t + 50t + 35t%)
16(1 — £)*(1 + ¢)(56 + 134t + 177¢% + 128t + 54¢* + 17¢° + 15)

2(1 — )4(2340 + 7020t + 8761¢% + 5628t> + 2167t* + 1076¢> + 615t + 164t” + 5¢°)
16(1 — ¢)*(1314 + 3114t + 2381¢2 + 605> 4 359t 4+ 526¢° + 249t% + 67¢" + 10t8)
25(1 — £)%(1 + )% (1 + ¢ + %) (14 + 23t + 43t* + 48t + 43t* + 23t> + 14¢5)

8(1 —t)4(3 + 2t)(5 + 4¢)

(1 — t)*(329 + 280t + 86¢% + +8t> + t4)

27(1 — £)5(1 + £)?(3 + 4t + 3t2)(5 + 6¢ + 5t2)

(1 — t)8(4390 + 17560t + 2929612 + 26428t> + 14020t* + 4480t° + 7725 + 10t7 + %)
16(1 —£)%(2 +t)(5 + 4¢)?

32(1 — t)8(5 + 4t)%(7 + 8t + 2t%)

NOILLVIINIS TVOIHANNN

Wl W W N[ W|I N[O R ]|WIIN N[O W] N
NN WW N[N =W W]Ww|WwW]|w

Table 4.3: The partition function of the SU(N)/SU(N) gauged WZW-Higgs model with the level k on the genus-i Riemann
surface
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4.4 Gauge/Bethe Correspondence

In this section, we consider the Gauge/Bethe correspondence which is a correspondence
between the U(N)/U(N) gauged WZW-Higgs model and the g-boson model.

Firstly, let us see that the localization configuration in U(N)/U(N) gauged WZW-
Higgs model agrees with the Bethe Ansatz equation in the g-boson model. We change
a parametrization of a coupling constant t as t = e~2™ at the localization configuration
(4.49) to manifest the Bethe Ansatz equations in the g-boson model. Then, we obtain a
following expression for the localization configuration:

sin[m(in + (2; — 2x))]
sm[7r(777 (x; — 2x))]

N
2mik; = 2mil; + ) log (4.58)

k=1
where I; is (half-)integers when N is (even) odd. We identify the level k, the rank N of the
gauge group U(N) and the coupling constant 7 in the U(N)/U(N) gauged WZW-Higgs
model with the total particle number L, the total site number M and the coupling constant
7 in the g-boson model, respectively. Further, we identify the Cartan part ¢y,--- , ¢y of
a field g in the gauged WZW-Higgs model as the Bethe roots xj,--- ,zn in the g-boson
model. Under these parameter identifications, we see that the constraints (4.58) coincide
with the Bethe Ansatz equations (2.46) in the g-boson model.

Next, let us investigate relations between a set of piecewise independent solutions of
the Bethe Ansatz equations for the g-boson model and a set {Sol} of w1, - ,xx which
contributes to the partition function of the gauged WZW-Higgs model. It is necessary for
the Bethe states to form a complete system that the number of the piecewise independent
solutions of the Bethe Ansatz equations for the g-boson model is (N +k—1)! /(N — 1)kl
Although it is nontrivial which this number coincides with the number of elements of the
set {Sol}, we can numerically confirm that the number of the elements of the set {Sol}
is (N 4+ k — 1)!/(N — 1)!k! and coincides with the number of the piecewise independent
solutions of the Bethe Ansatz equations for the g-boson model. This circumstances is equal
to the one of the relation between the U(N)/U(N) gauged WZW model and the phase
model. Thus, we can have established an identification with {Sol} and the independent
solutions of the Bethe Ansatz equation for the g-boson model.

Finally, we consider the partition function for the U(N)/U(N) gauged WZW-Higgs
model. Under above identification, the Bethe norm in the g-boson model (2.51) becomes

H(Iz\,’bzl (621rzzat 27rsz )
Hi\{b:l eszxa — 627”:0,,)
a#b

(w{em™ n)lv({e™}n)) = det 5 ({a}n) (4.59)

where the Gaudin matrix is

P’ ({eZWim}N) = ¢4 b _ke—Zﬂ'ircb + i (tz _ 1)62mzf
a,b a, = (te27ria:a _ e2‘n’imc)(te21ria:c _ e27rizu)

(t2 _ l)eZwix,,
- (te2riza — e27ri:cb)(t627ri:cb — e2mita) ‘

(4.60)
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Thus, the partition function of the U(N)/U(N) gauged WZW-Higgs model on a genus-h
Riemann surface is expressed by a summation of the norm between the eigenstates of the
Hamiltonian in the q-boson model in terms of the all eigenstates:

[ h .
Zg\(,{,VZ)WH(Zh,t) = (N:-A) Z (W({e¥™ I n) o ({eF*In)) L (4.61)

z1,,x nE{Sol}

As a result, we found that the U(N)/U(N) gauged WZW-Higgs model corresponds to
the g-boson model.

Further, we can reduce the partition function (4.61) to the SU(N)/SU(N) gauged
WZW-Higgs model:

h
Zé%éévv’m<>3h»t>=<%) > USRS I (462)

z1, - ,xNE{Sol}

This circumstances is also equal to the one of the relation between the gauged WZW model
and the phase model. We see that the SU(N)/SU(N) gauged WZW-Higgs model also
corresponds to the g-boson model. This correspondence is just one parameter deformation
of a correspondence between the SU(N)/SU(N) or U(N)/U(N) gauged WZW model
and the phase model. We find that “Gauge/Bethe correspondence” also work well in this
situation.

Finally, we consider why does “Gauge/Bethe correspondence” for SU(N)/SU(N)
gauged WZW-Higgs model and the g-boson model work well. We consider this through
a perspective of the axiom of the topological field theory. It is well known that the topo-
logical field theory has the axiomatic formulation given by Atiyah [47] and Segal [48]. See
[49] and [50] for reviews. Especially, it is well known that the 2-dimensional topological
field theory is equivalent to the commutative Frobenius algebra. Recently, C.Korff con-
structed a new commutative Frobenius algebra from the g-boson model [23]. Thus, we
expect that there is a relation between SU(N)/SU(N) gauged WZW-Higgs model and
topological field theory equivalent to this commutative Frobenius algebra. We can actu-
ally derive the formula (4.54) and (4.55) given at previous section by using appropriate
cutting/gluing relations, in other words the commutative Frobenius algebra. Therefore,
the SU(N)/SU(N) gauged WZW-Higgs model can regard as a Lagrangian realization of
the commutative Frobenius algebra constructed by C.Korff.
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Conclusion

In this thesis, we have studied the relation between the 2-dimensional topological gauge
theory and the integrable system. We especially have studied the relation between the
U(N)/U(N) or SU(N)/SU(N) gauged WZW model and the phase model and between
the U(N)/U(N) or SU(N)/SU(N) gauged WZW-Higgs model and the q-boson model.

In the former case, we found that the localization configurations (3.51) coincide with
the Bethe Ansatz equations (3.58), once the diagonal group elements, the level and the
rank of the gauge group U(N) in the U(N)/U(N) gauged WZW model are identified
with the Bethe roots, the total site number and the total particle number in the phase
model, respectively. We also showed that the partition function of the U(N)/U(N) and
the SU(N)/SU(N) gauged WZW model is represented as the summation of the Bethe
norm with respect to the all eigenstates of the transfer matrix in the phase model. This is
because the modular S-matrix in the SU(N) WZW model coincides with the Bethe norm.
This is also considered as the gauged WZW model realization involving a generalization
to a higher genus case of [20]. We further found that the partition function of the CS
theory on S* X ¥y, is also related to norms of Hamiltonian eigenstates for the phase model.
These relations are summarized in the table 5.1.

Phase model U(N)/U(N) GWZW model/ the U(N) CS theory
Bethe root Diagonal group element/ Holonomy along S! direction
Bethe Ansatz equation Configuration of (3.51)
Total site number Rank of the gauge group U(N)
Total particle number Level
Bethe norm Modular S-matrix Spp
Partition function Summation of Bethe norm
with respect to the all eigenstates of the Hamiltonian

Table 5.1: Dictionary in the Gauge/Bethe correspondence between U(N)/U(N) gauged
WZW model and the phase model

49
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Note that this correspondence similarly works well for the case of an interchange

between the level and the rank. However, the Bethe norm no longer correspond to the
modular S-matrix.

In the later case, we found that the localization configurations (4.58) coincide with the
Bethe Ansatz equations (2.46), once the diagonal group elements, the level, the rank of
the gauge group U(N) and the coupling constant in the U(N)/U(N) gauged WZW-Higgs
model are identified with the Bethe roots, the total particle number , the total site number
and the coupling constant in the g-boson model, respectively. We also showed that the
partition function of the U(N)/U(N) and the SU(N)/SU(N) gauged WZW-Higgs model
is represented as the summation of the Bethe norm with respect to the all eigenstates of
the transfer matrix in the g-boson model. These relations are summarized in the table
5.2.

g-boson model U(N)/U(N) GWZW-Higgs model
Bethe root Diagonal group element
Bethe Ansatz equation Localization Configuration (4.58)
Total site number Lank
Total particle number Rank of the gauge group U(N)
Partition function Summation of Bethe norm
with respect to the all eigenstates of the Hamiltonian

Table 5.2: Dictionary in the Gauge/Bethe correspondence between U(N)/U(N) gauged
WZW-Higgs model and the g-boson model

Further, we numerically calculated the value of the partition function. Since the
G/G gauged WZW-Higgs model is a topological field theory, we have checked that the
expansion coefficients of the partition function in terms of the coupling constant became
integers as expected. This quantity may be a new topological invariant.

Finally, let us consider the results of this thesis from a more general perspective.
Any two-dimensional topological field theory is equivalent to a commutative Frobenius
algebra. In the special case, the commutative Frobenius algebra is constructed from
the some integrable system. In fact, the commutative Frobenius algebra is constructed
from the phase model and the g-boson model in [20] and [23]. We showed that the
commutative Frobenius algebra constructed from the phase model and form the g-boson
model correspond to the SU(N)/SU(N) gauged WZW model and SU(N)/SU(N) gauged
WZW-Higgs model, respectively. Thus, we can think that this is a mathematical reason
how the Gauge/Bethe correspondence works well.



APPENDIX A

Convention

In this Appendix, we summarize the convention about the differential form and the Lie
algebra which we use in Chapter 3 and 4.

Differential form We firstly summarize the convention about the differential form.
The convention which we use is as follows:

Euclid signature: (++)
1
n form field f : f= mf#»l...#‘n dztt A - N dat
1 1
Coordinate: z2=—w+1y), Zz2=-—47(w—1
s+ w), \/5( y)
S - (z+2) ! (z —2)
= — N = — — 2
2 Y 21
1 1
Partial derivative: 0, = —=(0; —10,), 0= —=(0; + 10
\/5( y) 2 ( y)
Integral: dzdz = dxdy
Metric: Guv = Oy for p,v =12,y
Y2 = Yz = ]-agzz =Yz = 0
Complete anti-symmetric tensor: €oy = —€yg = €7 = —e¥" = -1
€zz = —€zz = €F = —e* =4
Hodge operator: xdat = ¢, da” for pv =2,y
xdz = idz, =*dzZ= —idz

w(dzt A dx”) = et
1
x1 = iey,ydar"‘ Adx” = d%x

(%)% = (=1)P®P) when * act on the p-form
Co-derivative operator: dl = — xd x

(A1)

o1
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Lie algebra Let us summarize the convention for a Lie algebra g, especially u(N). We

take generators T, (@ = 1,---,dimg) in the orthogonal basis of the Lie algebra as an
anti-Hermite. Therefore, these generator satisfy
[Ta, To] = fopTe (A.2)

where f_,° is structure constants.
In the Cartan-Weyl basis, we denote Cartan generators and ladder operators as H*,i =

1,---,r where r is the rank of the Lie algebra and E* where a = (a!,--- ,a") is a root,

respectively. Here, we take the Cartan generators as an Hermite. Under the Hermite
conjugation, the ladder operator also becomes

E~* = (E9). (A.3)
These operators satisfy following commutation relations
[H®,H*] =0, [H% E®]=«°E"~ (A.4)
and

[E* E°] = N,sE**® ifa+B€A

= TL%Q-H, if a=-p0

= 0 otherwise (A.5)

where N, g is a constant and A is a set of the roots.
We regard X as a generic operator taking value in the Lie algebra X. Then, X can
be expanded by the Cartan-Weyl basis as

X = i Xo(iH®) + > Xa(iE®). (A.6)
a=1 a€A
Finally, we define the Killing-Cartan form as
b(X,Y)=—-Tr(ad(X)ad(Y)). (A7)
When Lie algebra is u(/NV), the Killing-Cartan form can be written as
b(X,Y)=2(hTr(XY)—-TrX - TrY) (A.8)

where h is the dual Coxeter number and N in the case of u(N). Also, the trace Tr is
defined as
Tl.(HaHb) — 5ab
o 2
Tr(E*EP) = W(SM,O (A.9)

where |a|?> = 2 in the case of u(N).
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Inner product in the g-boson model

In this appendix, we show (2.49) and (2.51). an inner product between the eigenstates of

the transfer matrix in the g-boson model

Su({u}{A}) = ()|H( 11 )Hls’(/\ )10) (B.1)

§a=1

where the parameters {j,--- .} and {A;.---, Ay} are arbitrary complex numbers
which do not satisfy the Bethe Ansatz equations. One can calculate the inner product by
using various methods. In [51], [52] and [53] , they firstly has calculated this inner product
in the XXZ model or the 6-vertex model. In this appendix, we follow Slavnov’s derivation
(29] of the inner product based on the commutation relations of the Yang-Baxter algebra,

(2.14) - (2.29). This method has the advantage of being able to apply a wide class of

models. Therefore, we apply this method to the ¢-boson model and calculate the inner
product (B.1). See also [27].

B.1 Inner product between general states

From now on, we consider the inner product between general states, that is, the case which
the parameters {A} and {x} in (B.1) are generic complex parameters. This inner product
formally is calculated by using the commutation relations (2.14) - (2.29) and (2.33) and
(2.34). We see that after use of the commutation relations (2.26) the parameters {ju}
and {A} first become arguments of the vacuum eigenvalues a and d. Therefore, the most
general form of the final result is

v({u}{A}) ZHH(/I Hd /q)Hu ’\‘)Hd

alo j‘ 2 k€a J€Ea
xl\'.\/({u}z‘{/I}aI{A},.{A},.). (B.2)

Here, we explain the notation used in this formula. The family {A} of parameters is
partitioned into two disjoint subsets {A} = {A}, U {A}s. Similarly, {u} = {u}, U {u}-.
These partitions are independent, except for the condition {A}, = {u}, = n, where
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n=0,1,---, M. The partitions of the parameters {\} and {x:} automatically induce two
partitions of the indices 1, -- , M, into {\}oU{A}s and into {uu} = {u},U{u}5. In each of
the subsets the parameters are ordered in a natural way, for example, {Aa;, Aags " 5 Aan }
if oy < g, -+ < @y, and so on. The sum in the formula (B.2) is taken over all partitions
of the indicated form. Similar notation is used below throughout this appendix. Also,
Kn({pe}+, {u}sl{A}a{A}s) denotes the coefficient appearing when the operators are per-
muted. Therefore, it depends on the R-matrix but not on the vacuum eigenvalues of the
operators A and D. Our purpose will be to find an explicit form for this coeflicient below.

We show that an arbitrary coefficient Kps ({1}, {tt}5/{A}oa{A}s) in the formula (B.2)
can be expressed in terms of the leading coefficient K, ({u1}|{A}) and the conjugate leading
coefficient K ({u}|{\}) defined by

f_{M({lJ«H{/\}) = Ku({p}y, 9l{A}a, 2) (B.3)
Ku({ut{A}) = Ku(@,{u}s12,{}}a). (B.4)

Here, the leading coefficient means the coefficient in (B.2) corresponding to the partition
{u}s = {A\}s = @. Similarly, the conjugate leading coeflicient means the coefficient in
(B.2) corresponding to the empty partition {u}, = {A\}o = @.

To this end, we fix some partitions {u} = {u}, U {u}; and {A} = {A}a U {A}s and
find the coefficient corresponding to the given specific partitions. Using (2.15) and (2.16),
we can reorder the operators B and C' as follows:

M M
L) [TBOWI0) = O [T Ct) [T ¢ - TTBOW [T BOI0).  (B:5)

Jje7 key ke jea

For the convenience, we rewrite the commutation relation (2.27) as the form

C(p)B(A) = tBA)C () + g(u, A) (AN D () — A(u) D(N)) (B.6)
where
C(I=t)A
g(m, A) = P (B.7)

Here, we call the first and second terms on the right-hand side of (B.6) the first and
second commutation schemes, respectively.

Let us consider an arbitrary operator C(u,) with a argument us € {1}, and begin
moving it to the right using the relation (B.6). Suppose that during the commutation
with the product [].., B(\;) we always use the first scheme. Then, we obtain a state

[TBX) - Cus) - T] BOWI0). (B.8)

JEQ kea

JEa

In general, it is clear that the action of the operator C(us) on the vector [[,c5 B(A)|0)
gives terms proportional to a(us)d(Ae), to a(ue)d(ts) or to a(Ar)d(Ae), where A, Ay €
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{A}a. However, the coefficient with the partition which we have fixed contains the func-
tions d(u) and d(A) only for p € {u}s and A € {A},. This is because the resulting
partition is {u} = {u}, U {p}s and {A} = {A}o U{A}s, and the resulting coefficient must

be proportional to
T () TT ) TT aCr) TTd(N)- (B.9)

J€Y ked ke j€a

Hence, the state (B.8) does not contribute to the coefficient with the partition which we
have fixed. As a result, we see that in the courqe of commutation of each of the operators
Cus), s € {1}y, with the product [] A;), we must use the second scheme at least
once:

JEa

HC’('U'J)HB( HC M] Ztg ! ,USs/\E )‘ ) ()\0{'—1)

JE€7 JjEo J€Y
J#s

X[A(s) D) = Aa) D(s)) B(Aogy,) - - B(Ao,) + 2 (B.10)

where we have denoted by .# all the terms that do not contribute to the desired coefficient.
Using the relations (2.20), (2.22) and (2.24), we now move the operators A to the leftmost
position and the operators D to the rightmost position. Repeating this procedure for all
the operators C(u) with {u}., we finally obtain a formula analogous to (B.2) with the
single difference that instead of the functions ¢ and d we get the operators A and D:

[Tcw)-T1B0w) = > I Aw) IT 40w [T o3 ] P

i€y j€a g{ﬁg;_— J€vs kea_ JEY+ key-
XKn({tihoy b {A o {AYal) + & (B.11)

where the summation is carried out here over all partitions of {A}, into two subsets
{Mo = {Ala, U{\}a_ and of {4}, into two subsets {1}, = {tt}, U {1}, -

Suppose that {u},_ # @. Then, when an operator D(u;) with s € {u},_ is commuted
with the product [[,c, B(};), we obtain terms proportional to either d(us) or d(u,) with
Ae € {A}s. Since nelther of these functions can occur in the final answer, we conclude
that {u}, = @, and therefore also {A\},_ = @. Consequently

[1CGs) - 1180 = [T AGs) - [T DO) - Knl{uh{A}e) + (B.12)

where K,({¢},|{A}a) is the leading coefficient depending on the families {u}, and {A}..
As a result, we obtain

M M
(0|HC(MJ')HB()V)|0>
= K.({uh|{A}e) - O] Clu) [T Atwy) - T[] D) [ BOWI0) + .2 (B.13)

key JEY jea kea
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We move all the operators D to the rightmost position and the operators A to the leftmost
position. Here we can only the first commutation scheme such that the operators A and
D must preserve their arguments to obtain the term proportional to (B.9). Thus, we
obtain

0|H0 (1) H M) = Kn({uhy{M}e) - [ T o) ][ dO)
HHf Mo o) [TTT /(s )0 ] ] Ot} - ] ] BOWIO)- - (B14)

The contribution in the remaining inner product must be given by the term proportional
to the conjugate leading coefficient. We finally obtain

KM({'U'}’N {:u’}’_yl{/\}ou {/\}6) = H H f(/\b7 /\a) H H f(/»"a: /J'b)

a€o bea acy bey
X Kn({ih I e) Kntn({}51 D0 }e). (BL15)

Thus we can have proved that an arbitrary coefficient can be expressed in terms of the
leading and conjugate leading coefficient.

B.1.1 The leading coefficient

We derive a recurrence relation for the leading coefficient and find an explicit formula for
the leading coefficient K; by solving it. To this end, we must single out the unique term
in (B.2) corresponding to the partition {u}, = {u}, {A}o = {A}. Let us consider the
action of the operator C'(ua) on the vector Hj\il B(A;)]0). Using the formula (2.37), we
obtain

M
Cluar) [ BN
Jj=1
M M
== alpa)d(A)g(unrs Ae) [ [ (e, M) F (A Ar)) H B(M)I0)+2. (B.16)
= e e

Multiplying the equality (B.16) by the dual vector (0 HM 1 C(u;), we immediately obtain
a recurrence relation for the leading coefficient:

Ku( {M}l{/\})
= —ZQ(MM,)VZ) H( Lags A (/\a>/\€)> v (i # uaHH{A# M} (B.17)

a;él

This relation together with the initial condition

Ki(pa|A) = —g(p1, A1) (B.18)



B.1. INNER PRODUCT BETWEEN GENERAL STATES 57

uniquely fixes the leading coefficient and enables one to compute it recursively. However,
we can find a explicit formula for the leading coefficient for any M.

Proposition B.1.1. The leading coefficient Kp({u}|{A}) is given explicitly by the for-
mula

H£:1b=1(ty‘a - Ab)
T (= 1) (M — Ad)

M
Ka({hah) = (DM TT{ - 02} - det (1, 1) ) (B-19)

where
1
tu, A) = . B.20
S T[Ty (5:20)
To prove Proposition B.1.1, we need a following lemma.
Lemma B.1.1. Let
M
— Ay
w, = ngl(“’“ ). (B.21)
g;}c(ﬂk - ﬂ'a)

Then,

Mi(tha — Ay)

M 1
we - (g, ) = =22 : (B.22)
; ’ Hiw:l(t:ua — )

The proof of Lemma B.1.1
Let us define G; for j=1,--- , M as

M

Gi=> ut(i, Ay). (B.23)
k=1
We consider the auxiliary integral
dz 1 - A
] = / - a B24
c 27l (z—/\j)(tz—)\j)aI:IIz—ua ( )

where the contour of integral C' is a circle with a radius |z| = oco. Then, we conclude that
I = 0. On the other hand, poles of the integrand are z = A;/t and z = py,--- , up and
the integral (B.24) is equal to the sum of the residues inside the contour. The sum of
residues at the points z = py is equal to G;. Also, the residue at the point z = A;/t is
equal to

M
a=1(tAa — A;)
— o . (B.25)
Ha:l(tuﬂ. - A_7)




58 APPENDIX B. INNER PRODUCT IN THE Q-BOSON MODEL

Equating the total sum of the residues to zero, we arrive at the equality
Miltha — N)

Gy = =
Ha:l(t:ua - )‘])

as was to be proved. O
Proof of Proposition B.1.1

Let us prove this proposition by using the induction. When M = 1, (B.19) coincides
the initial condition (B.18). When M = m — 1, we assume that K,,_, satisfies (B.19).
Then, K,,({u}|{A}) becomes

, (B.26)

m

En({#}I{}}) = —Zg i Ae) H( (um,Aa)f(Aa,Ag))-Km_l({u#um}l{)\76/\g})
a;é%
_ _1\m o ab—l(tlj'a )
= o Ha=ox g s
X,i . i(—l)’"”Ge - det (i, )y) . (B.27)
ot " {ustpm ) AN}

On the other hand, we consider the matrix ¢(u;, Ax). To the last row of the matrix , let
us add all the other rows, multiplied by the coefficients uy /tm:

;—;t(ul, )\1) - Z‘—;t(ul, /\M)
det (15, M) = - det : ‘ . (B.28)
7 ];[ m um—lt(um 1,)\1) L Ume lt(,um 1,)\ )
Z}"lu t(ugs A1) - Z;”lum (155 Am)

Then, by Lemma B.1.1, the last row turns out to be equal to G;/u,,. Expanding this
determinant by the last row, we obtain

m
det t15,0) = == D (-1 Ge- det ¢, M) . B
=1 {upm } {0 e}
Substituting this relation to (B.27), we see that K, satisfies (B.19). Thus we have proved
the Proposition B.1.1. O

B.1.2 The conjugate leading coefficient

Next, we consider the conjugate leading coefficient Kp/({u}|{)\}). The recurrence relation
for the conjugate leading coefficient is

I_(M({U}H)‘}

= ZQ (kenr, Ae) H(f(/\a,ﬂM)f()\e, )\a))'K’M—l({M # b {A# Ae}). (B.30)
a;éf
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The initial condition is
Ra(ulh) = g(p, A). (B31)
Then, from the recurrence relation, we arrive at a following proposition.

Proposition B.1.2. The conjugate leading coefficient Ky ({u}|{\}) is given explicitly by
the formula

M
e _ (1M _ Hab— (t)\ I'I’b) .de
Rar( Gl {AD = (DM {0 - 03 ot - e (0 ) ) (B32)

We can prove this proposition by means of the induction and a following Lemma as
well as the case of the leading coefficient:

Lemma B.1.2.

D vet(Ae i) = Jo (B.33)
where
M
M _ a=1(tAe — fa)
Hg;}c(ua — k) [Toc: (the — pa)

As a result, we obtain the final answer for the inner product:

S ( {u}l{)\})
_H{ (t— 1)} - H (Aa, Av) (b 1ha))

a>b
xZ—MﬂbmmewMMAgmmmmmm
ggg‘ jey JEF je€a jea key key
X H H (1o, A H H h(Aa, 1) H H h{( s, Aa H H h{ttas tin) (B.35)
a€a bey a€Ed bey aca bea aEy bey
where
1

Here, P, and P, are the parties of the permutations

Play, -+ 0, @, ,@yn) =1,--- M
P(’)/lz"'7’711)’_)/1?"'9/71\‘1—71):1,"',M, (B37)
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B.2 Inner product of an eigenstate with an arbitrary
state

Let us now consider the inner product for the case when one of the states is an eigen-
vector of the transfer matrix. Hence, we suppose that the parameters {A} of the state
l_[:,\l—l B(A;)|0) satisfy the Bethe Ansatz equations of the g-boson model (2.44). Therefore
we can express the function a(A;) in terms of d(A;) as

(/\ ) = A )(—1) M lH //l'((//\\k /;\ )) (B;(\I)
k

Substituting this into (B.35). we obtain

M
O TT € ) l({A})
J=1

M M M
= [T 4t = DA} T (e M)l 1)) - TT dN))
a=1 a>b Jj=l1
XZ (-1)f —1)"M "Hu(,, )H,/(// ) » <l(t Eptxs Aj) - <1u/(/\, )
. Je
X HH/! s Aa) HH/I o B) HHI;(,\, Ap) - HH/I as Mp) (B.39)
_ e b \

where #{a}.

Here, we introduce an auxiliary function G); depending for fixed n and M (0 < n <
M) on three families {&;,--- &, }. {v1.---var .} and {A,--- Ay} of complex variables for
the convenience:

("'\'}’ ({¢}. {"} {Ab
Z ( I’“ (l!'l [(5* /\/) . 11(‘l ’(/\‘/~ I/A )
o Jca

ﬁ{”};“ L-,—l,»--,,. k=1, M—n
n M-n M-—n
{TT IT €am) - TTTT 2 ) - HHh &) T TT 17}
a=1 bh=1 aco bea a=1 bea a=1 bea
M-—n
HH/;(\,, M) T T RO va). (B.40)
a=1 bea a=1 bEa

Then, we can show that for the arbitrary families {£}, {r} and {A} of complex numbers
this function is

Gy ({€}, {v}, {\}) = 0. (B.41)
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Let us set the partition {u}, = {&1,- -+, &} and {u}5; = {v1, -, vp—n} at (B.40) and
make use of (B.41). Then, we obtain

M
O T] € ()l ({Ah)

J=1
M
—H{ = 1A} - H Ohar o)ty ta)) - [T d()
a>b J=1
% Z _ Pa+P7 nM nHa (1e5) Hd dett (Hks Aj) - dett(/\j_,uk)
ggg JEY JEF kE'y kE”r
X HHh (e, A HH/? Aa; p)- (B.42)
a=1 bexy a=1 bey

Further, we use the Laplace formula for the determinant of a sum of two matrices U(p;, Ak)
and V' (u;, Ax) at (B.42)

%t(U(Uk,Aj)V(uk,Aj)):Z( 1)PatPr . det U (i, ;) - det V (i, Ay) (B.43)

‘;Bg 167 JE"/
where
Ui, Aj)) = (=DM 2t = 1) - aluw) - t(ue, A Hh L, A (B.44)
M
Ve, Ay) = (€ =1) N due) -t i) - [T 2Oy ). (B.45)
a=1

Thus, we arrive at the following assertion.

Proposition B.2.1. Suppose that the parameter family {\} satisfies the system of the
Bethe Ansatz equation (2.44) and let the parameters {u} be arbitrary complez numbers.
Then,

M

O T] Ol (An)
M

= [T d0) H{c (Aas Ab)C(ttps f1a) } H{(t—lA} det H(Aj,pu)  (B.46)
a=1 a>b

where
M
H(\j, ) = —— uth (ks M) = (=DM () [T Qe ) § - (BAT)

a#] a#j
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The matrix H(A;. jx) turns out to be closely related to the eigenvalues of the transfer
matrix (2.42) as
M

% 1 . 1 _ ON(pr, {A})
H(Xi, ) = (t — 1) pg I—Il (s Aa) O\, . (%)

Thus, the formula (B.46) can be rewritten in the form

M
O TT € (mp)lve({A})
j=1

M M
/\n - )
= (=DM JTd0) - [T 28 - 25" Qid A)) - det (i—‘\uu—. {A})) (B.49)
: J

a
a=1 a=1

where 2/ is the Cauchy determinant:
M
Hﬂ>b(/\n W /\b)(/lb i “u)

g -1 = de l -
Zn ({nhAA}) = d.\(/t (11 . A) i [Tob—1 (1ta = M)

One can treat similarly the case in which a dual vector is an eigenstate of the transfer

(B.50)

matrix. As a result. we can show
M
@D B(w)10)
J=1

M i 9
= (_1)"’"]:[1(1@,,) ARt IIReY) - det (0(—/\1;\([1;‘.. {A})) : (B.51)

Thus, we find that the relation between (B.49) and (B.51) is

M M M

Ha ' 7

@I T] Buplwahio) = [T 3= - O [T Cwleah)- (B.52)
Jj=1 a=1"1 j=1

Unlike the case of the XXZ Heisenberg model, (B.51) completely does not coincide with

(B.49). This is because we have carried out the calculation by using the anti-symmetric

R-matrix (2.10).

Finally, we derive a formula for the squared norm of an eigenstate of the transfer
matrix. We set {u} = {A} for the scalar product (B.49) or (B.51). Noticing that H
becomes 0/0 in this limit, we arrive at a following proposition:

Proposition B.2.2. Suppose that the parameter family {\} satisfies the system of the
Bethe Ansatz equation (2.44). Then,

M M
o JTcoa T BOWI0)

a=1 a=1

Mot =) ., -
2 1—[’\7 l (A \ ) : d‘(;t d)fk({/\}'\/) (B.53)
ab=1 a ~ \b g

a#b

(VA ) [O({ A )
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where the Gaudin matriz ', ({A}ar) is

, _ 0 qay) 1 SO0
o ({A) = N log{d()\j) g 0, /\J_)}
b#j
L & (2 = )N (2 — 1))
= ‘5“{‘7]. T At — ) }- Dot — Ot — ) B34

As a result, we can have showed the expression (2.49) and (2.51) for an inner product
between the eigenstates of the transfer matrix in the g-boson model.
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