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A b s tra c t

This thesis is devoted to the study of the Gauge/Bethe correspondence between a topo­

logical gauge theory and a integrable system.

In the first part of this thesis, we show the correspondence between the G / G  gauged 

Wess-Zumino-Witten model on a Riemann surface and the phase model. W h e n  we apply 

equivariaiit localization methods to the G / G  gauged Wess-Zumino-Witten model，the 

diagonal components of a group element satisfy Bethe Ansatz equations for the phase 

model. W e  show that the partition function of the G / G  gauged Wess-Zumino-Witten 

model coincides with a summation of norms with respect to all the eigenstates of the 

Hamiltonian with the fixed number of particles in the phase model.

In the second part of this thesis, we generalize the G / G  gauged Wess-Zumino-Witten 

model to the one with additional matters. W e  show that this model corresponds to the 

q-boson model as with the first part. Also, we consider the Gauge/Bethe correspondence 

from a general point of view.
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C h a p t e r  1

In tro d u c tio n

It is well known that there exists various connections between topological or supersym- 

metric gauge theories and integrable systems. In this thesis, we consider “Gauge/Bethe 

correspondence” between a topological gauge theory and a quantum integrable system. 

A  simplest example in this correspondence is the equivalence between the B F  theory with 

the U(N) gauge group on a Riemann surface and the system of N  free non-relativistic 

fermions on a circle. As a generalization, Moore, Nekrasov and Shatashvili discovered 

a correspondence between the topological Yang-Mills-Higgs theory with the gauge group 

U(N) and the non-linear Schrodinger model [1]. The topological Yang-Mills theory is 

the B F  theory coupled to a one-form valued adjoint Higgs field and describes the U (1)- 

equivariaiit intersection theory on the Hitcliin’s moduli space [2], [3] , just as the B F  

theory describes the intersection theory on a moduli space of flat connections on a Rie­

mann surface [4].

In [1], they applied the equivariant localization to the topological Yang-Mills-Higgs 

theory and found that the localization configurations lead to Bethe Ansatz equations for 

the non-linear Schrodinger model. Later, Gerasimov and Shatashvili discovered that the 

partition function of this model is related to norms of wave functions in the non-linear 

Schrodinger model [5], [6]. Therefore, we expect that the partition functions of other 

topological gauge theories are also related to norms of wave functions for the corresponding 

integrable systems.

The Gauge/Bethe correspondence is realized for not only a topological gauge theory 

but also vacua in a super symmetric gauge theory. This is natural because the vacua of the 

supersymmetric gauge theory transfers to physical states in the topological field theory 

by the topological twist. Nekrasov and Shatashvili discovered that coulomb branches 

in a supersymmetric gauge theory corresponds to some integrable system. Especially, 

they found that a twisted superpotential in Af =  (2, 2) supersymmetric gauge theory in 

two dimensions coincides with a Yang-Yang function for X X X  model [7], [8]. Further, 

this correspondence is not restricted to two-dimensional topological gauge theory. Three 

dimensional M  =  2 gauge theory compactified on a circle and four dimensional J\f =  2 

gauge theory compactified on a torus also correspond to the X X Z  model and the X Y Z  

model, respectively.

In this way, it expects that the Gauge/Bethe correspondence works well for various 

models. However, this correspondence is not investigated in detail yet. A n  underlying
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2 CHAPTER 1 . INTRODUCTION

mathematical principle for this correspondence also is not known. In this thesis, we take 

the G / G  gauged Wess-Zumino-Witten ( W Z W )  model which is a topological field theory 

as an example and study the Gauge/Bethe correspondence. The G / G  gauged W Z W  

model is constructed from G  W Z W  model which is a two-dimensional conformal field 

theory. The G  W Z W  model has rich structures and various applications in mathematics 

and also in physics. For example, the Hilbert space of the Chern-Simons (CS) theory with 

a gauge group G  on E  x is equivalent to the space of the conformal block for the G / G  

gauged W Z W  model on a Riemann surface The partition function of the CS theory 

on a three manifold can be obtained by sewing the boundary Riemann surfaces which 

is implemented by an inner product of states on S. One can also calculate Wilson loop 

expectation values which give knot invariants in terms of fusion coefficients and modular 

matrices [9].

In the W Z W  model, one can construct the G / H  gauged W Z W  model by gauging an 

anomaly free subgroup H  of the global symmetry group G. The G / H  gauged W Z W  

model is an explicit lagraiigian realization of the coset construction in the CFT. W h e n  

H  =  G, the G / G  gauged W Z W  model becomes a topological field theory [10], [11], [12]. 

There exists a method for calculating the partition function and correlation functions 

without relying on the C F T  techniques nor the representation theory of the affine Lie 

algebra. Actually, these were derived by a field theoretic approach in [13], [14]. In this 

approach, it is important for the G / G  gauged W Z W  model to possess a certain BRST- 

type symmetry whose square generates a G-gauge transformation. This symmetry makes 

it possible to work out the path integrals with insertions of B R S T  closed operators via 

equivariaiit localization procedure. In higher rank of the gauge group, the localization 

configurations for the diagonal components of G-elements axe complicated. However, the 

final expression for the partition function is simply expressed by modular matrices.

In this thesis, we will firstly show that the integrable system corresponding to the 

U(N)/U(N) gauged W Z W  model is the phase model [15]. The phase model is a quantum 

integrable field theory on one-dimensional lattice [16]. W e  can apply the algebraic Bethe 

Ansatz . For example, see [17], [18] for the Algebraic Bethe Ansatz method. It is known 

that the phase model appears in the S U (N) W Z W  model. Recently，Korff and Stroppel 

established the sn(N)k Verlinde algebra [19] in terms of the algebraic Bethe Ansatz for the 

phase model and derived an efficient recursion relation for calculating fusion coefficients 

[20], [21]. See also a short review [22]. W e  will consider relations between the Gauge/Bethe 

correspondence and [20]. W e  also point out that the partition function of the C S  theory 

on S l x is related to norms of eigenstates of the Hamiltonian in the phase model.

W e  further consider a generalization of the Gauge/Bethe correspondence for the G j G  

gauged W Z W  model and the phase model. The phase model is realized by a strong 

coupling limit of the q-boson model [16]. Therefore, it is natural that G / G  theory corre­

sponding to the q-boson model also exists. W e  call a model like this as the G / G  gauged 

Wess-Zumino-Witten-Higgs (WZW-Higgs) model. The G / G  gauged WZW-Higgs is the 

G / G  gauged W Z W  model coupled to additional scalar matters and is regarded as a non­

linear deformation of the B F  theory with the gauge group G  coupled to additional scalar 

matters. Then, we will show that an integrable system corresponding to this model in



fact is the q-boson model. Further, we consider relations with the commutative Frobenius 

algebra constructed by Korff [23]. See [24] for the content in this chapter.

This thesis is organized as follows. In chapter 2, we study the integrable system, 

especially the q-boson model and apply the Algebraic Bethe Ansatz to this model. W e  also 

study the phase model which is a strong coupling limit of the q-boson model. In chapter 

3, we study relations between the G / G  gauged W Z W  model and the phase model. To 

investigate this, we calculate the partition function by applying the localization method 

to the U(N)/U(N) gauged W Z W  model. W e  then find relations between the partition 

function of the U(N)/U(N) gauged W Z W  model and the Bethe norms in the phase model. 

In chapter 4, we consider a generalization of Chapter 3. W e  introduce the G / G  gauged 

WZW-Higgs model. W e  apply the localization method to this model and study relations 

between the G / G  gauged W ZW-Higgs model and the q-boson model. The chapter 5 is 

devoted to conclusion. In appendix A, we summarize a convention for G / G  gauged W Z W  

model and it’s generalization in Chapter 3 and 4. In appendix B, we prove a expression 

for a Bethe norm in detail.



C h a p t e r  2
In te g ra b le  S y stem

In this chapter, we study “Bethe” part of the Gauge/Bethe correspondence, that is, 

integrable systems. The integrable system is usually defined as a system which possesses 

as many commuting conserved charges as a degree of freedom of the system. Therefore, 

the system has a number of symmetries and becomes exactly solvable. Further, there 

exists characteristic methods to calculate various observables, the energy eigenvalues, the 

eigenvectors and the correlation functions and so on in the integrable system.

In this thesis, we especially study the q-boson model and the phase model. The q- 

boson model is a quantum integrable field theory on one-dimensional lattice and a strongly 

correlated boson system. The phase model is defined as a strong coupling limit of the 

q-boson model. These models is firstly introduced by [16] to study a strongly correlated 

system. See also [17], [18], [20] and [23]. These models are the quantum integrable systems 

which can apply the Bethe Ansatz methods [25]. The Bethe Ansatz is a general term for 

methods to calculate the observable of the quantum integrable system. In this thesis, we 

consider the Algebraic Bethe Ansatz based on the algebraic commutation relations [26]. 

See e.g. [27], [28] and [29] for the Algebraic Bethe Ansatz.

W e  study the q-boson model in the section 2.1 and the phase model in the section 

2.2. See the Appendix B  for the derivation of a norm between eigenvectors in the q-boson 

model.

2.1 T he q-boson m odel
In this section, we define the q-boson model and aDplv the Algebraic Bethe Ansatz to 

this model. The q-boson model is considered as the quantum group deformation of the 

ordinary boson because the q-boson model becomes the free boson model by taking a 

limit q ̂  1.

5



6 CHAPTER 2. INTEGRABLE SYSTEM

2.1.1 T h e q-boson  m od el
Firstly, we define the q-boson model. Consider the operators p^} satisfying an
algebra called by the q-boson algebra or the q-oscillator algebra TLq

q N q - N  =  g ^ N q N  = 1 ?  q N p  =  p q N - l ^  / が = が ， + !，

0  —ぼ 0 =(1—U、 '  _  ~ gW =1 _ デ， (2-1)
where q±]^  denote generators and g±p7̂ +x is shorthand for (q±^ ) pqx. The parameter q is 
a generic c-number and 0 <  g <  1 . W e  see that the operators 7V? (3 and が  also serve as 

the number operator, the annihilation operator and creation operator, respectively.

W e  change the operators obeying the q-boson algebra to the operates {a,ひす,N }  obey­

ing the free boson algebra or the harmonic oscillator algebra

[TV, a] =  — a, [TV, â ] =  a\ [a? a^]= 1， (2.2)

as follows

& 禱 も W 願 卿

where these are defined as formal power series. Thus，this algebra is the g-deformation 

of the harmonic oscillator algebra. Therefore, we see that the q-boson is regarded as the 

q-deformation of the usual free boson.

Next, we construct a Fock space T  for the q-boson algebra given by (2.1).A  set 

(|m) := (P^)m /(q2)m\0) | m  G Z >。} forms the basis of the Fock space. Here, (x)m  is 

(x)m  =  — 〔ビ+1). It also holds the following relation,

q ^ \m )  =  qm\ r n ) , が |m〉= ( 1 - (/2m+2)|rn +  1〉， p[m ) =  \m —1〉. （2.4)

The Hamiltonian of the q-boson model on the lattice size L  is defined by

丑 = - 每 E ( 0 4 + 1 + / ^ (2.5)

where we impose the periodic boundary condition i  +  1 三 1 and set the lattice spacing 

A  ニ 1 . The operators obey the L-fold tensor product H @L of the

q-boson algebra (2.1).H ® 1 is defined by

PiPj -  P A  =  PlP] -  =  qNiQNl ~  =  0

q^Pj = 細免 -S'  =  P}q^i+6̂ ,

PiP] 一 0jPi =  — Q2)q 2̂ ', PiPj —  <f0lPi = ( 1 — Q2)- (2-6)



2.1. THE Q-BOSON MODEL 7

where the index i labels the sites of a lattice. Therefore, the Hamiltonian belongs to 7i°l 

and acts on the L-fold tensor product of the Fock space T ® L. The basis of T QL are the 

sets {|mi,* • _，m L) := \nii) ®  … ®  |mL) |m7； G Z > 0}.
W e  rewrite the Hamiltonian (2.5) by using the substitution (2.3) as

が - u 礙 ん

バ 爾 だ ， 4 抑

Thus, we see that the Hamiltonian has infinite interaction terms in front of the hopping 

term. Therefore we find that the q-boson model is the strongly interacting system and 

the neid theory with non-local interactions on the lattice.

W h e n  we set q =  ev and expand it around ^ =  0, we see that the Hamiltonian of the 

q-boson model reduces to the one of the free boson at the leading order of Therefore, q 

or r/ serve as a coupling constant. O n  the other hand, there exists a strong coupling limit 

> 0 and the q-boson model becomes the phase model. W e  will consider this model 

at the next section. There also exists a continuum limit because the q-boson model is 

the field theory on the lattice. In this limit, the q-boson model becomes the non-linear 

Schrodinger model.

2.1 .2  T h e A lgebraic  B e th e  A n sa tz  for th e  q -boson  m odel
In this subsection, we apply the algebraic Bethe Ansatz to the q-boson model. If there 

exists a vacuum in a model which we would like to consider, we can apply the algebraic 

Bethe Ansatz to this model. Hence, we can apply the algebraic Bethe Ansatz to the q- 

boson model. Since a norm between eigenvectors of the Hamiltonian of the q-boson model 

becomes most important in the Gauge/Bethe correspondence, W e  will give a formula for 

the norm between the eigenstates of the Hamiltonian. See the Appendix B  for the detailed 

derivation of this quantity.

W e  firstly define a L-matrix. The L-matrix of the q-boson model at the site n (n =  

1,■ ■ • , L) is defined by

C M  = ( 丄 で ) e End[C2(")] ®  n q (2.8)

where € C  is a spectral parameter and pn and ぬ obey the q-boson algebra (2.6). Here, 

the L-matrix is a matrix in an auxiliary space C 2. This L-matrix satisfies the Yang-Baxter 

equation:

/?("， %  C{u)) =  (£(レ) ®  レ)， (2.9)
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A(/i)A(u) == A{v)A(^i)

B{n)B{u) == B{u)B^)

C { n ) C { u ) -= C{u)C{n)

D { p ) D { u ) -= D ( u )D(^)

( " - レ)刷 5(レ) == (t/j, -  v)B{u)A{ii) +  ( 1 - t)uB(/i)A(u)

パ" — レ)4(")C(レ） == (ij, —  tu)C(iy)A(/j,)— (1— t)fj,C(fi)A(u)

t(n -  v)B{n)A(u) == (tfj, —  u)A{u)B{ijl) +  (1— t)iiA{ij)B{y)

t{n -  u)B(fj,)D(u) == (/x —  tu)D(u)B(/j,)— (1— t)/j,D(iJ,)B(u]

{fi- u)C{/i)A(u) == (jj, -  tv)A(v)C{n)- ( 1 - t)uA(ij)C{v)

(li- iy)C{ii)D(u) == {tfx -  v)D(v)C{ii)+  ( 1 - t)vD{ix)C(u)

{li -  v)D{i£)B{u)--= (yu -  tu)B(u)D(n)— (1— t)uB{ij)D{v)

t(/i -  u)D{/j,)C{u) == (t/j. -  u)C{u)D{i.t) +  ( 1 - t)nC{jj)D{v)

C{n)B{u) -  t B { u ) C { n ) --= -  D{u)A{n)) 

= 包二 字 ( • 剛 — • ) 外 ノ  )）

[A{n),D{u)\

IX — V
1 - t

IX —  V 

_ 1 ィ

- レ)
(レC (レ)B(") レ))

with the R-matrix

R (レ，m )

where

/ (レ，") 

0 

0 

0

ル ，レ）

0

办 ，レ） 
t 

0

\ii —  v

" — レ ’

0

1

-がレ，M)

办 ，レ）

0
0
0

/ (レ，" ）

( 1 - りレ

G End[C2(yu) ® C 2(̂ )] f2.10)

IX — V
and t =  q2

The monodromy matrix is defined by

ア (v) =  4 ( ポ レ 1(")• • • A  (W
A(") B{n) 

C(H) D(n)

( 2 -11 )

(2.12)

Prom the Yang-Baxter equation (2.9), the monodromy matrix satisfies a following relation:

R(li,レ)「 (パ）®  T{v)) =  [T[レ)⑧ T(h))R(ii,レ). (2.13)

From this relation, we can derive 16 commutation relations for the monodromy matrix 

elements, A(fj)，B(fx)，C(/j)，D(fx) ••

\
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The algebra defined by this commutation relations is called as the Yang-Baxter algebra.

Taking trace with respect to the auxiliary space, the monodromy matrix becomes the 

transfer matrix

r(fj) =  tvT(fi)= A{jj) +  (2.30)

As we take a trace with respect to the auxiliary space for the both sides of (2.13), we can 

show that the transfer matrices at the different spectral parameters commute:

[t(パ)，t(レ)]=0. (2.31)

W h e n  we expand the transfer matrix r(^) as a power series, 丁\ji)= 乙 a=0 H ajia, the all 

operators {//〇，が 1 ，… ,Hl} commute. Therefore, the transfer matrix can be regarded 

as a generating function of the conserved charges. Noticing that Hq and H l  are not 

independent conserved charges Hq =  H l  = 1 , we see that the q-boson model possesses as 

many commuting conserved charges as a degree of freedom of the system. Hence the q- 

boson model is a quantum integrable system. In general, it becomes a sufficient condition 

for the quantum integrability that L and R-matrix which satisfy the Yang-Baxter equation 

exist. The Hamiltonian of the q-boson model (2.5) is expressed by the conserved charges 

as

+  (2.32)

Next, we will construct the eigenvalues and the eigenvectors of the transfer matrix. 

First of all, we have to define the vacuum state. The vacuum state |0) and it’s dual 

vacuum state (0| are defined by

C(/i)|0) =  0 and (0|B(/x) =  0， （2.33)

because C(/j) is a creation operator and B(/j) is an annihilation operator. a(fi)= 1  

and d(,i) =  fxL are the eigenvalues of operators A\ii) and D{fi) on the vacuum state |0), 

respectively:

^4(")丨0〉=  a(^)|0) =  |0), D(")|0〉=  d(/j,)\0) =  //L |0). (2.34)

W e  consider a vector constructed by successive actions of operators 5(A) on the vac­

u u m  state |0). Now, {Ai,• • • , Am} are generic complex numbers. Let us compute the 

action of the operators A(ia), C{^i) and on the vector Ylj=i B(Xj)\0)  by using the
commutation relations (2.14)-(2.29). The final result is

M M M
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M M M

M M M

e 心 )♦ ，入k) n  /(ん，ん 剛 n 供ん• _ ， (2.36)

k=l

M
G O O j J i ? (ん ) | o〉

M  M
Y^{a(h)d(^)g(i^,、 ）JJ(/(ん■，ハ)/(Afc，ん.

k=l  j = l
j科

M

n ( / ( /

M
-a(/j,)d(Xk)g(iJ,, Xk)

j=l
j #  j^k

M
Â )p(/i, Afc)/(Afc，A )̂ = ( / ( ん，ん)/(ん ん ))

* . i=ii >k
M

+ o . ( X e ) d ( X k ) g ( f i , X e ) g ( f i , X k ) f ( \ e , X k )  I I  ( / (ん ，W (ん ，ん.))}
M

x 5 ( A ) n  例ん )丨0〉.

i=i

(2.37)

In the same way, we consider a vector constructed by successive actions of operators C(A) 

on the dual vacuum state (0|, (0| YljLi C(Xj) by using the commutation relations (2.14)- 

(2.29)1 . The action of the operators B(jj) and D{jj) on the vector (0| n^li C (入j)

is

M M M
〈o | J ] c (んM ( " ) = ひ 哺 / ( パ，ん ) 〈0 | 取 (ん )

M M M
— [ a(Xk)y(Xk,f,) J ] / ( A fc)ん）• (0| ] J  C (ん)C ( " )， (2.38)

i=i
3^k

k=l

M M M

M M M

e  d(xk)9^k, a) n  /(入”ん ) 〈01 n  じ(ん)c (")， （2.39)
k=l

j科 j科

1 Notice that the vector (0| YljLi C (ん ）is not the dual vector of YljLi 忍 (ん )|0〉where {A i,… ，Ajv/} 
are generic complex numbers. In other words, this means (B (入))卞 /  C(A).
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M  M
^ 2 ^ - a { X k)d{n)g(Xk, //) Jj(/(Aj5//)/(Afc,ん■))
k=\

j #
M  M

+a(/jJ)d{Xk)y{Xk,iJl)
j=i j=i

M M
— Z { a ( A ポ (ん)p(Af，_ ( A ^ ) / ( A fc，ん）J] (/(ん，ん)/(Afc，ん))

e>k j.=i
j^,£

M
+a(A€)d(Afc)y(Af，,i)y(/\fc，/x)/(Af，Afc) Y\ (/(ん，入 fc)/(ん，入j)) }

i=i
j抑

M
x{0| n  (2.40)

i=1
j神，e

Let us construct eigenvalue and eigenstates of the transfer matrix. W h e n  the transfer 

matrix acts on the state 丄 5(Aj)|0), we obtain a following expression by using (2.35) 

and (2.36)：

M  M
r ^ n ^ A . O l O )  =  A ( M , { A } ) n 5 (̂ )l°)

j=l j=l
M  M  M

+ Y,{â  n 队  xj)— け⑷ n  f(xゎ ̂ ) }  (2-4i)
k=l j=l j=l

where

M  M
八( " ，{A}) =  a(fi) JJ /("，Xj) +  d(fi) /(Aハ "). (2.42)

j=i j=i

Suppose that the state ^(Aj)|0) is eigenstates of the transfer matrix. Then, we find

that the second term of (2.41) must vanish and the spectral parameters must

therefore satisfy equations

M  M
a(Aj) I I  ア(ん ，Afc) ^  d(Xj)Y[f(h^j) for j = l，.-.,M. (2.43)

k=l fc=l
味 ¥̂=3

This equations are referred to as Bethe Ansatz equations. Also, the spectral parameters 

which satisfy the Bethe Ansatz equations are called by Bethe roots. Thus, we can have
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constructed the eigenvectors of the transfer matrix. At the moment, (2.42) becomes the 

eigenvalues of the transfer matrix. The Bethe Ansatz equations concretely are

入 へ =  j =  (2-44)

k^j

Notice that the Bethe roots assign a ground state or excited states in the q-boson model.

From now on, we consider properties of the Bethe Ansatz equations. For convenience, 

we change a paranietrization of the Bethe roots as Xj —  e27r*'Tj for j = 1，.•. , M  and of 

the coupling constant t as t =  e~27rrf where r] >  0 because 0 <  t <  1 . Then, the Bethe 

Ansatz equations become

— V - , M .  (2,5)

From this equations, we can prove that the Bethe roots {x\y • •.，o：m }  are real numbers

by using a similar manner with the Bose gas model [27]. A  logarithmic form of (2.45) is

2响 = 2キ ト : ; (，

where Ij is (half-)integers when M  is (even) odd. In a similar manner as the Bose gas 

model [27]，we can also show the existence and uniqueness of the solutions of the Bethe 

Ansatz equations once we assign ヴ 1 ,… ,/m}*

W e  finally consider an inner product between the two vectors 丄 パa)|0〉 and

〈o i n i l ' h ) :  —

( o i n ^ a ) n ^ ) i ° )  (2-47)

where {ji\, •..，//m} and {レ ド …，リm }  are generic complex numbers. The inner product 

is rewritten as a determinant formula if either of {パi，• * •，/̂ m} or {レ：l，* •.，Um} satisfy 

the Bethe Ansatz equations (2.44). This calculation essentially only use the commutation 
relations (2.14) - (2.29). See Appendix B  for the detailed derivation.

W e  define a Bethe vector and the dual Bethe vector which is the eigenvector of the 

transfer matrix, as

M  M
l^({A}M) =  n s (A«)l°) 丨； (2.48)
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where {Ai，• • •，A^} satisfies the Bethe Ansatz equations (2.44) 2. W h e n  {/ii• . . are 

generic complex numbers, the inner product becomes (B.53):

M  M  M

M
n  d(A«) _ {A}) • det
a=1

where 八(ん化，{A}) is the eigenvalue of the transfer matrix (2.42) 

Cauchy determinant:

入m ({ハ}，{入})
r i a>b( ん — K){^b  — A^a) 

Ha,b=l(^ ~  入b)

、瓦 •八(Mfc，{A})) (2.49) 

and X m ( M ，{入}) is the

(2.50)

Furthermore, when {/ii，*..，" m }  in (2.49) also satisfies the Bethe Ansatz equations 

(2.44)，the scalar product becomes (2.70):

M  M
〈V，({A}m)|_{A}m)〉 =  ( 0 | n c (A« ) I l B (A«)l0)

a = l a=l

n ：L i ( v - A 6)

where the Gaudin matrix fc({A}M ) is 

歪;，“{入}m) =  oT-log{^jL . \\

n " * l(Aa_Afc) M

\jt — X b '

d e t ^ k({X}M ) (2.51)

d \ k
K  6 = 1  

b̂ jf ^  lr  _  i)Ab \ ( r  -  i)Aj
入j  T̂ \ い パ — —入 j) j (入j t  — 入 k ) (入 k t  — Xj )

Xj —  x^t •

(t2 —1 )Ab i (t2 —1 )A j= ° j , k <

From now on, we refer to this inner product as the Bethe norm throughout this thesis. 

This Bethe norm will become most important quantity when we study the correspondence 

between the q-boson model and a topological field theory.

W e  comment on the relations between the q-boson model and the infinite spin X X Z  

model. W h e n  the number of sites is even, the Bethe Ansatz equations (2.45) and the Bethe 

norm (2.51) coincide with the one of the infinite spin X X Z  model under an appropriate 

rescaling of the parameters. See the algebraic Bethe Ansatz for the higher spin X X Z  

model, e.g. [30] and [31]. The agreement of the Bethe Ansatz equations in the q-boson

2Notice that the vector (0 | n $ i i  ^( ^7)  becomes the dual vector of Y l j L i  -S(Aj)|0) when { A j , . . . , A^/} 
satisfy the Bethe Ansatz equations, because ( B (入))す = C(A).
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model and the infinite spin X X Z  model is not accidental. This is because the q-oscillator 

representation is equivalent to the infinite limit of spin-5 representation in the quantum 

group. In the case of suq(2), this fact is proved at [32].

Finally, we state applications for the integrable system. In the integrable system, one of 

the most challenging problem is a derivation of the correlation function for the integrable 

field theory or the integrable spin system at a continuum limit or a thermodynamic 

limit. In the X X Z  model, the correlation function has calculated by taking advantage 

of the scalar product, the Bethe norm and the inverse scattering formula [33] at the 

thermodynamic limit, e.g. [34] and [35]. Therefore, one will be able to use the scalar 

product (2.49) and the Bethe norm (2.51) at the calculation of the correlation function 

in the q-boson model.

2.2 The phase m odel
In the previous section, we have defined the 

limit of ^  0. Therefore, the phase model is 

dimensional lattice and a strongly correlated 

the phase model. W e  also apply the algebraic 

q-boson model.

phase model by taking a strong coupling 

a quantum integrable field theory on one- 

boson system. In this section, we study 

Bethe Ansatz to this model as well as the

2.2.1 T he phase m od el
In this subsection, we define the phase model. First of all, we define the phase algebra 

by taking the limit ^  ̂0 for the q-boson algebra. Therefore, the phase algebra $  is an 

algebra such that operators { N ，(/?， obey

[N, (fi\ =  -v?, [TV,^] =  =1- (2-53)

The operators (p and ^  serve as an annihilation operator and a creation operator, re­

spectively. Next, we define a Fock space T  for the phase algebra given by the equations 

(2.53) by acting the creation operator ̂  on a vacuum |0) which is defined as ^|0) =  0. 

The set {|m〉 := (^)m |0) | m  G Z > 0} forms the basis of the Fock space . The action of 
the operators N,(p^(p on a state \m) also are

N\m) =  rn\m), ^\rn) =  \m + 1 〉， ^p\m) =  \m — 1). (2.54)

The Hamiltonian of the phase model on the one-dimensional lattice with the total site 

number L  is given by

1 L
H  =  — - ̂  (2-55)

i=l

where we imposed a periodic boundary condition L  +  1 三 1 and set the lattice spacing 

A  = 1 . The operators { ^ ，W!，jV j b !，…ス obey the L-fold tensor product of the phase
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algebra (2.53). ^ eL is defined by

= ifij == AhN^N.N.,,

'-PjN-i =  — Sijipi , - - =  Sijtfil

卿 ！= i ：> <A:’バ == if i ♦  j

^ ( 1 — —  0 = ( 1 — (plifii)N-h (2.56)

where the indices i,j label the sites of the lattice. Therefore, the Hamiltonian belongs to 

$ 0L aaid acts on the L-fold tensor products of the Fock space !FOL. The basis of J701 

consists of {|mi，.•.，m^) := |mi)® ®  Im^) \riii G Z>o}.

To better understand this model, let us change the operators obeying the phase algebra 

to the operators {a7；,a?-, obeying the free boson algebra

[/Vj, iij\ =  _ Sjj (ij, [Â , cij] =  8j,j ci]j, [cij_, Uj] —  5jj, =  (î (ij ? (2.57)

as follows

P̂i =  ~j へ p̂\ —  ai ~i へ (2.58)
V I  +  Ni V I  +  N,

where (1 +  為 )-1/2 is defined as formal power series. Substituting (2.58) into the Hamil­

tonian (2.55)，we found that the Hamiltonian has infinite interaction terms in front of the 

hopping term. Therefore we found that the phase model is the strongly interacting sys­

tem and the field theory with non-local interactions on the lattice as well as the q-boson 

model.

2.2 .2 A lgebraic  B e th e  A n sa tz  for th e  phase  m od el
In this subsection, we apply the algebraic Bethe Ansatz to the phase model. As the all 

result is obtained by setting ̂  ̂  0 for the coupling constant of the q-boson model, we do 

not repeat the calculation in detail.

The L-matrix of the phase model at a site n (n = 1 , ■■•，乙）is defined by

C M
a

G E n d [ C 20u)](g)$， (2.59)

where ̂  G C  is a spectral parameter. Here, the L-matrix is a matrix in an auxiliary space 

C 2. This L-matrix satisfies the Yang-Baxter equation

/?("，レ)(£(パ)®  C{v)) =  (£(レ)®  レ)， (2.60)

with the R-matrix

R ( ^  レ）

f l  — U  

0

0
レ

\ l — V

0

1

0

0

0 0 - J L ,
f j  —  u

0

0 0 0
f l — レ

G End[C2(") (g) C 2(/ノ)]. (2-61)
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The monodromy matrix is defined by

T{H) =  C M C L-!(h )… A M  =  ( ^  ^  ) • (2.62)

Taking trace with respect to the auxiliary space, the monodromy matrix becomes the 

transfer matrix

r(") =  tiT(ハ）= A(ix) +  (2.63)

Eigenstates of the transfer matrix can be constructed by repeated actions of the operators 

B(X) on the vacuum state |0), that is to say, a state YljLi ̂ (Aj)|0) is the eigenstate of 

the transfer matrix

M  M
rOu)J]B(Aa)|0〉=  A(M，{A}) J ] 列ん)10〉

0=1 a=l

where

if the spectrum parameters {Ai,• . . ，A^} satisfy Bethe Ansatz equations

M

(2.64)

(2.65)

J J A -i =  L

6=1

W h e n  we set Xj =  e2?r2̂ , the logarithmic form of this equations becomes

( L + M ) c j > a - Y A a  =  I a

(2 .66)

(2.67)

where Ij is (half-)integers when M  is (even) odd. W e  can easily solve this equation because 

this equations are linear algebraic equations unlike the q-boson. The solutions is given as

^ = M T L ^  +  l g 4  (頂 )
The fact that the Bethe Ansatz equations can be exactly solved becomes important when 

we study the correspondence with the topological gauge theory.

Finally, we consider a Bethe norm

(2-69)
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where {Ai,• • •，Am} satisfy the Bethe Ansatz equations. The Bethe norm in the phase 

model is also given by ̂   ̂0 of (2.51) as

(^({A}m)N<{A}m)) =  ' L { L + M ) m ~\ (2.70)
— 入  b )a‘ĵ b

This coincides with a result calculated by [18].



C h a p t e r  3

G / G  g a u g e d  W e s s - Z u m i n o - W i t t e n  

m o d e l

In this chapter, we study the G / G  gauged Wess-Ziiinino-Witten model on a genus-// 

Hieniann surface E/,. W e  will establish the Gauge/B(、the correspondence for this model 

and the phase model introduced at Section 2.2. To see this, we apply the equivariant 

localization method to this model and calculate the partition function. Then, we will 

see that the kxalization (onfiguration coincides with the Bet he Ansatz equations in the 

phase model and the partition function is related to the Bethe norm in the phase model. 

Filially，we consider relations with [20]. See [15] for the contents in this chapter.

In section 3.1, we define the G / G  gauged W Z W  model on E/j. In section 3.2, we 

explain the equivariant localization method for this model with the gauge group U ( N ) .  

Ill sect ion 3.3, we investigate relations between the (J(i\)/U (X) gauged W Z W  model and 

the phase model. See Appendix A  for the convent ion which we use in this chapter.

3.1 G /G  gauged W ess-Z u m in o-W itten  m odel
In this section, we introduce the G / G  gauged W Z W  model on a genus-/? Riemann surface 

S/j. Firstly, we consider the G  W Z W  model which is a two dimensional con formal field 

theory. The action of the G  W Z W  model is given by

kSW Z w{g) =  - J -  f  ^zTrig^d.g • g~ld-zg) -  ikr(g) (3.1)
47T

and the Wess-Zumino term r ( y )  which is a topological term, is defined by

1 ⑷ = 士  X  め /一 T r '9i9 • 9~ldjg . 9~Xdk9) . (3.2)

Here, a field y(z^ z) is a m a p  y : S/, —  ̂G  from a genus-/? Riemann surface to a compact 

Lie group G. fl is a three dimensional manifold with the boundary ()B

One can construct the G / H  gauged W Z W  model by gauging ail anomaly free subgroup 

// of the global symmetry group G  in the W Z W  model. The (7/// gauged W Z W  model is

regarded a*s ail explicit Lagiangian realization of the coset const ruction in the CFT. W h e n

19
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especially H  =  G, the G / G  gauged W Z W  model becomes a topological field theory [10]， 

[11], [12] . Therefore, observables of this theory is topological invariants. For example, the 

partition function counts the dimensions of the space of conformal block，the number of 

conformal blocks in the G  W Z W  model with level k on Also, a three point function of 

y(z, z) gives fusion coefficients which is the number of the fusion with the W Z W  primary 

fields. Thus, one can consider that G / G  gauged W Z W  model only has information of 

topological part in the W Z W  model with the global symmetry G. The partition function 

of the G / G  gauged W Z W  model on is defined by

where *SWzw(P) is given by (3.1). Here, A  =  A zdz +  A Edz is a two-dimensional gauge field 

and A =  Xzdz +  Xzdz is a one-form adjoint fermion. W e  also denote the holomorphic part 

of A  as A)1，0) =  A zdz and anti-holomorphic part as 4̂(0,1) = A^dz and so on. This model 

has the B R S T  symmetry which is generated by a scalar B R S T  charge Q  defined by

Q A  =  A ， Q A (1，0) =  ( # ) (1，0) -  A (1，0)， Q X ^ l) =  - ( ^ _1)(0,1)+  ス⑴’1)， Q g  =  0 (3.5)

with A 9 =  g~ldg +  gAg-K The partition function (3.3) is invariant under the B R S T  

transformation. The square of the B R S T  transformation generates gauge transformations

where Q 2 =  C g . Then, the partition function is of course invariant under this transfor­

mation.

Finally, we comment about relations between G / G  gauged W Z W  model and other 

theories. As a first relation, we consider the B F  theory. The partition function of the B F  

theory measures a volume of a moduli space of a flat connection. W h e n  we set g =  e2wi4>̂ k 

and expand them at the leading order of l/ん，the G / G  gauged W Z W  model on S/j reduces 

to the B F  theory with the gauge group G  on [36]. Therefore, G / G  gauged W Z W  model 

is considered as a non-linear deformation of the B F  theory.

Further, there is a relation with the Chern-Simons (CS) theory. The Hilbert space of 

the C S  theory with a gauge group G  on M  x is equivalent to the space of the conformal 

block for the G / G  gauged W Z W  model on [9]. Therefore, the partition function of 

both models coincides [13].

where the action is defined as

d2zTr(Azdzgg 1 — A^g 1dzg —  g lA zgA^ +  A ZA^) (3.4)

C gA ^  = (スザ1，0) -  W 1，0), C gA ^  = — (ポ -1”。，1)+  W 1，0)，

£5A(1,0) =  5一1A(1,0)p — A(1,0), C gX ^  =  — g X ^ g ^ 1 +  A(0,1), C gg =  0， （3.6)
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3.2 Localization
In this section, we calculate the partition function of the G/G  gauged WZW model on 
the Riemann surface by using the equivariant localization method. This calculation is 
originally carried out by Blau and Thompson [13] in the case of a gauge group SU(N).  
See also [37].

We consider the case of the gauge group U (N)  for simplicity and evaluate the partition 
function under this gauge group. First of all, we must gauge fix. We take a diagonal gauge 
on t(z, z) =  y(z, z) G U(N)  at (3.3), that is, t is an element of the maximal torus T  of 
the gauge group U(N).  Here, notice that we do not completely gauge fix yet and the the 
abelian gauge symmetry remains as the residual gauge symmetry.

The functional of g that one obtains after having performed the path integral over the 
gauge fields is locally and pointwise conjugation invariant:

ア⑷ = J  V A e x p { - k S Gwzw(g,A)} = T i h ^ g h ) .  (3.7)
Therefore, one can formally apply the infinite-dimensional Weyl integral formula to the 
partition function of the gauged WZW model:

J DgT(g) = J DtDADet0( l - Ad{t)) e x p ( - k S Gwzw{t, A)) . (3.8)
where \W\ = N\ is the order of Weyl group for the gauge group U(N).  Deto is the 
Faddeev-Popov determinant for the gauge fixing.

The action (3.4) under the diagonal gauge also becomes
SG\vzw{t, A) =  f  cl2zTv(t~ldzt . t~xdzt) — f  d2zTv(Azdztt~l —ん4兀 JEb 27T

~̂ ~2~ J d2 ^Azt Ai  — AZA~) +  T(t). (3.9)

We set t(z^ z) =  exp(27r?' V]^=1 where H 1, .■.，H N are the Cart an generators in
the Lie algebra u(N)  and 0 < 也，. • • 知  < 1 . Then we expand the gauge field over the 
Cartan-Weyl basis {H ay E a, E~°}  where ot is positive roots. Then, the first term of (3.9) 
becomes

— j  d2zTj：(t- 1 dzt . t~ldzt) —  2 7 r  

and the second and third terms of (3.9) become 

~-r— [  d2zrTr(Azdztt  1 —Ait ^dzt) =

2丌 M

S；I
d2zdz<j>ad-z(j)a (3.10)

d2z{Aazd2(j)a — A\dz(j)a) 

d2z ^ F ^ z (3.11)
ュ
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where we have put the partial integral from the first line to the second line.
By making use of the Baker-Campbell-Hausdorff formula

a,dA(B) ：= [A, B]
eABe~A = eadA(S) =  5  +  [A B] +  か A  [A B ]]十… ， (3.12) 

the forth term of (3.9) becomes

^  /  d2z T r { r lA ztA,)  =  - ^  /  d2z ( J 2  A：AI  +  ^  ) (3.13)
^  な ル. \ a = l  q € A  ノ

where a (冷） = Y ^=1 a a(jf and A is a set of the roots.
The fifth term of (3.9) becomes

— 2^  J d2zTv(AzA 2) =  —  d2z AazA^ +  ̂  A z aA^j . (3.14)

Finally, we consider the WZ term. The WZ term T(t) naively vanishes but as a 
topological term it only depends on the winding numbers of the field (j). The reason for 
the appearance of this contribution is, that maps from E to T  with non-trivial windings 
can not necessarily be extended to the interior TV of H within T, as some (half) of the 
non-contractable cycles of E become contractible in the handle-body N. The general form 
of this term is [38]

r ⑴ = [ d2z一1 dz(j)kd一i， (3.15)

where /j^1 is some antisymmetric matrix. As we will show below that the non-trivial
winding sectors do not contribute to the partition function, we will not have to be more
precise about this term here.

When we put all the result (3.10), (3.11)，（3.13) and (3.14) together, we obtain
N  r  N  ^

Sgwzw (も 4̂) =  27r E /  d2zd，d-z<f + J 2  d2Z(paF^z
a=l ノな a=l ノな

f  d2zAaz i l  -  e~2niaW)A^a +  T(t). (3.16)

The first and last term vanish in (3.16) because zero modes of 4> only contribute to the
partition function, as we will show below. Thus, we see that the partition function of
U(N)/U(N)  gauged WZW model reduces to the BF-type action.

Let us consider in (3.16):
f  J J  V A ae ~ ^ Y：a^ fsh d2zA"M—AI a (3.17)
ノ aeA
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where Ma = 1 —e2nto^ \  We path integral with respect to the off-diagonal components of 
the gauge field AQ(a e  A). Noticing that (A ^y  =  we find that the path integration 
is factorized to a holomorphic (1,0) and an aiiti-holomorphic (0 ,1 )part:

T>AQT>Âae r ^ ^ o>0̂ h ぬ い ?ル’- a 十ん  QMaAf)
Q>0

V A 0, V A 7 Qe ~ ^ J-h d2zA°zM -A-za x f x>A^VA

a>0

= ホ 1[Det_ Mホ 1.
a > 0

Similarly, the Faadeev-Popov determinant also is rewritten by
Det0( l —Ad⑴）= J J  Det0MaDet0M_Q.

o > 0

As we put (3.18) and (3.19) together, we thus see that
DetoMa t - t  Det0M_QT T 顯 。ル ん w  T T

M  Detu，。)M a  f>0 Det(0,i)M -

d2zA^MaATa

(3.18)

(3.19)

(3.20)

This factorization property exhibits the chiral nature of the (gauged) WZW model.
From now on, let us evaluate the holomorphic part in (3.20):

Det0Mo (3.21)
Det(i；o)MQ

We see that each functional determinants diverge when we recall that the diagonal gauge 
fixing remains partly. However, the ratio of them (3.21) becomes finite by some kind of 
supersymmetry between the ghost fields and gauge fields. To see this, we must consider 
the residual gauge invariance，the abelian gauge invariance and regularize it in a way such 
that we do not break the residual gauge invariance to evaluate (3.21). Here, we make 
use of a heat kernel (or ぐ-function) regularization based on the t covariant Laplacian 
A a =  —(d \dA +  9バめ) where A is the gauge field taking value at the Cartan subalgebra 
t. For an operator O we set

log DetO = Tr (s ~€Aa log O) (3.22)
where Tr is a functional trace and the regularization parameter e is a positive real number. 
Then, (3.21) becomes

log = Tr0 (ereA-4 log M a) -  Tr(1，0) (e—‘  log Ma) . (3.23)

We consider the case which Ma is constant for the convenience, although Ma actually is 
not. Then,

log M a [Tr0e -£A-4 — Tr(1，0)e-£A叫 （3.24)
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where the Laplacian acts to the right on one-forms taking values in g(—a). Therefore,
N

9a |(_q )= が1’0) -  i ^ 2  oi(A[l fi) (3-25)
£=1

so that the “charge” is 
twisted Dolbeault complex, 
connection A. 0 fi(0,0) ®

Since the term in square bracket is just the index of the 
the Dolbeault complex coupled to a vector bundle V_a with 
V_a ^  W1’0) ® V_a ^  0：

[Tr0e _也A Tr(1，0)e為 ] = l ) f 0 ニ Index dA. (3.26)

We can calculate this index from the Hirzebruch-Riemann-Roch theorem
Index dA = !  Td(T(1̂0)(M))ch(y_ct) (3.27)

tM

where Td(T^l,0\ M ) )  is the Todd class of some manifold M  and ch(F) is the Chern 
character of some vector space V. In two dimensions, this reduces to

Index dA = -  c.i(V_0) (3.28)

where x i ^ h )  is the Euler number of the genus-/?. Riemann surface and C\{V)  is the Chern 
class of V. Therefore，in the case at hand, one finds that (3.24) equals to

Index 次4 |(-Q) logM。 log ルし （3.29)

where R  is the curvature tw o  form. In the case that A4a is constant, this term gives the 
Euler number of a genus-/?. Riemann surface, 2 — 2h. Physically, The fact that the index 
theorem holds, owe a kind of supersymmetries between the ghost fields and the gauge 
fields and non-zero modes of both fields cancel out.

We similarly consider the anti-holomorphic part in (3.20):

DetoM-  (3.30)
Det(o,i)M_Q

In this case, we use the index of the twisted Dolbeault complex 0 — > fi(0,0) ® V-a —>
W 0，1) O  ^  0. Here, we make use of a heat kernel regularization based on the t 
covariant Laplacian =  —{d\dA + あi死）unlike the holomorphic part. Also, Ba = 
B — ia^Ae. We use the Hirzebruch-Riemann-Roch theorem

Tv0e - ^  -  Tr(Q，1)e-‘ Index (3.31)
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Thus, (3.30) is

Index dA\{- Q) log M_c 2 +  ( * i ( U log M-c

87T
a eF e log M_q (3.32)

When Ma is not a constant, one simply has to move log MQ into the integral, so that one 
obtains

>̂0 8tt
R\og MaM_a +

2 丌
aeFe log Mq

M - .
(3.33)

We firstly consider the first term in (3.33). This term can be regarded as contributions 
to the partition function from the background gravity. When we define “dilaton” $  as

$  =  ̂ l o g M QM _ a = logDet(l- Ad(e27r̂ )), (3.34)
Q > 0

we recognize the first term of (3.33) as a dilaton like coupling to the metric:

exp
87T

(3.35)

If (j) is constant, (3.35) becomes
d e t ( l - Ad{e27Vl<p))2ni(p\\h—l (3.36)

where we have used a fact that the Euler character of the genus-た Riemann surface is 
2 -  2h.

Next, we consider the the second term in (3.33):
N

I I exP i Ea>0 L e=l 2tt
a.eFelog

M _ a
(3.37)

since

M(a —  _ e27rm(0) (3.38)

(3.37) becomes
N

OieFe (a⑷  +  log(-l))
I t»0 6=1 ノ2" •

(3.39)



26 CHAPTER 3. G /G  GAUGED WESS-ZUMINO-WITTEN MODEL

Since the Killing-Cartan metric b of the Lie algebra g, 
gebra t,

b(X, Y) = - tr (a d (X )a d (r) )  
can be rewritten in terms of the positive roots as

6(X，Y) ニ 2 X > p o « ( n

the exponent of (3.39) becomes

restricted to the Cartan subal-

(3.40)

(3-41)

E  = J ]  -fe(0, ae)F( = ^  パ （3.42)
a = l ノ

we used a explicit formula for
a>0 £=1 €=1

where h = N  is the dual Uoxeter number of u(7V). Here, 
the Killing-Cartan metric of u(7V) (A.8). Thus, we obtain

exp I Fa l ( N  + k)(j)a —〉 ]4>b + N

Thus, the level-shift k — k. + N  is produced by quantum effects.
Together with (3.35)，(3.43) and the fermion bilinear term AA A , the resulting 

sion of the partition function becomes

(3.43)

expres-

^Gwzw(^ft,) =  J  J J  T><pa V A a exp |  —  J  +
4?r J^h

Aa 八

x exp ト  g  ァ ，Fa ( ( N  +  k)(j)a — 了. ( k +  A 2 1 (3.44)

Here we note the fermion bilinear term A 八 A. The effective action, the exponent of (3.44)， 

is not invariant under the BRST transformation restricted to the abelian part. Therefore, 
we have to add appropriate counter terms to restore the BRST symmetry [1], [39] and [40]. 
However, the such renormalization does not make influence on the later calculation at all 
because the fermion bilinear term enters in the effective action freely. The renormalization 
effect becomes crucial when we couple the theory to additional matters, as we will consider 
at Chapter 4.

By the Hodge decomposition theorem, Fb can be always decomposed to a harmonic 
part i^(0) and an exterior derivative of a one-form da^ such that

Fb = i f 1) +  dab. (3.45)
where is an 6-th diagonal {/(l)-charge of the background gauge field:

去/s, b(°) = n 6 e Z .
(3.46)
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Integrating by part puts delta functional constraints on dcj)a, the fields 乏) reduce 

to constant fields. Thus, we obtain

S w ( S , )  =  E
n\ , n ^  = —oc.' q = 1  a ,6 = 1

" N  - 1 、

a,b=

( N / N
x exp < 2-Ki y ]  n a I (N +  k)4>a _丫 ふ  + (3.47)

W e  rewrite (3.47) by using the Poisson resunimation formula

oo

V  e2ninX =  6(X -  m): n e Z (3.48)

as

d  ぬ ） = ふ  f ；

m i  ,••• , m ^ = —oo  a=l a ,6 = 1
a / 6

N (  N i \

x JJ  ̂  I [ N  +  k)<j)a — 〉 \4>b、--- ----- Tna j • (3.49)
a = l  \  b = l  ノ

The partition function (3.49) is invariant under the interchange k N  because the 

U(N)/U(N) gauged W Z W  model on has a property of the level-rank duality [41]. 

Therefore, we can rewrite (3.49) as

w oo

屮 (AO / v ハ _  丄  I T\ rlA T J  f I —  いヽ l一h xJGWZWふ）= m  e  / ii(i- e27r,；Wn̂ ))k\
oo  v a = l  a,b a^b
k /

X S (  (_/V +  k)4>a — 、 : <Pb +  ~ 2  m a j  . (3.50)
a = l  \  b = l  ノ

Integrating (3.50) with respect to 4>as, the partition function localizes to configurations 

which the constant fields 4>a satisfy constraints

(TV +  k)cj)a —  <pb H ^ nia ~  0. (3.51)
6=1

Let us consider solutions of these equations. W e  immediately find that the solutions

^  =  k T N ( J a  +  W m )  (3.52)

are
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where Ja =  m a — 早 ，m a G Z  and || J|| =  Z ^ =1 Ja for a = 1，… ，k. Note that range of 

the each field ̂ >a is 0 <  0 a <  1 . The fields in this range only contribute to the partition 

function. Therefore, we count the number of solutions of these equations in the range 

0 <  (/>a <  1. W e  immediately notice that when (j)a =  cj)h iox a ̂  b the configurations do 

not contribute to the partition function. All the <j)a are contained in the range, even if 

we interchange the all solutions (j)a. So we can set < • • • <  and a factor k\ in

the partition function cancels out. The number of piecewise independent solutions of the 

equations in the range of 0 <  ̂ >a <  1 is

(k +  N  - 1)!

( N - l ) \ k \  • ( 3 .5 3 )

This number just coincides with the number of W Z W  primary fields of the S U [ N ) k W Z W  

model. The each solution (3.52) is in one-to-one correspondence with the W Z W  primary 

fields of the S U ( N ) k W Z W  model or the highest weights of the integrable representation 

in the affine Lie algebra siik(N). W h e n  the set of this solutions is denoted by {Sol}, the 

partition function is

Ua,b=i(e27vi，pa -  e2^ )
" G W Z W ( な ）= a p  { - 1 - r fc  27r i ( f c - D 0 o~

か ，… ▲ W S o U 丨 *1丄(1=1

l-h

(3.54)

where a and P  are a genus independent and dependent constant, respectively.

Finally, we determine the normalization for the partition function of the G / G  gauged 

W Z W  model on T,h which is compatible with the number of the conformal blocks in the 

G  W Z W  model on The partition function of the G / G  gauged W Z W  model on T.h 

also can be represented by the modular S-matrix for the character in the G  W Z W  model 

as follows

雄 w z w (ル ）— (端 e)2 2h， (3.55)

n

where 71 denotes an integrable highest weight representation in the affine Lie algebra g 

corresponding to a W Z W  primary field in U(N) W Z W  model and the summation runs 

through all the W Z W  primary fields in the G  W Z W  model. Therefore, we determine the 

normalization such that the partition function (3.57) matches with (3.55) in G  =  U(N). 

W h e n  h = 1,the partition function of the G / G  gauged W Z W  model coincides with 

the number of the W Z W  primary fields in G  W Z W  model. The genus independent 

normalization factor a  is (N +  k)/N because {Sol} only runs through the W Z W  primary 

fields in the £ix(N)k W Z W  model and the number of the W Z W  primary fields in the u(N)k 

W Z W  model is

(ん+  AT)! 

N\ k\
(3.56)



3.3. GAUGE/BETHE CORRESPONDENCE 29

T h e  resulting partition function of the U (N )/U (N ) G W Z W  m o d e l  o n  is

« wぬ )= t 〜.E{S。ふ 辦 茫 it:一 „ J . (3.57)

Thus, w e  c a n  h a v e  evaluated the partition function b v  the equivariaiit localization. In 

next section, w e  will s h o w  a  relation b e t w e e n  U {N )/U (N ) g a u g e d  W Z W  m o d e l  a n d  the 

p h a s e  m o d e l .

3.3 G a u g e /B e th e  C orrespondence
In this section, w e  clarify connections b e t w e e n  the U (N )/U (N ) g a u g e d  W Z W  m o d e l  a n d  

the p h a s e  m o d e l .  First or ail w e  h a v e  to identify p a r a m e t e r s  of b o t h  theories. W e  identify 

the level k a n d  the r a n k  N  of the g a u g e  g r o u p  U (N) in the U (N )/U (N ) g a u g e d  W Z W  

m o d e l  w i t h  the total particle n u m b e r  M  a n d  t he total site n u m b e r  l  m  t h e  p h a s e  m o d e l ,  

respectively. U n d e r  these p a r a m e t e r  identifications, w e  c a n  s h o w  that the constraints

(3.51) coincide w i t h  the B e t h e  A n s a t z  equations (2.6b;. T a k i n g  the p a r a m e terization of 

the B e t h e  roots as A a —  e 27r?̂ n , t h e  l o g a r i t h m  f o r m  of the B e t h e  A n s a t z  equations b e c o m e s

た' k  — i
(TV +  k)4>a — 4>b H  —  =  Tn'a (3.58)

6=1

w h e r e  ma G Z  implies b r a n c h e s  of the logarithm. O n c e  w e  identify the constant field 

(j)a in the U (N )/U (N ) g a u g e d  W Z W  m o d e l  w i t h  t he B e t h e  roots 4>a in the p h a s e  m o d e l ,  
w e  f o u n d  that these equations coincide w it h  the localization configurations (3.51) in the 

U (N )/U (N ) g a u g e d  W Z W  m o d e l .

Next , let us consider solutions of the B e t h e  A n s a t z  equations. T h e  solutions are (3.52) 

b e c a u s e  the B e t h e  A n s a t z  equations are equal to the localized configurations (3.51). T h e n  

w e  c a n  s h o w  that piecewise i n d e p e n d e n t  solutions of the B e t h e  A n s a t z  equations coincide 

w i t h  the solutions to b e  i ncluded in t h e  r a n g e  of 0 <  0 Q <  1 a n d  to satisfy the condition 

0 く 也 <  也 <  ... <  如 <  1 in the U (N )/U (N ) g a u g e d  W Z W  m o d e l .  T h u s ,  w e  f o u n d  

that this solutions of the B e t h e  A n s a t z  equations coincide w i t h  {Sol}. T h e  solutions

(3.52) also i m p l y  the c o m p l e t e n e s s  of the state in the p h a s e  m o d e l  b e c a u s e  the n u m b e r  

of the solutions is (TV +  ん一 l)!/(/V — 1)!た!.

Since t h e  B e t h e  n o r m  in the p h a s e  m o d e l  (2.70) b e c o m e s

(4 i{e 2̂ } k)\i>({e2̂ } k)) =  rTfcn °；12" - — (k +  N )k^ N  (3.59)

U l b ^ 2m4a -  a2m^h)a妾 b
u n d e r  taking the p a r a m e terization of t h e  B e t h e  roots as A a =  e2 m ^°，the partition function 

(3.57) of the U (N )/U (N ) g a u g e d  W Z W  m o d e l  c a n  b e  represented as

E  m e 2ni% m { e 2̂ } k))h- 1. (3.60)

,0fcG{Sol}
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W h y  the partition function of the U(N)/U(N) g a u g e d  W Z W  m o d e l  c a n  b e  represented 

b y  t h e  B e t h e  n o r m  in the p h a s e  m o d e l ?  T o  u n d e r s t a n d  this, w e  recall that the partition 

function is represented b y  u sing t he m o d u l a r  S - m a t r i x  (3.55). T h u s ,  w e  c a n  e x p e c t  that 

there is a  relation b e t w e e n  the m o d u l a r  S - m a t r i x  in U(N)/U(N) g a u g e d  W Z W  m o d e l  

a n d  t h e  B e t h e  n o r m  in the p h a s e  m o d e l .  Actually, Korff a n d  Stroppel constructed the 

Verlinde algebra in t h e  S U  ( A「）W Z W  m o d e l  o n  the sp h e r e  f r o m  a  v i e w p o i n t  of the p h a s e  

m o d e l  a n d  s h o w e d  that the m o d u l a r  S - m a t r i x  in S U(N) W Z W  m o d e l  coincides w i t h  

t he B e t h e  n o r m  in t h e  p h a s e  m o d e l  [20]. So, let us derive the partition function of the 

S U ( N ) / S U ( N )  g a u g e d  W Z W  m o d e l  f r o m  the o n e  of the U(N)/U(N) case. T h e r e  are 

t w o  differences b e t w e e n  these partition functions. Firstly, t he m o d u l a r  S-matrices in e a c h  

m o d e l  are related to

，a(A0 _  I N  c su{N)
>o 尺 = V i v + I

S  ) (3.61)

w h e r e  TZ a n d  R  d e n o t e  the W Z W  p r i m a r y  field in the U(N) a n d  the  SU(N) W Z W  m o d e l ,  

respectively [41]. Secondary, a  r a n g e  w h i c h  the s u m m a t i o n  r u n s  t h r o u g h  is different 

b e c a u s e  the n u m b e r  of the e a c h  W Z W  p r i m a r y  field is different. T a k i n g  a c c o u n t  these 

t w o  differences, w e  find that the partition function of t h e  SU(N)/ S U ( N )  g a u g e d  W Z W  

m o d e l  is

, ria,6=l(e27r，：0a -  e2wi(t，b)
7 S U ( N )  J 丄 ________________

L  \ (k +  N ) ^ N  U k , ~
01，■••，やfc€{Sol} I li>a—1

(3.62)

a n d  c a n  b e  represented b y  the s u m m a t i o n  of the B e t h e  n o r m  w i t h  respect to all the 

eigenstates of the transfer m a t r i x  in the p h a s e  m o d e l ;

01，…，知 €{Sol}

(3.63)

T h i s  s h o w s  that t h e  m o d u l a r  S - m a t r i x  of the S U ( N )  W Z W  m o d e l  coincides w i t h  the 

B e t h e  n o r m ;

S ^ iN) =  m { e 2ni% ) m { e 2̂ } k)). (3.64)

T h i s  is considered as a  reason w h y  the partition function of the U(N)/U(N) g a u g e d  W Z W  

m o d e l  c a n  b e  represented b y  the B e t h e  n o r m  in the p h a s e  m o d e l .  Therefore, w e  f o u n d  

that t h e  G a u g e / B e t h e  c o r r e s p o n d e n c e  b e t w e e n  the G / G  g a u g e d  W Z W  m o d e l  a n d  the  

p h a s e  m o d e l  is also considered as the g a u g e d  W Z W  m o d e l  realization of [20].

Finally, w e  c o m m e n t  relations b e t w e e n  the C S  t h e o r y  a n d  t he p h a s e  m o d e l .  T h e  p a r ­

tition function of t h e  G / G  g a u g e d  W Z W  m o d e l  coincides w i t h  t h e  partition function of 

the C S  t h e o r y  w i t h  t h e  g a u g e  g r o u p  G  o n  S l x  [13]. W e  c a n  a p p l y  equivariant local­

ization m e t h o d s  to the C S  the o r y  in a  similar w a y  w i t h  G / G  g a u g e d  W Z W  m o d e l .  T h u s  

in the C S  th e o r y  w i t h  t h e  g a u g e  g r o u p  U(N) o n  S 1 x  S た，the localization configurations
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coincide w i t h  the B e t h e  A n s a t z  equations a n d  the partition function is represented b y  the 

B e t h e  n o r m  in the p h a s e  m o d e l :

X E,) =  ( ^ - X  E  m e 2̂ % m { e 2̂ } k))ĥ .  (3.65)
01，... .0A：̂{Sol}

Further, w h e n  the g a u g e  g r o u p  is SU(N), the partition function of the C S  theory is

Zsc^ N)(Sl x E ,) =  ^  〈v，({e2か ： (3.66)
01，•••，如 6{Sol}

W e  h a v e  s h o w n  the G a u g e / B e t h e  c o r r e s p o n d e n c e  b e t w e e n  C S  t h e o r y  o n  S1 x  a n d  

the p h a s e  m o d e l .  T h e  equivariant localization for the C S  t h e o r y  o n  w i d e r  class manifolds 

(Seifert manifolds) is derived in [42], [43] a n d  [44], see also [45] for generalization to the 

C h e r n - S i m o n s - M a t t e r  theories. T o  describe the partition function of t he C S  t h e o r y  o n  

these manifolds, not only m o d u l a r  S - m a t r i x  b u t  also m o d u l a r  T - m a t r i x  is needed.

R e m a r k .  Recall that w e  h a v e  interchan ge d the level k w i t h  the r a n k  N  in (3.50) b e c a u s e  

the partition function of the U (N )/U (N ) g a u g e d  W Z W  m o d e l  h a s  level-rank duality. In 

this circumstance, w e  h a v e  t h e n  investigated the relations b e t w e e n  the U (N )/U (N ) or 
S U (N )/S U (N ) g a u g e d  W Z W  m o d e l  a n d  the p h a s e  m o d e l .  T h i s  is b e c a u s e  w e  c a n  identify 

the W Z W  p r i m a r y  fields as the B e t h e  roots a n d  the m o d u l a r  m a t r i x  in SU(N) W Z W  

m o d e l  c o m p l e t e l y  coincides t h e  B e t h e  n o r m  in the p h a s e  m o d e l  in this circumstance.

H o w e v e r ,  this substitution is n o t  indispensable w h e n  w e  consider the c o r r e s p o n d e n c e  

b e t w e e n  t h e  g a u g e d  W Z W  m o d e l  a n d  t he  p h a s e  m o d e l .  T o  see this, let us return to (3.50). 

Integrating the delta function at (3.50) a n d  setting a  correct normalization, w e  obtain

l-h

.(3.67)
( N  + k y  ^  j  i  % 广 ィ ，

JGwzw(Lfcj = 1  J  ^  , ] ( k + N ^  n i x

Here, {Sol} is defined b y  a  set w h i c h  小 ■[ぐ . . ,<j>N satisfy a  constraint

TV - 1
(TV +  k)4>a — 〉 v (j)b H  —  =  TUa (3.68)

b=l

a n d  the conditions 0 <  <  02 <  * * * <  <  1 - T h e  partition function of U (N )/U (A [)
g a u g e d  W Z W  m o d e l  c a n  also r e d u c e  the o n e  of t h e  SU (TV)/S U  (N ) g a u g e d  W Z W  m o d e l  

as above:

/SU(N) 
ノ GW ZW

^  =  { t )  E  〜
令1，…，公;v£{Sol}

一  v (3.69)( k +  N Y ^ k  1 e2ni[N-l)4>a
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F r o m  n o w  on, w e  investigate relations b e t w e e n  the S U (N )/S U (N ) g a u g e d  W Z W  

m o d e l  a n d  the p h a s e  m o d e l  b y  using this expression. Here, w e  identify the level k a n d  
the r a n k  N  w i t h  the total site n u m b e r  L a n d  the total particle n u m b e r  M ? respectively. 

N o t e  t hat this identification is different f r o m  the a b o v e  case. U n d e r  this identification, 

w e  t h u s  see that the localization constraint (3.68) coincides the B e t h e  A n s a t z  equation in 

the p h a s e  m o d e l .  T h e  B e t h e  n o r m  c a n  further b e  expressed b y

m { e 2̂ } N)m {e 2̂ } N ) )  =  ら  z - - ( k  +  N )N-H , (3.70)n 5 = i ( e 2味 - e2，  a^b
H e n c e ,  w e  c a n  express the partition function as a  s u m m a t i o n  of the n o r m  b e t w e e n  the 

eigenstate in t he p h a s e  m o d e l  w i t h  respect to t he all eigenstates u p  to a  overall factor:

= 樹  E  ~  (3 .7 1 )
01，…,0；vG{Sol}

T h u s ,  w e  h a v e  established the G a u g e / B e t h e  c o r r e s p o n d e n c e  b e t w e e n  the  SU(N) /SU (N ) 
g a u g e d  W Z W  m o d e l  a n d  the p h a s e  m o d e l  as the case of substituting the level w i t h  the  

rank. Notice that the n u m b e r  of t he W Z W  p r i m a r y  fields in the SU(N) W Z W  m o d e l  

d o e s  n o t  coincide w i t h  the n u m b e r  of the elements in the set {Sol}, (N  +  k — 1)!/(た一 

1)\N\. Therefore, w e  see that t h e  W Z W  p r i m a r y  fields c a n  n o t  identify the the e l e m e n t s  

{冷1，* … ,(f>N} in the set {Sol}. Further, w e  find that the m o d u l a r  m a t r i x  in SU(N) W Z W  

m o d e l  d o e s  n o t  coincide w i t h  the B e t h e  n o r m  in the p h a s e  m o d e l  u n d e r  the identification： 

k. 三  L a n d  N  三  M .
T h u s ，w e  see that the identification k 三  M  a n d  iV 三 L  is m o r e  natural t h a n  the o n e  

k 三  L  a n d  N  三  M , H o w e v e r ,  all m o d e l s  doe s  not h a v e  t h e  level-rank duality. In fact, 

s u c h  duality is unlikely to exist in the G /G  g a u g e d  W Z W  m o d e l  w i t h  additional matters, 

as see in n e x t  chapter. Therefore, this r e m a r k  will b e c o m e  i m p o r t a n t  for t h e  G a u g e / B e t h e  

c o r r e s p o n d e n c e  to w o r k  well.



C h a p t e r  4

G / G  G a u g e d  

W e s s - Z u m i n o - W i t t e n - H i g g s  m o d e l

In this chapter, w e  s t u d y  a  generalization of the G a u g e / B e t h e  c o r r e s p o n d e n c e  for the 

G / G  g a u g e d  W Z W  m o d e l  a n d  the p h a s e  m o d e l  in the previous chapter. In chapter 

2, w e  h a v e  i n troduced the p h a s e  m o d e l  as a  < =  0 limit of the q - b o s o n  mo d e l .  Since 

the G a u g e / B e t h e  c o r r e s p o n d e n c e  is a  c o r r e s p o n d e n c e  b e t w e e n  s o m e  topological g a u g e  

theory a n d  s o m e  integrable system, it is natural that a  topological g a u g e  theory w h i c h  

c o r r e s p o n d s  to the q - b o s o n  m o d e l  exists. In this chapter, w e  will construct s u c h  a  m o d e l .  

1  his m o d e l  is the G / G  g a u g e d  W Z W  m o d e l  c o u p l e d  to additional m a t t e r s  a n d  is called 

b y  the G / G  g a u g e d  W Z W - H i g g s  m o d e l .  In fact, w e  will s h o w  that this m o d e l  corr e s p o n d s  

to the q - b o s o n  m o d e l  b y  utilizing the equivariaiit localization m e t h o d  as w i t h  C h a p t e r  3.

In section 4.1, w e  firstly introduce the G / G  g a u g e d  W Z W - H i g g s  m o d e l .  In section 4.2, 

w e  a p p l y  the localization to the U ( N ) / U ( N )  g a u g e d  W Z W - H i g g s  m o d e l  a n d  calculate the 

partition function. In section 4.3, w e  numerically give a  value of the partition function. In 

section 4.4, w e  s t u d y  the c o r r e s p o n d e n c e  b e t w e e n  the U (N )/U [N ) g a u g e d  W Z W - H i g g s  

m o d e l  a n d  the q - b o s o n  m o d e l .  S e e  A p p e n d i x  A  for the c o n v e n t i o n  w h i c h  w e  use in this 

chapter.

4.1 G / G  gauged W ess-Z u m in o-W itten -H iggs m odel
In this section, w e  introduce the G / G  g a u g e d  W Z W - H i g g s  m o d e l  o n  a  g e n u s  h R i e n i a n n  

surface. It is a m o d e l  of m a t t e r s  c o u p l e d  to the G / G  g a u g e d  W Z W  m o d e l  o n  a g e n u s  

h H i e i n a n n  surface. T h e  additional m a t t e r s  are a n  adjoint c o m p l e x  scalar b o s o n  <I>. a n  

adjoint c o m p l e x  scalar f e r m i o n  a n  adjoint 1-fo r m  auxiliary b o s o n  ifi a n d  ail adjoint 
1- f o r m  auxiliary f e r m i o n  \ 1 .

F r o m  n o w  on, let u s  construct the action of the G / G  g a u g e d  W Z W - H i g g s  m o d e l  o n  

a  g e n u s  /? H i e m a n n  surface. Since this m o d e l  is a topological field theory，the m a t t e r s  

sh o u l d  enter in the action as a  B R S T - e x a c t  term. Therefore, w e  firstly define the B H S T

*Notice that this matter contents is different form a matter contents of [5]. In [5], the additional 
matters are an adjoint 1-forin boson etc.

33
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t r a n s f o r m a t i o n  g e n e r a t e d  b y  a  B R S T  charge Q(g,t)-

. Q [g,t)A =  A,  Q[9,t) \ [m  =  {A9){lfi) - ， °)， Q (g, t ) X ^  = — (が ’ 邮 ) +  W 0’1)， 

Q(g,t)9 =  o ,  Q{g,t)  ̂ = Q(g，t神 = tg -1龟g -  金，

Q{g,t)i^ =  - t g W g ぺ  +  Q(g,t)X{1'0) =  ^ (1,0), Q ( s ’《) x ( 0 , 1 ) = ^ (0,1) ,
Q(g,t)^{1,0) =  tg~l x [m g — x (1,0\  Q(ĝ {0,1)= - tg x m 9 ^  +  x (0,1) (4.1)

w h e r e  0 <  i <  1 . T h i s  is a  natural generalization of the B R S T  transformati on for the 

G/G  g a u g e d  W Z W  m o d e l .

Next, w e  define the partition function:

ZGwzwn{^h,t) =  J D A D X D ^D g D ^D ipD xe -^0^ ^ ' ^  (4.2)

w h e r e  t h e  action is defined as

S ' g w z w h C S ^ ,  t) =  Scwzwi^h) +  7—  /  T r ( A  八 A) +  Sma,Uor{Tih, t). (4.3)

w h e r e  Scwzwi^h) is the action of the G/G  g a u g e d  W Z W  m o d e l  (3.4). Here, the m a t t e r  

part of (4.3) is represented as B R S T - e x a c t  form:

u  matter (な ，t) = Q{g<t) • 71
w h e r e  TZ is defined as

n  = — { d n T r ( ^  — 中V )  + nx + n 2} .
4丌

(4.4)

(4.5)

Here, TZi a n d  尺2 are defined as

Th := ^ ^ 入バ叫八げけ’⑴伞一伞义+ 义由)}， (4.6)

U 2 ：=  T r  {ズ(1’0) A  (▽(0’1)$t _  } (4.7)

w h e r e  X  a n d  Y are defined b y

OO CO

X  : =  ^ 2 X n -.= J 2 9 ~ n( 9 ~ ^ ih0)9)9n ， (4.8)

n=0 n=0
OO OO

F  := (4.9)

n=0 n=0

Here, w e  define a  covariant derivative as V (1，0) X  = が1，0)义 +  [A ^ ° \X ] a n d  so on. T h e  

s q u a r e  of t h e  B R S T  transfo r m a t i o n  Q(ĝ t) generates t he boson ic  t ransf or mat io n C(git)-
C ^ t)A ^  =  ( # ) d ，0) -  W 1，0)， +  W 1，0)

£ ( s，一 _  =  g - ^ X ^ g  - 妒 ，。) ， A w ) ， 1) = +  A _ ， CM g =  0

A s，*)伞 = tg一 1 念g —企， A s，t)由す= - t 9 ^ 9 ~ l +  中、

^(g,t)i' =  t g - ^ g  -  4), C{gfyi>] =  - tg i^g~ l +  4'、

A s ，t ) X (1’。）= tg~lx [h0)g — x (1’。) ， >C(flit) X ( 0 , 1 ) = - t g x [0'l)9 ^  +  X (0,1)

A s ，_ (1’。）= ぎ  V (1’°)P -  ^>(1,0), A s ,伙 (似）= - t g ^ [0'l)9~X +  ̂ (0,1) (4-10)
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C [ĝ A ^ x)= —げ ’ ⑴’り +  メ 1，0)
=  - g X ^ g ~ l +  X ^ \

= - y ^ y ~ l + ^ ,

>C(s,i).\:(0 ,1 )= - y x [a'l)9~l +  ,\'(0,1)

^ (9,i)V7(0,1)= -yip{0'l)g~l +  p ((u) (4.11)

w h e r e  Q\g i ) = 乙(p.i). Similarly, the bosonic transformation >C(i,り at ^  G  G  — 1 generates 

the finite U ( l )  transformation:

^  0 5 乙け，りA  =  0 ， C ^ t)y =  0,

乙(1，ォ)少 = 沖 —由， + 企す，

£ (1，t)V，=  t4) 一 4), C [ u ) 4^ =  - t f  +  ゅ、

^(i,t)X(1,0) =  t\(1,0) —  .\:(1’0)， Ai.*)X(0,1)= - t \ (0,1)+  x (0,1)，

A i ，_ (1，0) = ゆ (1,0) -  <^(1,0), C{i A^ Q'l) =  - ^ (oa) +  ̂ (0,1). (4.12)

w h e r e  Qも ,t) =  T h u s  w e  see that generates the g a u g e  a n d  U ( l )  transformation.

F o r  convenience, w e  explicitly rewrite the  action (4.4) b y  carrying out the B R S T

t r a nsformation as follows.

亡） d/j,Tv ($$ナ + 刺)、

+ 丄  j  Tr {产 )A  ( V (1'0)$  +  [X, $]) —  x (0,1)A (V(llO)-0 +  [X，刈 ）

+ p (1’0)八 （が 0’1) - [y，$ す])- ^ (1,0) A  ( V ^ 1) - [ y , ^ ] ) }  • (4.13)

W e  see f r o m  this that a  interaction t e r m  b e t w e e n  the fields of the G/G  g a u g e d  W Z W  

m o d e l  a n d  the additional m a t t e r s  disappears w h e n  w e  set 尤= 0 .  H e n c e ,  t h e  G /G  g a u g e d  

W Z W - H i g g s  m o d e l  b e c o m e s  t he G /G  g a u g e d  W Z W  m o d e l  at f =  0. W e  c a n  regard this 

m o d e l  as s o m e  k ind of a  o n e - p a r a m e t e r  d e f o r m a t i o n  of the G /G  g a u g e d  W Z W  m o d e l .

Since the action is written as the action of the G /G  g a u g e d  W Z W  m o d e l  plus the 

B R S T - e x a c t  term, the G /G  g a u g e d  W Z W - H i g g s  m o d e l  will b e c o m e  the topological field 

theory. T h u s ,  t h e  partition function will b e  a  topological invariant. In chapter 3, w e  h a v e  

seen that the partition function of the G/G  g a u g e d  W Z W  m o d e l  co u n t s  the n u m b e r  of 

the c o n f o r m a l  block of the G W Z W  m o d e l .  Therefore, w e  c a n  expect that the partition 

function of the G/G  g a u g e d  W Z W - H i g g s  m o d e l  counts the n u m b e r  of the building block 

of s o m e  u n derlying field theory. H o w e v e r ,  w e  d o  n o t  k n o w  w h a t  field t heory is.

w h e r e  Qjgt、 = 厶(仏り. T h e  m a t t e r  part of the action (4.4) is invariant u n d e r  the transfor­

m a t i o n  C(ĝ t). T h e  bosonic transfo r m a t i o n  (仏i)generates t h e  finite g a u g e  transformation 

at t = 1 :
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In n e x t  section，w e  will calculate the partition function of the U (N )/U (N ) g a u g e d  
W Z W - H i g g s  m o d e l  b y  using the equivariant localization m e t h o d  like the case of the

4.2 L ocalization
F r o m  n o w  o n ，w e  set the g a u g e  g r o u p  G as U(N) for simplicity. W e  evaluate the partition 

function of the U (N )/U (N ) g a u g e d  W Z W - H i g g s  m o d e l  b y  using the equivariant local­

ization m e t h o d .  H o w e v e r ,  w e  c a n  not directly evaluate the partition function w i t h  the 

action (4.3) .To simplify the calculations it is useful to consider the m o r e  general action 

given b y

^mattcrC^/i;

= Q(g：t) . 去 人 卜  T r  ( 一  —  +  丁 l (兄l +  尺 2) -  r2Tr(.，Y A  — )} (4.14)

w h e r e  djj, =  —(fz  is a  v o l u m e  form. F o r  T\ = 1 ?T2 =  0, (4.14) m a t c h e s  (4.4). F r o m  

a  v i e w p o i n t  of c o h o m o l o g i c a l  localization for the p a t h  integral, o n e  c a n  expect that the 

partition function for the 乃 = 1,7*2 =  0 coincides w i t h  o n e  for the r\ =  0,T2 = 1-

Therefore, w e  consider the case of rx =  0, r2 = 1  f r o m  here. In this case, the action (4.14)

b e c o m e s

Sm̂ ter(^h, t) =  Q(g，t) • ^  丄 が す — 匈 ) — Tl'(x A  — ) }

= J

I  d2zTr ((fiẑ Pz —  XzXz +  iXz9Xz9 つ . （4.15)
2丌 JEh

T h e  action will b e c o m e  quadratic in t e r m s  of $ ，(p, ゆ  a n d  V，after w e  take a  diagonal 

gauge. T h u s ,  w e  c a n  evaluate the partition function in a  similar m a n n e r  w i t h  C h a p t e r  3.

L e t  u s  take a  diagonal g a u g e  y(z, z) 三 e x p  |27rz [ ご=1 z)H a^. T h e n ,  the partition
function u n d e r  the  diagonal g a u g e  b e c o m e s

* ^ g w z w h ( S / 1? t)

=  DAD\D<j)DMY)et{l -  Ad(e27ri4>))

x  e x p  ん*S e w 观 (0，A) —  —  J  T r ( A  A  A) —  A"Sfm a ttcr(0;中，ゅ ，入，W)} (4-16)

w h e r e  t h e  m e a s u r e  D M  =  D^pD^DtpDx- Also, D e t ( l — A d ( e 27n多) ) is the

F a d d e e v - P o p o v  d e t e r m i n a n t  for t h e  diagonal g a u g e  fixing as w i t h  C h a p t e r  3. Here, the
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action (4.15) b e c o m e s

*5gwzwh(S/j, t) =  *Sgwzw(2/i) +  t ~  /  T r ( A  A  A) +  Smattcr(^h^ t) (4.17)

4?r h n
w h e r e  the g a u g e d  W Z W  part is given b y  (3.16) a n d  the m a t t e r  part is

5 m a ttor(Sh., t) =  ^~ [  d " T r (神 ” — /  dPzTr(ipzif^) +2冗ん  2ttん

+ 士 义 ベ ( i - o E ち ぢ  +  E ( i - w ⑷ ) u i

+ ( 1 — t ) J 2 x tX az +  E ( !  -  te2- ⑷ M ' r  }. (4.18)

a = l 0-6 A

Firstly, w e  c a n  evaluate t he p a t h  integral w i t h  respect to a n d  x^.a as

J  vxavx~a n  exp {-嘉 /  へぬ 1- ie27n.。⑷k r  }

= j  7 W « ] J exp{ - A  J d2z (x^ M Q(t)x ；Q + X jaM .a(t)Xaz) }

= f j  D e t (1，0)M Q (t) . D e t (ii0) M _ o (t). (4.19)

w h e r e  MQ( t ) = 1 — te27Ttâ . Similarly, w e  c a n  evaluate the p a t h  integral w i t h  respect to

a n d  as

J 他 u 妙 せ Q n  exp { - 去 ゾ ( 1 - ie2職 ⑷ ) $ _ 0 |

V ^ QV ^ . aV ^ aV ^ _ a J]  exp f  d2z ( 把 M 0(i) $ _ 。+  ̂ _ QM . Q( m a) ]
a > 0  k ノ )

J ]  [Det0M o⑴]ぺ .[DetoM—Q ⑴]ベ . (4.20)

o > 0

P u t t i n g  together w i t h  (4.19) a n d  (4.20), the contributions to t he partition function f r o m  

$  a n d  x  b e c o m e

W e  c a n  evaluate this ratio of the functional d e t e r m i n a n t  b y  using the H i r z e b r u c h - R i e m a n n -  

R o c h  t h e o r e m  for t h e  twisted D o l b e a u l t  c o m p l e x  as well as the case of the g a u g e d  W Z W
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m o d e l  in C h a p t e r  3. Here, w e  utilize the c o m p l e x  0 — ^  f2(0’0) ®  V_a W 1，0) 0  V_Q 0 

at th e first part a n d  the c o m p l e x  0  ®  Va ^  W 1’0) ®  Va 0 at the s e c o n d  part.

T h u s ,  w e  obtain

] J e X p | ^ i ? l o g M o ( 0 M _ o ( 0  +  ^  j ' a eF e log 普 . (4.22)

E v a l u a t i n g  t he p a t h  integration in t e r m s  of $ a， x az x|，w e  obtain

J J ( 1 - す 糾 . (4.23)

0 = 1

T h e  contribution to the partition function f r o m  (p a n d  ip also cancel out. Since the action 
of th e g a u g e d  W Z W  part is equal to (3.16)，w e  obtain

N  N  I a^bf U ^ aU VAa\ ^
a = l  a = l  \ 11a,!

b=1( l — t e 2ni^ a~ ^ )
~  ノ

x e x p j i ^  /  F a \ ( N  +  k)(l)a - ^ 2 ^ b  +

x  e x p

A ^ - l M

H L x a A X \

(4.24)

知 } o nly contribute toHere, w e  h a v e  u s e d  the fact that the constant m o d e s  of • 

the partition function as w e  will s h o w  below.

T h u s ,  the partition function of the U (N )/U (TV) g a u g e d  W Z W - H i g g s  m o d e l  o n  a  genus- 

h R i e m a n n  surface b e c o m e s

Zgwzwh^ k  ̂t) =  D(f)aDXaD A a
N  ,  略 - 06))ヽ  wa^b

x  e x p | z ^  j  y3a(^)Fa +  A  入a

w h e r e  Pa(<P) is defined b y

議 = 城 - ^ E l0S ( t e2 ^ a _ t6e2̂ h) .
b^a

W h e n  w e  define a n  abelianized effective action b y

Sen{(p, A  A) =  —i J  ( ル ⑷ F a +  —  A a A  A a) ,

(4.25)

(4.26)

(4.27)



o ( 2)
8 7 T 2 ^  d(j)ad(j)b a AAfe +  5  ム

a,6 = 1

In o u r  case, b y  defining t he function W(<f>)

1 d W {^) )

as

27T d(j)a 

the operator 0 (2) b e c o m e s

N  /  N

P M ) .

(例

(4.35)

. (4.36)

w e  see that this is n ot invariant u n d e r  a  following abelianized B R S T  transformation:

Q^a =  A a , Q K  =  ^d (j)a, Q(j)a =  0 (4.28)

w h e r e  Q is a n  abelianized B R S T  charge. A l t h o u g h  the effective action (4.27) s h o u l d  b e  

invariant u n d e r  the abelianized B R S T  t rans f o r m a t  i o n , it is not. Therefore, w e  h a v e  to 

a d d  appropriate counter t e r m s  to restore t he B R S T  s y m m e t r y  b y  requiring the effective 

action s u c h  that it satisfies descent equations.

N o w ,  w e  explain the de c e n t  equations a n d  h o w  to restore the  B R S T  invariance of the 

action. Firstly，w e  define a  local operator as

O (0) =  I V  ⑷  (4.29)

w h e r e  W{(j>) is a n  arbitrary function of 冷ト.• • o n  the R i e m a n n  surface. L e t  0^n\  (n =  
0,1，2) b e  ?トf o r m  va l u e d  local operators w h i c h  satisfy a  following relation

dO{n~l) ^  QO{nK (4.30)

(4.30) is called b y  the descent equations. N o t e  that the 3 - f o r m  local operator O ⑶  d o e s  

not exist b e c a u s e  w e  consider the R i e m a n n  surface as the b ase manifold. T h e n ,  w e  see 

that the integration of 0 ( n ) over a  n-cycle 7n ，n a m e l y  ム  0 ( n ), b e c o m e s  t h e  B R S T - c l o s e d  

operator u n d e r  the abelianized B R S T  t r a n sformation (4.28):

Q . ム  0 [n) =  0. (4.31)

In fact, w e  c a n  construct the B R S T - c l o s e d  operators as follow:
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T o  restore the B R S T  invariance in the effective action (4.27)，w e  m u s t  replace (4.27) w i t h  

(4.36):

N
她 ⑷

9(j)a Xa A  入 b (4.37)

A s  a  result, w e  h a v e  restored the B R S T  s y m m e t r y  in the effective theory. H e n c e ,  t he  

partition function b e c o m e s

/ n ^ = i ( l - e 2 ^ - « ) X  レ h

Z o w z w H ^ h ^  t)
1

| H / |

x exp

Dcj)aDXaD A a

AT N
0a(<P)Fa + 巧  f

6= 1

d f W )
9(j)a

A a 八 Ab (4.38)

B y  using the H o d g e  d e c o m p o s i t i o n  t h e o r e m ,  the t w o - f o r m  c a n  b e  d e c o m p o s e d  to 

h a r m o n i c  part F &(0) a n d  a n  exterior derivative of a  o n e - f o r m  dab s u c h  that

Fb =  if) +  dab

w h e r e  kb is a n  6-th diagonal t/(l)-charges of the b a c k g r o u n d  g a u g e  fields:

1 r n (0) =  h .2tt

(4.39)

(4.40)

Integrating b y  part put s  delta functional constraints o n  d(j)a ，the fields 4>a(z，z) r e d u c e  
to c o n s t a n t  fields.

W e  also d e c o m p o s e  A  into A a =  Ai0) +  5Xa w h e r e  Ai0) is a  h a r m o n i c  1- f o r m  a n d  SX is 

fluctuation o rth o g o n a l  to Ai0) b y  using the H o d g e  d e c o m p o s i t i o n  t h e o r e m .  D e t e r m i n a n t s  

f r o m  integral of 5\b are c o m p l e t e l y  canceled w i t h  Jacobians i n d u c e d  f r o m  the integral 

of af>. Since the n u m b e r  of fermionic z e r o - m o d e  of e ac h  Ai°) equal to the n u m b e r  of the 

h a r m o n i c  f o r m  2h o n  the genus-/?. R i e m a n n  surface, the p a t h  integration w i t h  respect to 

A ^ , … ，A$) gives a n  additional factor

" g⑷ ’ det
( d麵
V  dcPa ^ (4.41)

T h u s ,  the resulting expression of the partition function b e c o m e s

^ G W Z W H
1

丨則

oo p N
y i y n 紙 〜⑷y

k i , k j ^ = —oo a = l

l - h

X

N
n

—  2̂7ri(pb
(1 _  丄丄 e 27ri0 a _  -f-e 2ni(pb

\
a ,o = Ja^b

(4.42)
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Since w e  ignore the overall factor for the partition function in o u r  calculation, w e  c a n  

replace the functional d e t e r m i n a n t  in fJiq((t)) w i t h  the determinant:

det( T ' (4.43)

B y  using the Poisson r e s u m m a t i o n  formula, w e  rewrite

1 oo f  N

ZGWZWHi^h.^ t) =  7TT77 〉 . / Y [ 邮 a
,£n=~oc-' a=l

(4.42) as

N

1-h
1 e27T?:0n —  e27Ti(f>b

n丄丄 e 2?r^ n  —  f ^ 2n i 4)b 
a,6 = 1  

\  a^ b

(4.44)

Here, let u s utilize a  p r o p e r t y  a b o u t  t he delta function

(4-45)

T h e n  the delta function in the partition functionw h e r e  is solutions of 

b e c o m e s

/(:り = 0 .

N N

n  S (ル ⑷ - Q  =  I^tqix)-1 J J  <5(0a -  xa) (4.46)

a = 1 a = 1

w h e r e  , Xn satisfy

んん -士 £
^  Ifa

log
亡£?2 7 r?:<^)n  ___

4 .  (4.47)

If a  n u m b e r  of solutions exists in (4.47), o n e  m u s t  s u m  u p  all solutions in a  region 0 <  

冷1，•. ■ ；> <  1. In o u r  case, w e  c a n  s h o w  that t h e  solution is u n i q u e  u p  to permutations.

T h e  partition function is invariant u n d e r  the p e r m u t a t i o n  a n d  the contribution to the 

partition function f r o m  the p e r m u t a t i o n  therefore cancel out the order of the W e y l  g r o u p

i n

B y  integrating w i t h  respect to ♦]_,••• ,(j)N} w e  obtain a  final result for the partition 

function:

h-l

Z a W Z W H ( ^ t ) =  E  • (4-48)

{ゆl，...，知 }6{Sol} | a,6=1
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Here, {Sol} is a  set of the solution w h i c h  satisfies 0 

constraint

<

2mk(j)a +  ̂  log

b^a

♦1 <  

27T?^0.

<  知  <  1 a n d  the

(4.49)

Also, w e  explicitly 

… ⑷ =

c a n  express as

d f W )

( t2 - i)
j27rH4>b-\-(f>c)

{te2/jvi 中11— e 27r 也）（t e 27n:(̂  — e 2?n:也) 
(亡2 _  ^ e2ni(4>a-\-4>b)

^fe27ricf>a _  e27ri4ĥ ^e27vi<ph _  e 27ri0n ) . (4.50)

T h u s ,  w e  see that t h e  p a t h  integral of U(N) jl](N) g a u g e d  W Z W - H i g g s  m o d e l  reduces to 

the finite s u m  of t h e  solutions w h i c h  satisfies the localization configuration.

Finally, w e  c o m m e n t  a b o u t  a  n ormalization 01 the partition function. T h e  partition 

function w i t h  a  general normalization b e c o m e s

i-h E
{ゆl，". ,0n}6{So1} a,6 = 1  a^b

g27ri(̂>Q _ ̂ g27r?0(,

(4.51)

w h e r e  a (り a n d  P(t) are a  g e n u s  i n d e p e n d e n t  a n d  d e p e n d e n t  function of t, respectively. 
N o t e  that this partition function sh o u l d  coincide w i t h  (3.57) at a  limit i — > 0 at least. 

H o w e v e r ,  w e  c a n  n o t  c ompl e t e l y  d e t e r m i n e  the  normalization of the partition function of 

U(N)/U(N) g a u g e d  W Z W - H i g g s  m o d e l  unlike the g a u g e d  W Z W  m o d e l .

4.3  JNumerical S im ulation
In this section, w e  numerically investigate the partition function of the S U (N)/SU(N) 

g a u g e d  W Z W - H i g g s  m o d e l  at level k. W e  h a v e  n o t  d e t e r m i n e d  the normalization of the 

partition function as w e  h a v e  discussed it at previous section. Therefore, w e  a s s u m e  that 

the n o r m a l i z a t i o n  of the partition function of t he g a u g e d  W Z W - H i g g s  m o d e l  coincides 

w i t h  t h e  o n e  of the g a u g e d  W Z W  m o d e l .  In other w o r d s ,  w e  a s s u m e  that the partition 

function of the U(N)/U(N) g a u g e d  W Z W - H i g g s  m o d e l  b e c o m e s

^ G W Z W H ^ h ^  t)

rk +  N \ h 「  ) M  ふ、N • • に 、&  e2̂  —  te2̂^  j ( ) …⑶丄丄 e27ri0Q _  e2ni4>b
{必1，...，知}€{Sol} | a，fc=l

(4.52)
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In th e s a m e  w ay, w e  a s s u m e  that the partition function of the S U (N )/S U (N ) g a u g e d  

W Z W - H i g g s  m o d e l  b e c o m e s

7 SU(N) (t^ G W Z W H ^ h ^  リ
h-l

= {j)k E (レ 參 )11：1: : ロ  . O
,4>n }e {So\} I a,b=l

\ o^b

F r o m  n o w  on, w e  calculate a  value of the partition function of the S U ( N ) / S U ( N )  g a u g e d  

W Z W - H i g g s  m o d e l  u n d e r  this n o rmalization b y  utilizing the M a t h e m a t i c a  2 .

Firstly, let us consider the case of g e n u s -1, a  torus. In the g a u g e d  W Z W  m o d e l ,  the

partition function c o u n t s  the n u m b e r  of the W Z W  p r i m a r y  fields a n d  is (N  +  k‘ 一1)\/(N —

1)!た!. In the g a u g e d  W Z W - H i g g s  m o d e l ,  w e  will expec t that the partition function counts 

the n u m b e r  of s o m e  fields in a n  u nde r l y i n g  theory a n d  b e c o m e s  integer value. In fact, w e  

f o u n d  that the partition function is n o t  m o d i f i e d  f r o m  the g a u g e d  W Z W  m o d e l  b y  the 

n u m e r i c a l  simulation:

7SU(N) (rr2 ハ _  (N  -1 )1
( N - l ) \ k \jg w z w h O- ?t) =  ~nTr i M 7rti • (4.54)

Next, w e  investigate the partition function o n  a  sphere, a  genus-0. B y  t h e  n u m e r i c a l  

simulation, w e  conjecture that the partition function b e h a v e s  as

^ g w z w h C *̂ 2? (ェ (4.55)

Notice that this d o e s  n o t  d e p e n d  o n  t h e  level k a n d  coincides w i t h  the partition function 
of the g a u g e d  W Z W  m o d e l  in a  limit t 0.

In the case of genus-2 a n d  above, w e  c a n  not conjecture h o w  the partition function 

b e h a v e s  in arbitrary k a n d  TV. Therefore, w e  consider special cases w h e r e  N  =  2, k =  
arbitrary, h =  2 a n d  N  =  k =  2, h =  arbitrary. W e  list t he result in the f o r m e r  a n d  later 

case at T a b l e  4.1 a n d  l a o l e  4.2, respectively.

In the f o r m e r  case, w e  conjecture that f r o m  T a b l e  4.1 the partition function b e c o m e s

^ G W Z W h ( ^ 2? k，t ) = ( 1 —ty
(k +  3 )(た +  2 )(た +  1)

t 十 ~ t ) . ( 4 . 5 6 )

2We must solve the localization constraints (4*49) to numerically find the partition function. Note 
that we change the localization constraint (4.49) as

2 n k X j  =  2ttん - J ： (2  tan- ヤ 神 广 广 ) ) }  +  2tt x j 一  + 2

where [… ] is the Gauss’ symbol because it is necessary to choice correct branches of the logarithm. See 
[46] .
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In t h e  later case, w e  also conjecture that f r o m  T a b l e  4.2 the partition function b e c o m e s  

Zcwzwui^h, k =  2,t) = ユぃ1-  +  1 ) ( 1 — t)2h-2(l +  tf-1. (4.57)

W e  c a n  n o t  conjecture a  general f o r m  in other case b u t  list the result of the other case at 

T a b l e  4.3. A s  see T a b l e  4.1，T a b l e  4.2 a n d  T a b l e  4.3, w e  see that all e x p a n s i o n  coefficients 

in t e r m s  of t of the partition function are integer. T h e  partition function itself c h a n g e  b u t  

this n a t u r e  d o e s  not change, e v e n  if o n e  c h a n g e s  the normalization s u c h  that the partition 

function of the g a u g e d  W Z W - H i g g s  m o d e l  b e c o m e s  o n e  of the g a u g e d  W Z W  m o d e l  at the 

limit t  ^  0. Therefore, this implies that the partition function is a  topological invariant.

G e n u s k N Partition F u n c t i o n

2 2 2 (1 - り2(10 +  10り

3 (1 - i ) 2(2 0 +  16 り

4 ( 1 - t)2{35 +  20t +  t2)
5 ( 1 - t)2(56 +  20t +  4t2)
6 ( 1 - り2 (84 +  U t +  10t2)

7 (1 - t )2(120 +  20i2)

8 ( 1 - 亡)2 (165 —  24f +  35t2)

9 ( 1 - t)2{220 -  60t +  56t2)

10 { 1 - t)2{28Q - 110t +  8At2)

50 (1 一 i)2 (23426 —  3 6 5 5 0 t  +  1 8 4 2 4が)

T a b l e  4.1: T h e  partition function of the SU(2)/SU(2) g a u g e d  W Z W - H i g g s  m o d e l  w i t h  

the level k o n  the g enus-2 R i e m a n n  surface

G e n u s k N Partition F u n c t i o n

2 2 2 10(1— り2(1 +  0

3 36(1ィ )4(1 + り2

4 136(1ィ )6(1 + り3

5 528(1- t)8{ l +  t)4

10 524800(1 - 0 18(l +  0 9

T a b l e  4.2: T h e  partition function of the SU(2)/SU(2) g a u g e d  W Z W - H i g g s  m o d e l  w i t h  

the level k =  2 on the g e r m s - R i e m a n n  surface



G e n u s L =  k M  =  N Partition F u n c t i o n

2 2 3 ( 1 — り3(45 +  99t +  99t2 +  45t3)

3 3 ( 1 — り3(166 +  332t +  252t2 +  86i3 +  t4)

4 3 ( 1 — り3(504 +  810t +  3 9 6户 +  126i3 +  3 6が）

5 3 (1 一 t)3(1332 +  1512t +  369t2 +  2 4 3尤3 +  144i4)

6 3 ( 1 - り3 (3168 +  2 0 4 6亡 +  112t2 +  5 9 3亡3 +  3 3 9が +  5t5 +  t6)

7 3 ( 1 — り3 (6930 +  1188, +  162 亡2 +  1職 3 +  6 4 8が +  18 亡5 +  9t6)

2 4 4 ( 1 一 り4 (1 +  t)2(35 +  5 0亡 +  86亡2 +  50t3 +  3 5が)

3 4 1 6 ( 1 - i)4 (l +  i)(56 +  1 3舡 +  177t2 +  1 2 8ド +  54t4 +  17t5 +  t6)

4 4 2 ( 1 — t)4 (2 340 +  7020t +  8 7 6  It2 +  5 6 2 8 i 3 +  2 1 6 7が +  1076i5 +  615 t 6 +  164t7 +  5t8)

5 4 16(1 一 t)4 (1314 +  3114t +  2 3 8 1 0  +  6 0 5ド +  3 5 9 0  +  5 2 6户 +  2 4 9亡6 +  67t7 +  10t8)

2 5 25(1 一 tf(l +  t)2 {l +  t +  t2) (14 +  23t +  43i2 +  48i3 +  4 3 0  +  23t5 +  lit6)

3 3 2 8 ( 1 -i)4(3 +  2i)(5 +  4i)

4 2 ( 1 - り4(329 +  280t +  86が +  +8t3 +  t4)

2 3 2 7 ( 1 — t)6(l +  り2(3 +  At +  3i2)(5 +  6t +  5t2)

3 3 ( 1 一り 6(4390 +  17560t +  29296t2 +  2 6 4 2財 3 +  1 4 0 2 0 0  +  4 4 8 0 f  +  7 7 2产 +  10t7 +  t8)

4 3 2 1 6 ( 1 - t)6{2 +  t){5 +  4t)2

5 3 2 3 2 ( 1 - i)8(5 +  4り2(7 +  8t +  2t2)

Table 4.3: The partition function of the S U  (TV)/ S U  (N) gauged WZW-Higgs model with the level k on the genus-/?. Riemann 

surface
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4 .4  G a u g e /B e th e  C orrespondence
In this section, w e  consider the G a u g e / B e t h e  c o r r e s p o n d e n c e  w h i c h  is a  c o r r e s p o n d e n c e  

b e t w e e n  the U (N )/U (N ) g a u g e d  W Z W - H i g g s  m o d e l  a n d  t he  q - b o s o n  m o d e l .

Firstly, let us see that the localization configuration in U (N )/U (N ) g a u g e d  W Z W -  

H i g g s  m o d e l  agrees w i t h  the B e t h e  A n s a t z  equation in the q - b o s o n  m o d e l .  W e  c h a n g e  

a  p a r a m e t r i z a t i o n  of a  coupling constant t  as t =  e~2nv at the localization configuration 
(4.49) to manifest the B e t h e  A n s a t z  equations in the q - b o s o n  m o d e l .  T h e n ,  w e  o btain a  

following expression for the localization configuration:

w h e r e  I j is (half-)integers w h e n  N  is (even) odd. W e  identify the level k，the r a n k  N  of the 

g a u g e  g r o u p  U(N) a n d  the coupling constant r/ in the U {N )/U (N ) g a u g e d  W Z W - H i g g s  

m o d e l  w i t h  the total particle n u m b e r  L, the total site n u m b e r  M  a n d  the coupling constant 

r] in t h e  q - b o s o n  m o d e l ,  respectively. Further, w e  identify the C a r t a n  part </>!,••* , (f>N of 
a  field g in the g a u g e d  W Z W - H i g g s  m o d e l  as the B e t h e  roots X i ，.• • ，尤汉 in the q - b o s o n  

m o d e l .  U n d e r  these p a r a m e t e r  identifications, w e  see that t he constraints (4.58) coincide 

w i t h  t h e  B e t h e  A n s a t z  equations (2.46) in t h e  q - b o s o n  m o d e l .

N e x t ,  let us investigate relations b e t w e e n  a  set of piecewise i n d e p e n d e n t  solutions of 

the B e t h e  A n s a t z  equations for t h e  q - b o s o n  m o d e l  a n d  a  set {Sol} of x*i,• • • w h i c h  

contributes to the partition function of the g a u g e d  W Z W - H i g g s  m o d e l .  It is necessary for 

the B e t h e  states to f o r m  a  c o m p l e t e  s y s t e m  that the n u m b e r  of the piecewise i n d e p e n d e n t  

solutions of the B e t h e  A n s a t z  equations for the q - b o s o n  m o d e l  is (N +  k — 1)!/(7V — 1)!A:!. 

A l t h o u g h  it is nontrivial w h i c h  this n u m b e r  coincides w i t h  the n u m b e r  of e l e ments of t h e  

set {Sol}, w e  c a n  numerically c o n f i r m  that the n u m b e r  of t h e  e l e m e n t s  of the set {Sol} 

is (N k — I 、'./ (N — 1)!た！ a n d  coincides w i t h  the n u m b e r  of the piecewise i n d e p e n d e n t  

solutions of the B e t h e  A n s a t z  equations for the q - b o s o n  m o d e l .  T h i s  c i rcumstances is equal 

to the o n e  of the relation b e t w e e n  the U(N)/U(N) g a u g e d  W Z W  m o d e l  a n d  the p h a s e  

m o d e l .  T h u s ,  w e  c a n  h a v e  established a n  identification w i t h  {Sol} a n d  the i n d e p e n d e n t  

solutions of the B e t h e  A n s a t z  equation for the q - b o s o n  m o d e l .

Finally, w e  consider the partition function for the U (N )/U (N ) g a u g e d  W Z W - H i g g s  

m o d e l .  U n d e r  a b o v e  identification, the B e t h e  n o r m  in t h e  q - b o s o n  m o d e l  (2.51) b e c o m e s

2mkXj =  2m lj +  5  log

k=l

s i n [ 7r (切 +  ( X j  - 办))] 

s i n [7r (切 — ( X j  -  .rfc))]

(4.58)

〈ゆ({e2^ h v ) | V < { e 27̂ ：U )〉

rb=1(e2niXat -
d e t ^ k( {x }N) (4.59)

n ^ = i ( ^ 27r)：xn -  ̂ ixh)

w h e r e  t h e  g a u d i n  m a t r i x  is

も ({ど }iV) ^a,b k e ~ ^ iXb 4 - ▽
{t2 — l)e2 如

(te
(4.60)



T h u s ,  the partition function of the U(N)/U(N) g a u g e d  W Z W - H i g g s  m o d e l  o n  a  genus-/?. 

R i e m a n n  surface is expressed b y  a  s u m m a t i o n  of the n o r m  b e t w e e n  the eigenstates of the 

H a m i l t o n i a n  in the q - b o s o n  m o d e l  in t e r m s  of the all eigenstates:

4 w z w h ( ^ ，0 =  E 〈州 产 r：U)|V，({e2* } ；v)〉"-\ (4.61)

‘てい…，Xyv€{Sol}

A s  a  result, w e  f o u n d  that the U(N)/U(N) g a u g e d  W Z W - H i g g s  m o d e l  c o r r e s p o n d s  to 

the q - b o s o n  m o d e l .

Further, w e  c a n  re d u c e  the partition function (4.61) to the SU(N)/SU(N) g a u g e d  

W Z W - H i g g s  m o d e l :

^ G w S H (^,t) =  (j)h E 〈州 ^ ^ hv)丨州ど:％ )〉レ1. (4.62)

x i ，" .  , . ^ N ^ { S o l }

T h i s  circums t a n c e s  is also equal to the o n e  of t h e  relation b e t w e e n  the g a u g e d  W Z W  m o d e l  

a n d  the p h a s e  m o d e l .  W e  see that the S U ( N ) / S U ( N )  g a u g e d  W Z W - H i g g s  m o d e l  also 

c o r r esponds to t h e  q - b o s o n  m o d e l .  T h i s  c o r r e s p o n d e n c e  is just o n e  p a r a m e t e r  d e f o r m a t i o n  

of a  c o r r e s p o n d e n c e  b e t w e e n  the SU ( N ) / S U ( N )  or U(N)/U(N) g a u g e d  W Z W  m o d e l  

a n d  the p h a s e  m o d e l .  W e  find that “G a u g e / B e t h e  c o r r e s p o n d e n c e” also w o r k  well in this 

situation.

Finally, w e  consider w h y  d o e s  “G a u g e / B e t h e  c o r r e s p o n d e n c e” for S U (N)/SU(N) 

g a u g e d  W Z W - H i g g s  m o d e l  a n d  the q - b o s o n  m o d e l  w o r k  well. W e  consider this t h r o u g h  

a  perspective of the a x i o m  of the topological field theory. It is well k n o w n  that t h e  t o p o ­

logical field theory h a s  the a x i o m a t i c  formulation given b y  A t i y a h  [47] a n d  Segal [48]. See

[49] a n d  [50] for reviews. Especially, it is well k n o w n  that the 2-dimensional topological 

field theory is equivalent to the c o m m u t a t i v e  F r o b e n i u s  algebra. Recently, C . K o r f f  c o n ­

structed a  n e w  c o m m u t a t i v e  F r o b e n i u s  algebra f r o m  the q - b o s o n  m o d e l  [23]. T h u s ,  w e  

e xpect that there is a  relation b e t w e e n  SU(N)/ S U ( N )  g a u g e d  W Z W - H i g g s  m o d e l  a n d  

topological field theory equivalent to this c o m m u t a t i v e  F r o b e n i u s  algebra. W e  c a n  a c t u ­

ally derive the f o r m u l a  (4.54) a n d  (4.55) given at previous section b y  using appropriate 

cutting/gluing relations, in other w o r d s  the c o m m u t a t i v e  F r o b e n i u s  algebra. Therefore, 

the SU(N) / S U ( N )  g a u g e d  W Z W - H i g g s  m o d e l  c a n  regard as a  L a g r a n g i a n  realization of 

the c o m m u t a t i v e  F r o b e n i u s  algebra c on structed b y  C.Korff.
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C h a p t e r  5
C onclu sio n

In this thesis, w e  h a v e  studied the relation b e t w e e n  the 2-dimensional topological g a u g e  

th e o r y  a n d  the integrable system. W e  especially h a v e  studied the relation b e t w e e n  the 

U (N )/U (N ) or S U (N )/S U (N ) g a u g e d  W Z W  m o d e l  a n d  the p h a s e  m o d e l  a n d  b e t w e e n  

the U (N )/U (N ) or S U (N )/S U (N ) g a u g e d  W Z W - H i g g s  m o d e l  a n d  t he q - b o s o n  mod e l .

In t h e  f o r m e r  case, w e  f o u n d  that the localization configurations (3.51) coincide w i t h  

the B e t h e  A n s a t z  equations (3.58), o n c e  the diagonal g r o u p  elements, the level a n d  the 

r a n k  of the g a u g e  g r o u p  U (N ) in the U (N )/U (N ) g a u g e d  W Z W  m o d e l  are identified 

w i t h  t h e  B e t h e  roots, the total site n u m b e r  a n d  t h e  total particle n u m b e r  in the p h a s e  

m o d e l ,  respectively. W e  also s h o w e d  that t h e  partition function of the U (N )/U (N ) a n d  
the SU (N )/S U (N ) g a u g e d  W Z W  m o d e l  is represented as the s u m m a t i o n  of the B e t h e  

n o r m  w i t h  respect to the all eigenstates of the transfer m a t r i x  in the p h a s e  m o d e l .  T h i s  is 

b e c a u s e  the m o d u l a r  S - m a t r i x  in the SU(N) W Z W  m o d e l  coincides w i t h  the B e t h e  n o r m .  

T h i s  is also considered as the g a u g e d  W Z W  m o d e l  realization involving a  generalization 

to a  higher g e n u s  case of [20]. W e  further f o u n d  that the partition function of t h e  C S  

th e o r y  o n  Sl x  T,h is also related to n o r m s  of H a m i l t o n i a n  eigenstates for the p h a s e  m o d e l .  
T h e s e  relations are s u m m a r i z e d  in the table 5.1.

P h a s e  m o d e l U (N )/U (N ) G W Z W  m o d e l /  the U {N) C S  theory

B e t h e  root D i a g o n a l  g r o u p  e l e m e n t /  H o l o n o m y  alo n g  S1 direction
B e t h e  A n s a t z  equation Configuration of (3.51)

Total site n u m b e r R a n k  of the g a u g e  g r o u p  U(N)
Tot a l  particle n u m b e r Level

B e t h e  n o r m M o d u l a r  S - m a t r i x

Partition function S u m m a t i o n  of B e t h e  n o r m  

w i t h  respect to the all eigenstates of the H a m i l t o n i a n

T a b l e  5.1: Dictionary in t h e  G a u g e / B e t h e  c o r r e s p o n d e n c e  b e t w e e n  U (N )/U (N ) g a u g e d  
W Z W  m o d e l  a n d  the p h a s e  m o d e l
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N o t e  that this c o r r e s p o n d e n c e  similarly w o r k s  well for the case of a n  interchange 

b e t w e e n  the level a n d  the rank. H o w e v e r ,  the B e t h e  n o r m  n o  longer c o r r e s p o n d  to the 

m o d u l a r  S-matrix.

In t h e  later case, w e  f o u n d  that the localization configurations (4.58) coincide w i t h  the 

B e t h e  A n s a t z  equations (2.46), o n c e  the diagonal g r o u p  elements, the level, the r a n k  of 

t he g a u g e  g r o u p  U (N) a n d  the coupling constant in the U (N )/U (N ) g a u g e d  W Z W - H i g g s  

m o d e l  are identified w i t h  the B e t h e  roots, the total particle n u m b e r  , the total site n u m b e r  

a n d  t h e  coupling c onstant in the q - b o s o n  m o d e l ,  respectively. W e  also s h o w e d  that the 

partition function of the  U (TV)/U (N ) a n d  the S U (N )/S U (N ) g a u g e d  W Z W - H i g g s  m o d e l  

is represented as the s u m m a t i o n  of the B e t h e  n o r m  w i t h  respect to the all eigenstates of 

the transfer m a t r i x  in the q - b o s o n  m o d e l .  T h e s e  relations are s u m m a r i z e d  in the table

5.2.

q - b o s o n  m o d e l U (N )/U (N ) G W Z W - H i g g s  m o d e l

B e t h e  root D i a g o n a l  g r o u p  e l e m e n t

B e t h e  A n s a t z  equation Localization Configuration (4.58)

Total site n u m b e r L a n k

T o t a l  particle n u m b e r R a n k  of the g a u g e  g r o u p  U(N)

Partition function S u m m a t i o n  of B e t h e  n o r m  

w i t h  respect to t he all eigenstates of t h e  H a m i l t o n i a n

T a b l e  5.2: Dictionary in the G a u g e / B e t h e  c o r r e s p o n d e n c e  b e t w e e n  U (N )/U (N ) g a u g e d  
W Z W - H i g g s  m o d e l  a n d  t he q - b o s o n  m o d e l

Further, w e  numerically calculated the value of the partition function. Since the 

G /G  g a u g e d  W Z W - H i g g s  m o d e l  is a  topological field theory, w e  h a v e  c h e c k e d  that the 

e x p a n s i o n  coefficients of the partition function in t e r m s  of the coupling constant b e c a m e  

integers as expected. T h i s  quantity m a y  b e  a  n e w  topological invariant.

Finally, let us consider the results of this thesis f r o m  a  m o r e  general perspective. 

A n y  t w o - d i m e n s i o n a l  topological field theory is equivalent to a  c o m m u t a t i v e  P r o b e n i u s  

algebra. In the special case, the c o m m u t a t i v e  F r o b e n i u s  algebra is constructed f r o m  

t he s o m e  integrable system. In fact, the c o m m u t a t i v e  Frobe n i u s  algebra is constructed 

f r o m  t h e  p h a s e  m o d e l  a n d  the q - b o s o n  m o d e l  in [20] a n d  [23]. W e  s h o w e d  that the 

c o m m u t a t i v e  F r o b e n i u s  algebra constructed f r o m  the p h a s e  m o d e l  a n d  f o r m  t he q - b o s o n  

m o d e l  c o r r e s p o n d  to the S U (N )/S U (N ) g a u g e d  W Z W  m o d e l  a n d  S U (N )/S U (N ) g a u g e d  
W Z W - H i g g s  m o d e l ,  respectively. T h u s ,  w e  c a n  thi n k  that this is a  m a t h e m a t i c a l  reason 

h o w  t h e  G a u g e / B e t h e  c o r r e s p o n d e n c e  w o r k s  well.



A p p e n d i x  A
C o n v en tio n

In this A p p e n d i x ,  w e  s u m m a r i z e  the c onvention a b o u t  the differential f o r m  a n d  t h e  Lie 

algebra w h i c h  w e  u se in C h a p t e r  3 a n d  4.

D iff e r e n t i a l  f o r m  W e  firstly s u m m a r i z e  the  conve n t i o n  a b o u t  the differential form. 

T h e  c o n v e n t i o n  w h i c h  w e  u se is as follows:

Euclid signature: 

n f o r m  field f  ：

Coordinate:

( + ，+)

Partial derivative:

Integral:

Metric:

C o m p l e t e  an t i - s y m m e t r i c  tensor: 

H o d g e  operator:

Co-derivative operator:

n ■/"a， ぬ十1 八… 八心" n

2 = +  2 = -  w )

分 X
=  7 ^ {z +  "h

y =
ザ - z)

dz = ~ y | ( ^  — idy)， d-z = ~7=(^X +  idy)

dzdz = dxdy

9 ^  ~= 5 ^  for 从，レ= .もy

9zz — : 9zz =  hyzz  = 9zz —：0

€xy 一: — 6yx — f Xy = — ポ = - 1

ẑz = :~^zz ~ e zz = ẑz — 6 == i

*dxM = ê.udxu for " ，レ= も y

ギdz ニ= idz， ^dz = — idz

*(ぬパ A  dxレ ') =

* 1 — -e^dx^  A  dxu d2x

( * ) 2 =  ( _ i ) p ( 2 -p) ? w h e n  *  act o n  t h e  p - f o r m

* d *

(A.l)
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L i e  a l g e b r a  L e t  us s u m m a r i z e  the c onvention for a  Lie algebra g, especially u(N). W e  

take generators Ta (a = 1 , *  ■ • , d i m g )  in the o rthogonal basis of the Lie algebra as a n  

anti-Hermite. Therefore, these generator satisfy

[Ta,Tb] =  f abcTc (A.2)

w h e r e  f abc is structure constants.
In the C a r t a n - W e y l  basis, w e  d e n o t e  C a r t a n  generators a n d  ladder operators as H ' i  =  

1，..• ? r w h e r e  r  is the r a n k  of the Lie algebra a n d  E Q w h e r e  a =  (a1, • • • ，a r) is a  root, 

respectively. Here, w e  take t h e  C a r t a n  generators as a n  H e r m i t e .  U n d e r  the H e r m i t e  

conjugation, the ladder o perator also b e c o m e s

E ~ a =  (Ea)l

T h e s e  operators satisfy following c o m m u t a t i o n  relations

[H a,H b] =  0, [H a, E Q] =  a aE a

a n d

[EQ,EP] =  N q^E° ^, if a +  /? G A  

= a; • H, if a =  — f3
m 2

= 0  otherwise

(A.3)

(A_4)

(A.5)

w h e r e  NQjf3 is a  constant a n d  A  is a  set of the roots.

W e  re g a r d  A" as a  generic operator taking value in the Lie algebra X . T h e n ,  X  c a n  

b e  e x p a n d e d  b y  the C a r t a n - W e y l  basis as

X  =  J 2 M i H a) +  ^ 2 X Q( i E Q).
a = l a6A

Finally, w e  define t he Killing-Cartan f o r m  as

b(X, Y) =  - T r  ( a d ( X ) a d ( r ) ) .

W h e n  Lie algebra is u(AQ, the Killing-Cartan f o r m  c a n  b e  written

b(X ，Y) =  2 (hT i(X Y ) -  TxX . TvY)

w h e r e  h is the d u a l  C o x e t e r  n u m b e r  a n d  N  in t h e  case of u(iV)_ 

defined as

(A.6)

(A_7)

as

(A.8)

Also, the trace T r  is

T r{H aH b) =  8ab

T r (五。於3) =  ^ 5 Q+/3,o (A.9)

w h e r e  |of|2 =  2 in the case of u(iV).



A p p e n d i x  B

I n n e r  p r o d u c t  i n  t h e  q - b o s o n  m o d e l

In this appendix, we show (2.49) and (2.51), an inner product between the eigenstates of 

the transfer matrix in the q-boson model

M M
5a/({m}|{A}) = 〈01I I  C'(^)[] B (ん)|0> (B.l)

j=l J=1

where the parameters {"い… ，/“/ }仙d {入1，… ，入a/} are arbitrary complex numbers 

which do not satisfy the Bethe Ansatz equations. One can calculate the inner product by 

using various met hods. In [51]，[52] and [53] , they firstly has calculated this inner product 

ill the a X Z  model or the 6-vertex model. In this appendix, we follow Slavnov s derivation
[29] of the inner product based on the commutation relations of the Yang-Baxter algebra, 

(2.14) - (2.29). This method has the advantage of being able to apply a wide class of 

models. Therefore, we apply this method to the q-boson model and calculate the inner 

product (B.l). See also [27].

B .l  Inner product b etw een  general sta tes
From now on, we consider the inner product between general states, that is，the case which 

the parameters {A} and {"} in (B.l) are generic complex parameters. This inner product 

formally is calculated by using the commutation relations (2.14) - (2.29) and (2.33) and 

(2.34). W e  see that after use of the commutation relations (2.26) the parameters {パ} 

and {A} first become arguments of the vacuum eigenvalues a and d. Therefore, the most 

general form of the final result is

^/({/OKA}) =  e  n n  n n
QtUo k^Q j^Q
7U7

x ^ A/({/i}7,{/zh|{A}0{A}6). (B.2)

Here, we explain the notation used in this formula. The family {A} of parameters is 

partitioned into two disjoint subsets {A} ： = {\}Q U  {A}6. Similarly, {"} =  {"}) U  {/x}v 

These partitions are independent, except for the condition {A}a =  {^t}1 =7?, where
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n =  0,1，.*. , M. The partitions of the parameters {A} and {パ} automatically induce two 

partitions of the indices 1，• •. , M,  into •(入]̂  and into {/j.} =  In each of

the subsets the parameters are ordered in a natural way, for example, {Aai，Aa2,. ■ • , Aan} 

if ai <  o；2, * * • <  otn, and so on. The sum in the formula (B.2) is taken over all partitions 
of the indicated form. Similar notation is used below throughout this appendix. Also,

denotes the coefficient appearing when the operators are per­

muted. Therefore, it depends on the R-matrix but not on the vacuum eigenvalues of the 

operators A  and D. Our purpose will be to find an explicit form for this coefficient below.

W e  show that an arbitrary coefficient {/i}7 |{A}a{A}a) in the formula (B.2)
can be expressed in terms of the leading coefficient K M ({l^}\{^}) and the conjugate leading 

coefficient贫ルバ丄パ川入}) defined by

：—  0 |{A}aj 0 ) (B.3)

穴m ( W I W )  := K m (0, {A}^). (B.4)

Here，the leading coefficient means the coefficient in (B.2) corresponding to the partition 

=  {A}a =  0. Similarly, the conjugate leading coefficient means the coefficient in 

(B.2) corresponding to the empty partition |/zj-7 =  {A}a =  0 .

To this end, we fix some partitions {"} =  U  {y}ラ and \X} =  {A}a U  {X}a and 

find the coefficient corresponding to the given specific partitions. Using (2.15) and (2.16)， 

we can reorder the operators B  and C  as follows:

M  M
〈◦丨n c(叫)n b (ん刺= 例n c (内)n c ("た) • n 明 n 切ん)丨0〉. (r 5 )

j = l  j = l J67 /c67 k^cx j £ a

For the convenience, we rewrite the commutation relation (2.27) as the form

C(i^)B(X) =  +  g{^, X)(A(X)D(u) -  A(/,)D(X)) (B.6)

where

^ A ) =  ^ T X -  (B-7)

Here，we call the first and second terms on the right-hand side of (B.6) the first and 
second commutation schemes, respectively.

Let us consider an arbitrary operator 0(^3) with a argument ixs G |^j-7 and begin 
moving it to the right using the relation (B.6). Suppose that during the commutation 

with the product B ( X j )  we always use the first scheme. Then, we obtain a state

n ^ - c ^ - n ^ i o ) .  (b .8)

j€ct k G a

In general, it is clear that the action of the operator C{jis) on the vector Y\ke^ 5(入た)|0〉 

gives terms proportional to a("s)d(A£)，to a(ル )d(/is) or to a(Xe)d[Xef), where Ap 6
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{A}q. H o w e v e r ,  the coefficient w i t h  the partition w h i c h  w e  h a v e  fixed contains the func­

tions d(/S) a n d  d(X) o nly for G  a n d  A  G  { A } a . T h i s  is b e c a u s e  the resulting

partition is {パ} =  {"}7 U  {パ}う a n d  { A }  =  { A } a U  {A}a, a n d  t he resulting coefficient m u s t  
b e  proportional to

n  < 内)n n  u( aた) n d(ん)• (b .9)
jG， fcea jGo

H e n c e ,  t h e  state (B.8) d o e s  n o t  contribute to t he coefficient w i t h  the partition w h i c h  w e  

h a v e  fixed. A s  a  result, w e  see that in the c ourse of c o m m u t a t i o n  of e a c h  of the operators 

C(/xs) ,パs G  {パ}7 , w i t h  the p r o d u c t  B(Xj), w e  m u s t  u s e  the s e c o n d  s c h e m e  at least 

once:

n
n ^ )  • n 5 (ん）= n ^ ) E ^ 1̂ - ん) 5 ( a 01) _ _.珂 入 ⑷ ） 
j ^ l  j€ct je-y e=\

x [A (^ s)D(Xae) 一 A(Xa()D (ns)}B(Xae+1) _ ■ ■ B(X0n) +  ^  (B.10)

w h e r e  w e  h a v e  d e n o t e d  b y  all the t e r m s  that d o  n o t  contribute to the desired coefficient. 

U s i n g  the relations (2.20), (2.22) a n d  (2.24)，w e  n o w  m o v e  the operators A to the leftmost 

position a n d  the operators D to t h e  rightmost position. R e p e a t i n g  this p r o c e d u r e  for all 

the operators C(fx) w i t h  {パ}7 , w e  finally obtai n a  f o r m u l a  a n a l o g o u s  to (B.2) w i t h  the 

single difference that instead of the functions a a n d  d w e  get the operators A a n d  D:

n ^ ' ) . n s (ん） = e  n  a(叫) n  从 ) n  d(入) n  • た）
j€7 j€or a + U a _  keo~ J67+ k” —

7+ U7-

x A n ({パ} 7 +，{|i}7_ | { A } a + { A } Q „) +  父 (B.ll)

w h e r e  the s u m m a t i o n  is carried out here over all partitions of イス}̂  into t w o  subsets 

IA1-q =  ■( Al-a+ U  { A } Q _ a n d  of {/i}7 into t w o  subsets { " } 7 =  { " } 7+ U { " } 7— .

S u p p o s e  that {パ}7_ +  0 .  T h e n ,  w h e n  a n  operator D{fjis) w i t h  /is G  {/x}7_ is c o m m u t e d  

w i t h  th e p r o d u c t  Ylje^ B(Xj), w e  obtain t e r m s  proportional to either d(fis) or d(pe) w i t h  
ん G  {A}a* Since neither of these functions c a n  occ u r  in t h e  final answer, w e  c o n c l u d e  

that { # } 7_ =  0 ,  a n d  therefore also -I Al-0_ =  0 .  C o n s e q u e n t l y

n  c(内) .n 列ん) = n  a(内) • n の(ん）• 4 圖 {ル ) + 父 叫 2)
3̂ 1 j€Q j€-y jea

w h e r e  ト7 |{入}q) is t h e  leading coefficient d e p e n d i n g  o n  the families レ }7 a n d  { A } Q .

A s  a  result, w e  obtain

M  M
( o i n ^ )  1 1 ^ ) 1° )

= / c ( m , i { a } 0 ) • (01 n  c \ n k ) n  a ^ )  . n  ̂ (a,) n  ̂ ( a ^ i o ) + ^  (B.13)
た€ラ j€7 k^a



W e  move all the operators D  to the rightmost position and the operators A  to the leftmost 

position. Here we can only the first commutation scheme such that the operators A  and 

D  must preserve their arguments to obtain the term proportional to (B.9). Thus, we 

obtain

M  M
(oi n ， ) n  聊 o〉= Kn({nu{\}a) .] > ( 灼)n w

j=l j=l 3^1

n n  /(Ab,Aa) n n
a6o a€7 6̂ 7 kÊ y k£dt

The contribution in the remaining inner product must be given by the term proportional 

to the conjugate leading coefficient. W e  finally obtain

({パ}7, {A } ^ ) —  n n  nK, k) n  n ，パ&)
a.€o： bEQ a^7 667

Xi^n({#}7|{A}a)_^M-n({/^|{A}&). (B.15)

Thus we can have proved that an arbitrary coefficient can be expressed in terms of the 

leading and conjugate leading coefficient.

B .1.1  The leading coefficient
W e  derive a recurrence relation for the leading coefficient and find an explicit formula for 

the leading coefficient K m  by solving it. To this end, we must single out the unique term 

in (B.2) corresponding to the partition {//}7 =  {//}, |A}G —  {A}. Let us consider the 

action of the operator on the vector Hjli 5(Aj)|0). Using the formula (2.37)，we

obtain
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M

M  M
= - 〉 ん)P( ~ ， J J  (/(Mm， ^)) ■ J J  万(\)|0〉+  父 . (B.16)

£=1 j=l j=l

Multiplying the equality (B.16) by the dual vector (0| n^li1 we immediately obtain

a recurrence relation for the leading coefficient:

•A’m-i ({パ +  Mm}|{A ♦  A^}). (B.17)

M  M
入e) J J ( / ( M m，Aa)/(Aa; 〜))•

a = la=l
a^e

This relation together with the initial condition

1 ぐi ( M i |入i ) — 入l ) (B.18)
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uniquely fixes the leading coefficient and enables one to compute it recursively. However, 

we can find a explicit formula for the leading coefficient for any M.

Proposition B.1.1. The leading coefficient /ぐaバ {パ}|{A}) is given explicitly by the for­

mula

M
M
n { ( !  -  0 ん }_
a = l

n:ニ抓-ん)
where

t i p ,  x )
(" 一 A) (/it —  A)

(B.20)

To prove Proposition B.1.1, we need a following lemma. 

L e m m a  B.1.1. Let

U i i M - X a )

Y[a=l(l^k —  l̂ a)

Then,

M

k = l

n ^ = l ( ^ a  —  Aj) 

n S l 如 a -  Xj)

(B.21)

(B.22)

T h e  proof of L e m m a  B.1.1

Let us define Gj for j = 1，• M  as

M
G j  — 〉 ひ/ ^ ( " a：，X j ) •

W e  consider the auxiliary integral

dz 1

lc 27TZ [z —  \j){tz —  Aj) z —  fJ,a

M

n

之一 Aa

(B.23)

(B.24)

where the contour of integral C  is a circle with a radius \z\ =  oo. Then, we conclude that 

1 =  0. O n  the other hand, poles of the integrand are 2 =  Xj/t and % — " 1，… ,\iu and 

the integral (B.24) is equal to the sum of the residues inside the contour. The sum of 

residues at the points z =  is equal to Gj. Also, the residue at the point z =  Xj/t is 

equal to

(B.25)
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Equating the total sum of the residues to zero, we arrive at the equality

tM
Ua^(t\a ~  A,)

n ニ l “ "a - 入j) (B.26)

□as was to be proved.

P r o o f  o f  P r o p o s i t i o n  B . 1 . 1

Let us prove this proposition by using the induction. W h e n  M  = 1，(B.19) coincides 

the initial condition (B.18). W h e n  M  =  m  — 1，we assume that K m -i satisfies (B.19). 

Then, K m ({/i}|{A}) becomes

i U {ハ}丨{入})

m m

- [ 办饥，ん)n ( ア( ~ ，ん)/(ん，ん)). u k +M m }i{A ♦ m )

'= i 齧

( f (1 t y  -1 n a, 6 = L - A &)

X
e=i

(B.27)

{ /j. 7n }, { }

O n  the other hand, we consider the matrix 入ん).To the last row of the matrix ,let 

us add all the other rows, multiplied by the coefficients Uk 卜 m ，，

det Afc) =  TT —  • det
m  丄丄U j 爪 _ 亡(パm - 1，入1) 尤( " m - 1，Am)

ぬ 》 ，入1)... Ef=l  ̂ ^ r n )

(B.28)

Then, by L e m m a  B.1.1, the last row turns out to be equal to Gj/um . Expanding this 

determinant by the last row, we obtain

セ  U ( "，ハ ,）= - J 2 ( - ^ r + e - G e - d e t t ( ^ X k)

e=i

(B.29)

)■，{入— ん }

Substituting this relation to (B.27), we see that K m  satisfies (B.19). Thus we have proved 

the Proposition B.1.1. ロ

B .1.2  The conjugate leading coefficient
Next, we consider the conjugate leading coefficient The recurrence relation

for the conjugate leading coefficient is

K M m m )
M M

= ん ）J](/(ん ， ん +  "m}|{A ♦  A,}). (B.30)

£=l a = l
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The initial condition is

= 办 ，A). (B.31)

Then, from the recurrence relation, we arrive at a following proposition.

P r o p o s i t i o n  B . l . 2. The conjugate leading coefficient 充ルバ{パ}|{A}) is given explicitly by 

the formula

A m ( W I { A } )
M U a L ^ X a - ^ )

W e  can prove this proposition by means of the induction and a following L e m m a  as 

well as the case of the leading coefficient:

L e m m a  B . l . 2.

M
〉 ” p k ) = み

k=l
where

t，fc = n £ ( ^ r j  " d  み =  r £ ( o " a).  

As a result, we obtain the final answer for the inner product:

5 m ( W I { A } )

= n  {け - ! ) ^ a }  . J J ( c ( A 0 , A 6)c(//{,,yUa))

(B.33)

(B.34)

a = 丄 a > 6

X  ' “  ロ^ > i 严  n _ + )  n _ )  n  みん)]> ( ん) * det べ"ト Xj) . det t[X j, fik)
雜  ぬ r n  jeo jeo i e 写

where

> < n n  ゐ.("6, A a ) . n n  h(A a ," ゎ) _ n n  /i(Aゎ，A a) • n n  /?’(パ a ,/^) (B.35)

a € a  6 6 7  a € a  6 ^ 7  a € a  bEoc a 6 7  6 6 7

c(A, fj) =  t- ~ ~ ， h(X, /j) =  tX —  fx. (B.36)
A 一 /i

Here, P a and P 1 are the parties of the permutations

P(0!ly … ，Q；n，な1，… ，̂ M - n ) = 1 ，… ，M  

P ( 7 l , … '■ * ? 7 M - n ) = 1，… ，版 (B.37)
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B .2  Inner product o f an e ig en sta te  w ith  an arbitrary  
sta te

Let us now consider the inner product for the case when one of the states is an eigen­

vector of the transfer matrix. Hence, we suppose that the parameters {A} of the state 

Y[jL\ fi(A7)|0) satisfy the Bethe Ansatz equations of the q-boson model (2.44). Therefore 

we can express the function a(Xj) in terms of d(Xj) as

u(ろ）=みん)(一1严1/j ㈣  (B38)

Substituting this into (B.35), we obtain

M
〈0 丨 n ( ，("身 “入})〉 

i=i

M  M  M
n  {(卜 1)m  n  (c(Aa. A fc)c(/i6./ia)) • n 火 ん )-

a=l a>6 j=l

X E ( - l ) p°+へ(-l)nA/ n n 咖 ;)n d ("J) • det 柄 .ん）• detf(Aj,/ifc)

Q [J1- ^  ^  fc€77U 7

 ̂n  n  ’’("ゎ，ん)• n  n  h (Aa. /.ib) • n n  h (入a,入b) • n i l  (B.39)
aGQ 667 aGo 6€7 a€o b€o a6*7 6€*>

where #{a}.

Here, we introduce an auxiliary function depending for fixed v and M  (0 <  7? <

M )  on three families { ^ ,  • • • ^ n } .  { / ノい• • • レa /  „ }  and {Ai，• • • X^/}  of complex variables for

the convenience:

{レ}，ひ })

= Y '  (_ 1 )P" det 入j). (let t(Xj, uk)

上？し̂  fc=l，…，n Ar=l,*»* ,A/— n
# { o } = n

n M  —n n \1 —n
x { j j  (し " 6). j j  n  w  ん）- n  n  w  ミ ° ，ん）n  n  w  レ。) }

a=l 6=1 aG o  a=l 6G Q  a=l 66q

n M  —n
n n  h((a.xb) n  nMAb.^a). (B.40)
a=l a=l b^Q

Then, we can show that for the arbitrary families U  k {/ノ} and {A} of complex mnnbers 

this function is

G £ )( ( a M ，{A}) =  0. (B.41)



B.2. INNER PRODUCT OF A N  EIGENSTATE W ITH A N  A R B IT R A R Y  STATE 61

Let u s  set t he partition { ^ } 7 =  { 6 ,  ■..，̂n } 仙 d  {/i}う= {レi，. . . ，̂M-n} at (B.40) a n d  
m a k e  use of (B.41). T h e n ,  w e  obtain

M
〈0 丨1 ! 卩 内 ) | 州 ス })〉

j=i

M
= ! ! { (，- りん} _ n  (べん，w . ( 汍，"°)) • n  みん)

M  M  M

a = l  a>b j = l

1，。+ へ ( - i)n M ， n _ ) n  ♦ フ) ■ deti(/ifc, Aj) . det t(X jy i^k)
j€7 3^1 A；€7 ke^

7U7

H  M
x n n  ,?.(/■ん6，-^a) • n n  h(Xa,fxb). (B.42)

a — 1 6 G 7  a = l  6 6 7

Further, w e  use the L a p l a c e  f o r m u l a  for the d e t e r m i n a n t  of a  s u m  of t w o  matrices U (//j, Afc) 

a n d  Afc) at (B.42)

det (U ("fc，Xj)V(iJ,k, Xj)) =  ^ ( - l ) P o + p -> ■ det U {/jk, Xj) • det V ( " fc, Xj) (B.43)

Q U a

w h e r e

U(iik, X j ) = - l)Xj • a(/ifc) • t(nk,\j) • A a ), (B.44)

a = l

M
V ^ k ^ j )  =  Xj • difj.k) ■ t ( X j^ k) ■ J_|/?.(Aa , ^ ) .  (B.45)

M

a=l

T h u s ,  w e  arrive at the following assertion.

P r o p o s i t i o n  B . 2 . 1 .  Suppose that the parameter family {入} satisfies the system of the 
Bethe Ansatz equation (2 .44 )肌 d let the parameters {//} be arbitrary complex numbers. 
Then,

M
( o i n ^ ) w { A » )

j=i

M  M  M
= T T ^ ( ^ ) . n  {べん，Afc)ベ" fc,パa)} l ) A a } • det H (X j,fik) (B.46)

a = l  a>b
where

M  M
H { \ j, fx k) =  — { a(A«fc) n  "("fc入 ) - n ^ ^ a o A i f c )  > • (B.47)

Mfc 一 入j  I a = i a = l

a^j a^j
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The matrix //(ん，"ん）turns out to be closely related to the eigenvalues of the transfer 

matrix (2.42) as

if/x " 、- 1 T T  1 M ("ん.{A}) /R  4 ox

J_ k {t -  i)nk I 』 ベ"* :人 ） d\j •

Thus, the formula (B.46) can be rewritten in the form

A/

(0 \Y \C (^ ) \U i{X }))
j= l

•A/ A/ * /  o  \

= ( - i ) A,n 屯ん) r t f  ち / “ " } ，w ) • ( i 八(ル . { a } ) )  (B49)
a=l a = l " a \  j ノ

where SCm  is the Cauchy determinant:

も 1(レ}.㈧)= ザ (六 ) = (請 )

One can treat similarly the case in which a dual vector is an eigenstate of the traiisier 

matrix. As a result, we can show

M

j=i

=(-1)A/ n  取 )•々 (M，ひ}) • は八(抑.{A})) ' (B.51)
Thus, we find that the relation between (B.49) and (B.51) is

A/ M M
⑷ n = n r  ( o i n ^ ) i v - ( { A } ) ) .  (B.52)

Unlike the case of the X X Z  Heisenberg model, (B.51) completely does not coincide with 

(B.49). This is because we have carried out the calculation by using the anti-symmetric 

R-matrix (2.10).

Finally, we derive a formula for the squared norm of an eigenstate of the transfer 

matrix. W e  set {"} =  {A} for the scalar product (B.49) or (B.51). Noticing that H  

becomes 0/0 in this limit, we arrive at a following proposition:

Proposition B . 2 . 2. Suppose that the parameter family { A }  satisfies the system of the 
Bethe Ansatz equation (2.44)- Then,

M M
w {a }m )iv>({a }m )) =  ( o i n ^ a ) n s (A <-)io )

a=l a=l

= ，， {如 ） （B53)
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where the Gaudin matrix ({入}m)

も ({a}m) =

IS

M
/(入ゎん) 

fe=1 /(入fc，入)）.n

b^j
{t2 — 1)入 b \ (t2 — l)Aj

[Xjt —  Xb)(Xbt —  Xj) J (Xjt —  Xk)(Xkt ~  Aj)
(B.54)

As a result, we can have showed the expression (2.49) and (2.51) for an inner product 

between the eigenstates of the transfer matrix in the q-boson model.
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