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Abstract

The Lattice gauge theory is a useful tool for investigating strong coupling physics.
In this formulation, space-time coordinate is discretized and physical degrees of freedom
are defined at sites and links. Regarding a lattice spacing as a cut-off regulator, we can
naturally regularize UV divergence and calculate observables using some techniques, e.g.,
strong coupling expansion, Monte Carlo simulations, and so on.

As is well known, lattice fermion breaking -ys-hermiticity causes the sign problem,
expectation values in theories broken ys-hermiticity have complex phase and are obtained
as complex values. Especially, in high density region of the finite temperature and density
QCD, we hardly obtain expectation values because of this problem, thus it is considered
as one of the problems which should be solved.

In this thesis, we investigate vs-hermiticity using the minimal doubling fermions. We
analyze kinetic term of lattice fermion, which is assumed translation invariant, continuum
and periodic function, using vs-hermiticity, R-hermiticity and PT symmetry. We show
that the properties are related to each other. And we show that a PT symmetric kinetic
term can not reduce doublers.

We also formulate two dimensional fermions without 7s-hermiticity based on the min-
imal doubling fermion. From discussions of the eigenvalue distribution and the number
of poles for our fermions, we find out an appropriate fermion for application to practical
analyses. This fermion has the same symmetries as the usual minimal doubling fermions,

but s-hermiticity does not preserve. As simple tests for application of the fermion, we
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apply the non-vs-hermiticity fermion to the 2D Gross-Neveu model As a result. we

obtain similar phase diagrams to ones using the naive fermion
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1 Introduction

Lattice gauge theory is a powerful tool for revealing nonperturbative quark dynamics [1].
In this formulation, the space-time coordinate is discretized and physical variables are
defined at sites and links. An inverse lattice spacing is identify with a ultraviolet cut-off
regulator, therefor, ultraviolet divergence is naturally regularized in this theory. In addi-
tion, we can calculate observables using some proper techniques; especially, Monte Carlo
simulations are applied for investigating nonperturbative physics, e.g., quantum chromo
dynamics (QCD), nuclear physics, and other theories. Despite the very simple structure,
numerical simulations in lattice gauge theory feed us great results and development of
nonperturbative physics, with progression of computers. However, not only those advan-
tages but also some difficulties remain or are appeared: fine-tuning for broken symmetry,
finite volume effect, space-time continuum limit, broken symmetries by lattice fermions,
and so on.

As is well known, the naive lattice fermion has redundant physical degrees of free-
dom, doublers; this is called the doubling problem. We cannot remove doublers without
breaking some symmetries or properties, because of the no-go theorem of Nilsen and Ni-
nomiya [2]-[4]. To overcome this problem, many lattice fermions have been formulated,
e.g., the Wilson fermion (1] and the KS fermion [5]. In particular, chiral symmetry is
one of the important symmetry in QCD and nuclear physics. Though quarks satisfy
chiral symmetry classically, spontaneously chiral symmetry breaking and quark conden-
sation are caused by quantum correction, which is called axial or chiral anomaly. The
symmetry breaking is trigger for massless boson, called Goldstone boson, and the bo-
son is interpreted as lightest pseud-scalar meson, that is pion. In lattice gauge theory
with the naive fermions, the quark condensation is not caused because contributions to
chiral anomaly by fermions are canceled by each doublers. In this context, preserving
exact chiral symmetry is a significant problem in analyzing non-perturbative QCD, but
it is one of the symmetry in the no-go theorem and is incompatible with the removal of
doublers.

To overcome this problem, many physicists have formulated various lattice fermions,
e.g., Wilson fermion, which breaks chiral symmetry [1], Kogut-Suskind fermion, which
regards doublers as flavors [5], SLAC fermion, which breaks locality[6] and so on. In
analyzes using Wilson fermion, chiral symmetry is broken for single pole fermions, thus,

fine-tuning for mass parameter is needed to restore chiral symmetry. On the other hand,



Ginsparg and Wilson found out a relationship for Dirac operator which automatically
restore chiral symmetry without fine-tuning in the continuum limit [11]. The relation-
ship is called the Ginsparg-Wilson relation. Few years later, Neuburger found out a
solution for the relation [12], and Luscher formulated chiral exact lattice fermion based
on the relationship [13]. Through the Ginsparg-Wilson relation, the discussion for chiral
symmetry in the lattice gauge theory was over for the present. However, we have to pay
much numerical costs to analyze theories using the Ginsparg-Wilson fermion.

In recent years, Creutz formulated an exact chiral symmetric lattice fermion [16] in
hexagonal lattice space-time, and Borici applied it to orthogonal lattice [17]. One the
other hand, a few decades ago, Karsten constructed a fermion formulation with the same
structure, but with a different action to the Creutz one [14]. These fermions are called
the minimal doubling fermions [14]-[16]. The minimal doubling fermions break (hyper-
Jcubic symmetry and some discrete symmetries, such as charge conjugation (C), parity
transformation (P), time reflection (T), and so on. Many properties of the fermions
have been analyzed in the orthogonal lattice [14]-[28] and hyperdiamond lattice [30]. In
quantum theory, we must fine-tune some parameters to preserve these broken symmetries,
however, it is difficult to adjust them generally.

By the way, finite temperature and density physics are main subjects for the lattice
gauge theory. In a finite density theory, it is well known that a fermion bilinear term
in the action is broken «s-hermiticity by a chemical potential term. The ~;-hermiticity
guarantees the hermiticity of the Hamiltonian and is also a reality condition for fermion
determinant appearing when fermions are integrated out from the partition function. In
general, the fermion determinant in a finite density theory is not a real number but rather
a complex number. For the estimation of observables, we need to use an appropriate
reweighting method. However, in the high density region, the complex phase of fermion
determinant fluctuates in a wide range, thus, expectation values approach to zero and
can be hardly estimated. No one knows general resolutions for this problem, and this
problem is still an open problem, called the sign problem.

In this thesis, we focus on 4s-hermiticity. As mentioned above, 7s-hermiticity is
needed for avoiding the sign problem, and also needed for solutions of the Ginsparg-
Wilson relation. Additionally, the «ys-hermiticity is one of the symmetries in the Nielsen-
Ninomiya theorem. As a strategy to solve the sign problem or obtain lessons of resolu-
tions, we formulate lattice fermion for calculation of observables, leaving ~ys-hermiticity

broken. In this approach, we use lattice artifact of this fermion as a procedure for avoid-



ing or reducing complex phases in expectation values. And we also conceive that we
should understand lattice fermions more deeply because (1) fermion is one of the most
important object in the field theory without regard to lattice theory, (2) we need to
systematically control doublers or their properties and (3) in the numerical context very
superior lattice fermions which are unknown to us yet might exist. This thesis a start
pint for these motivations.

This thesis is constructed as follows. In Sect.2, we firstly present reviews of the
lattice gauge theory and the minimal doubling fermions. In Sect.3, we analyze the
translation-invariant, continuum, and periodic function lattice fermion kinetic term us-
ing vs-hermiticity, R-hermiticity, and PT symmetry. These symmetries and hermiticities
are related to each other. For example, assuming that a translation-invariant kinetic
term with continuum and periodic function does not have PT symmetry, it can have
R-hermiticity or vs-hermiticity. R-hermiticity is a reality or Hermite condition for renor-
malized coupling constants perturbatively. We show that a PT-symmetric kinetic term
cannot reduce doublers. As a simple example, we apply minimal doubling fermions
that do not have PT symmetry or R-hermiticity to the 2D N-flavor GrossNeveu model
and calculate renormalization group flows. In this flow, complex or non-Hermite coupling
constants are caused by quantum correction. In Sect.4.1, we formulate 2D fermions with-
out vs-hermiticity (non-vs-hermiticity fermions) based on the minimal doubling fermion.
As with the minimal doubling fermion, the non-ys-hermiticity fermion breaks some dis-
crete symmetries. We obtain the eigenvalue distribution and the number of poles for the
fermions and discuss the selection rule for an optimum fermion to apply to a practical
analysis. For simple application tests, the 2D Gross-Neveu model is studied using the
non-7s-hermiticity fermion. We draw two sorts of phase diagrams, parity broken phase
diagrams, called Aoki phase and chiral broken phase diagrams in massless and an imag-
inary chemical potential system. By the analyzing these models with the fermion, we
expect that we can more deeply understand the structure of lattice fermions, and thus
the sign problem. In Subsect. 4.1, we construct non-ys-hermiticity fermions based on the
minimal doubling fermion and investigate their symmetries and properties. In Subsect.
4.2, we study parity broken phase diagrams for the 2D Gross-Neveu model using the
non-7s-hermiticity fermion. In Subsect. 4.3, we also draw chiral broken phase diagrams
for the Gross-Neveu model adding a imaginary chemical potential in two dimensions. In
Subsect. 4.4, we discuss a reality condition for observables from the eigenvalue distribu-

tion of the fermions with an imaginary chemical potential. Final section is devoted to




the summary and discussion.



2 Basic review

In this section, we write basic reviews needed to understand this thesis.

2.1 Lattice theory

In this subsection, we review the lattice gauge theory [1]. The lattice gauge theory is one
of the techniques for investigating nonperturbative physics. Roughly speaking, the lattice
gauge theory is a field theory defined on discrete space-time. We usually define scalar
fields and fermions on sites, and gauge fields on links, which are connections between two
neighboring sites. To obtain results of target continuum theories by way of the lattice
gauge theory, we need to take three steps: (1) we discretize space-time of target theory,
(2) calculate observables using some technique, and (3) take the continuum limit. Now,
we introduce a method to obtain a classical lattice theory from a classical continuum
theory. For simplicity, we firstly treat four dimensional ¢* theory, then a free fermion
system, and finally SU(N) gauge theory.

We define the Euclidean continuum 4D ¢* theory as follows:

. 1 LS ST |
Sg = /d"f 52(0“0). + Emzo' + Ec‘)" . (2.1)

H

where p is space-time index which runs over from 1 to 4. The action has translation sym-
metry, SO(4) Euclid symmetry and Z, symmetry. To define lattice action, we discretize

space-time. We replace some parts of the continuum action as follows:

X — na,

/(l‘.r - n”z.

n

8,6(z) o(na + pa) — c)(na).

a
where n, a and f1 are a lattice site, which is 4D vector, a lattice spacing, and unit vectors,
which are directed to p-directions, respectively. And, we define lattice action of the ¢*
theory so that the action satisfies the following lattice principle:

e in the classical continuum limit, the lattice theory must realize the continuum

theory.



e we must preserve symmetries as many as possible.

From the principle, we can get the ¢* lattice theory as follows:
St =at} Z (9]6(na))? + g’ (na) + 16 (na) (22)
s =a (na na) + 74" (na) |, .

In lattice theory, we can define some difference operators, e.g. forward, backward, and

symmetric difference operators !

¢(na + pa) — ¢(na)

Ofolne) = 2) - éna) 23
Aona) = Lnd - pa) (2.4)
gpna) = %(a;w,i) (na). (2.5)

The lattice action preserves discrete translation symmetry, discrete Euclid symmetry,
called hypercubic symmetry, and Z, symmetry. However, continuum translation sym-
metry and continuum Euclid symmetry are broken. In the continuum limit, we can
easily obtain the continuum action Eq.(2.1) from the lattice action Eq.(2.2) using Taylor
expansion.

Note that the lattice action Eq.(2.2) is one of the lattice actions which we can define.
For example, we can add a® 3", ¢'®¢5(na), with a dimensionless parameter g%, to the
lattice action Eq.(2.2) because this term vanishes in the continuum limit. This action
does not interfere with the lattice principle.

Next, we construct a lattice action from the continuum free fermion theory. We define

the continuum free fermion action as follows:
sty = [ i) B+ myw, (26)
u
In the similar way to the ¢* theory, we define lattice free fermion action,

%:t&w—a‘*ana Z * v + m)y(na), (2.7)

where 1, is y-matrix. Now, we apply symmetric difference operator, 8;, to the action

Tn the lattice principle we can use not only 8f but also 6" or 9;;. However, the scalar lattice action
using J;, generates 2% doublers in quantum thcory



rather than (')/, or 0;': because the lattice action using d;; does not preserve hermiticity.

We will discuss this issue in the next subsection.
Finally, we construct QCD action on lattice space-time from the continuum QCD

action. The continuum action is defined as follows:
vcont. Y 1 2 ‘
Sqep = | d'xtr IF‘“' + Y(Vuy, + m)y|, (2.8)

where F,, is a field strength defined as F,, = d,A, — 0,A, + ig[A,, A and V, is a
covariant derivative, which is defined as V, = 0, +igA,. The A, and g are SU(N) gauge
fields and a gauge coupling constant, respectively. The action preserves gauge symmetry

whose transformation is defined as follows:

Uv(r) — Qa)v(x),

v(z) — U(x)Q(x), (2.9)
A, = Qx)A,(2)9(z) + (’-Isz*(.r)a,,ﬂ(.r).

where €(x) is an arbitrary SU(N) function.

To construct a lattice action from the continuum action Eq.(2.8), we need to define
the gauge field in lattice space-time. However, we cannot simply define the gauge field
on sites for the two reasons : (1) the gauge field has Euclid indices, namely directions,
and (2) we cannot define a gauge invariant action because the derivative operator in
the kinetic terms is replaced with the difference operator; hence, the gauge symmetry
is broken at O(a) in the case of defining gauge fields on sites. For these problems, we

define a link variable lying from na to na + fia, instead of the gauge field,

na+fia
U(na,na + fra) = exp [i_q/ dz, A,,(.r)} = Uu(na), (2.10)
and its gauge transformation,
U(na,na + fia) = Qna)U(na,na + pa) (na + jia). (2.11)

Hermite conjugate of the link variable is defined as an opposite directed link variable,

U'(na,na + jia) = U(na + jia,na) = (73(”(1). (2.12)

10




Note that the gauge field in the continuum theory is represented as an element of Lie

algebra, on the other hand, the link variable is defined as an element of Lie group.
The domain of the SU(N) Lie group is compact, therefore, we do not need to perform
gauge fixing because we do not over-count link variable spectrum in the path integral
formulation.

Here, we discretize all terms in the continuum action. The kinetic term of the gauge

field is represented as plaquette, which is closed Wilson loop defined as

1

Shat- — g Z tr [Uu(na)U,(na + ,&a)Uz(na + 2a)U}(na) + (h.c.)] (2.13)

Nl VFEN

where (h.c.) denotes hermite conjugate of 1st term of r.h.s. in this action 2. For the
fermion part, we can define a gauge invariant lattice action, replacing the difference

operator with the following covariant difference operator,

Uu(na)d(na + 4a)U}(na) — y(na)

Vid(na) = " : (2.15)
Vep(na) = P00 = Uilne = ﬂa)«/;(na — f19)U,(na - fia) 216
Vip(na) = Up(na)y(na + fa)Uj(na) — Ul(;;a — fa)p(na — ia)U,(na — fia)

- ww(m) (2.17)

Using the operator, we can define the fermi-bilinear term on lattice from the continuum
QCD action,

St =a Zzﬁ na ZV“'}'#-I—m na). (2.18)

From the Eq.(2.13) and (2.18), the lattice QCD action is defined as follows:

S&ep = Sp* + S5 (2.19)

2Path of the plaquette is not unique. For example, we can define as,

Skt = Z c-tr[Uy(na)Up(na + pa)U, (na + 2fa)
L v#EL
-UZ(na + jia + ﬁa)Ul(na + 0a)U} (na) + (h.c.)] . (2.14)

where ¢ is a constant, which is adjusted in the continuum limit.

11



2.2 Doubling problem and Nielsen-Ninomiya theorem

In the lattice theory, a lattice fermion has a serious problem, called “doubling prob-
lem”. The lattice fermion Eq.(2.7) generates 2! degenerate spectra, called “doublers”,
in quantum theory. The degenerate degrees of freedom affect observables or physics,
which we are interested in. Unfortunately, a no-go theorem was discovered by Nielsen
and Ninomiya [2]-[4]. The theorem states that we need to break important symmetry or
property for reducing the doublers. In this subsection, we briefly present the doubling
problem and the Nielsen-Ninomiya theorem.

As a start point, we rewrite the lattice fermion action Eq.(2.7) in momentum space,

¥/ d'p -
v(na) = - ‘L'([))(‘_\:])(l(lll “p),

w/a (Z‘T)

*e dip A
Y(na) = - lL'(p)vxp(mn - p).

w/a (27‘-)
(2.20)
and the identity,
w/a 1
e d*p , 1
/ - I ; exp(ia(n — m)-p) = —(5,, L (2.21)
~7/a (2m) a?
From the transformation, we obtain the action in momentum space,
T t .
5};“,, v = / U(—p) Z —sin(pua)y, +m| ¥(p)
-mw/a "' (l
M
(l'p
= / (¥ (=p)Du(p)V(p). (2.22)
ﬂ'/(l

The Dirac operator D,(p) is called naive fermion. In quantum theory, a propagator
of the fermion is an inverse of the Dirac operator. The physical degrees of freedom of

fermions appear on the poles preserving the the following dispersion relation,

luD,,(p)l"’ = Zsin"’(up,,) + (am)?

H

= 0. (2.23)




In massless case, we can find the following 16 solutions for the dispersion relation,

(p1,p2,ps,v4) = (0,0,0,0),(0,0,0,7/a),(0,0,7/a,0), -,
(n/a,7/a,0,7/a),(n/a,7/a,m/a,0),(7/a,7/a,7/a,7]a).(2.24)

Therefore, the naive fermion generates 2* times spectra in quantum theory even if we
define only a fermion in classical theory.
The doublers affect physics of chiral symmetry, e.g. chiral anomaly. To see that

simply, we see chirality of the doublers. We define the chiral matrix as follows:

Y5 = Y1727Y3V4, (2-25)

Now, we expand the Dirac operator around momentum (0, 0,0, 7/a) and take continuum

limit,

cont oo d4p 7 . 2 .
S000m/a) = /_ _ (2;)—41/)(—10) iy pi + ipa(—7a) +m | $(p). (2.26)

i=1
Similarly to Eq.(2.25), we can define the chiral matrix of the continuum fermion Eq.(2.26),

5 = V1Y2 V3 V4,
where 4; = ~; for 1 = 1,2,3 and 9, = —v4. Hence,
s = —. (2.27)

The Eq.(2.27) shows that the doubler which appears on the pole (0,0,0,7) has an op-
posite chiral charge to the fermion appearing on the pole (0,0,0,0). From the same
argument, half numbers of doubler have the same chiral charge and the others have an
opposite chiral charge. This fact shows that the naive fermion does not cause chiral
anomaly in the U(1) gauge theory because the anomaly is canceled by the doublers.
From here, we shortly refer to Nielsen-Ninomiya theorem [2]-[4]. The statement
of the theorem, which is proven in free theory, is that a single pole fermion cannot

simultaneously preserve all of the symmetries or properties :

e Translation invariance

13



e Chiral symmetry
0 Ln(';l]il'\'
® (75-)hermiticity

where the symmetries and properties are defined as follows:

S /(/'An_'(.r)1)1.:‘)1&(‘:') - S u'Z1,'(11(:)1)(11.m)l_'(mu).

Translation invariance:
D(n,m) D(n —m), (2.28)
Chiral symmetry:
{D(n,m),~s} 0, (2.29)
Locality:
n-m < 00, (2.30)
vs-hermiticity:
ve D' (n, m)ys D(n,m), (2.31)

There are some proof of the theorem, but we do not mention detail here. Some single
pole fermions have been formulated to reduce doublers. For example, lattice fermion

using the forward difference operator breaks v5-hermiticity,

aDg(p) Z lexp(ipua) — 1] 7,, (2:32)

M

the Wilson fermion breaks chiral symmetry,

aDw(p) Z lsin(pya)y, + k(1 — cos(pya))|, (2.33)

M

14




where k is a dimensionless hopping parameter, and the SLAC fermion breaks locality,

aDsac(p) =4 ) apu s (2.34)

©

and so on.

In many numerical simulations, the Wilson or SLAC fermion is often used because
the other symmetries often seem to be more important than chiral symmetry. Though
the Wilson term, which is the second term of the Eq.(2.33), vanishes in the classical
continuum limit, the chiral symmetry is broken in quantum theory even if in the mass-
less theory. To preserve chiral symmetry, we must perform fine-tuning of chiral broken
relevant and marginal operators, which have canonical dimensions less than and equal to
space-time dimensions, respectively. In general, there are the more numbers of relevant
and marginal operators in higher dimensions. Thus, we need to perform many simu-
lations to determine fine-tuning parameters numerically as functions depend on lattice
spacing. On the other hand, Ginsparg and Wilson discovered a relationship called the
Ginsparg-Wilson relation [11]. And some Dirac operators, which is called as the overlap
fermions, formulated based on the relationship. The overlap fermions automatically re-
store chiral symmetry without fine-tuning in the quantum continuum limit. However, we
have to pay a great cost for numerical simulations to analyze theories using the fermion.

Because of that, for a long time, exact chiral symmetric fermions have been looked for.

2.3 Minimal doubling fermion

In this subsection, we briefly review minimal doubling fermions [14}-[17]. We firstly define
minimal doubling fermion in two-dimensions, then in four-dimensions.
We define the kinetic terms of naive action(NA) and two minimal doubling ac-

tions(MDAs) in two-dimensional momentum space as follows 3 :

Sin = [ G -DIDEI) (2:35)

where the subscript “kin” means a kinetic term, and

3We fix the lattice spacing as a = 1.

15



Zu:l.l I.h'ill])“"“, = Dn([))
D(p) = i(sinp, + cospy — 1)y +i(sinpy +cosp; — 1)y4s = Dunar(p) -
i(sinp; + cospy — 1)y + isinpyyy = Dnaz2(p)

(2.36)

The subscripts 1 and 4 mean the space and time components respectively. D,,q; and
Dinq2 are called the “twisted ordering action” and the “dropped twisted ordering action”
respectively *.

In two dimensions, the NA has four zero-modes and the MDAs have two, which

appear in the following momenta:

D, : p=(0,0), (0; %), (w0)and (m,n),
Dpa1 @ p=(0,0)and (7/2,7/2), (2.37)
Dpa2 : p=(0,0)and (0, 7).

The doublers appear around each zero-mode as D(p) = D(p + q) with D(p) = 0, and
the spectra are overcounting in observables. In the case of the NA, the half number of
doublers have the same chirality and the others have opposite.

In cases of the MDAs, they have opposite chirality to each other. The NA and MDAs

have 75-hermiticity:
s D(p)ys = D'(p). (2.38)
For massless fermions, they also have chiral symmetry:

s D(p) + D(p)ys = 0. (2.39)

The MDAs break (hyper-)cubic symmetry and some discrete symmetries. We define

charge conjugation(C), parity transformation(P) and time reflection(T) acting on a

*We have another choice of Dy,q2 action, Dy,q2(p) = i(sin pg + cospy — 1)y4 + isinpyy;. This action
does not have CP and T symmetry but has CT and P symmetries. In addition, this action cannot be
proved reflection symmetry, or reflection positivity. We can apply the same argument in this thesis to
another D,,q42 [21]

16




Table 1: The discrete symmetries for the NA and the MDAs

| [C|[P|T]|[CP|CT|PT]|CPT|

naive | O OO O OO | O
md1 x | x| x| O

X | X
md?2 x OO x| x| O

X
X

fermion kinetic term °:

C : D(pi,ps) = —CD"(—p1,—ps)C,
P ' D(p1,ps) = vaD(—p1,04)v4s
T : D(p1,pa) = nD(p1, —pa)n,

where C is a charge conjugation matrix.

We present these symmetric properties of the NA and MDAs in Tab 1 .

Finally, we extend the minimal doubling fermions to four dimensional ones.

Dl(:t)il (p) = ZZ Sinp#7# +1 Z(COSp” (mod.4)+1 — 1)7;1 (mod.4)+1>
© "

3
4 : . ,
DU(p) = i sinpyy,+iY (cosp— 1)y
Iz i=1
These fermions have only two poles at the following momenta,

DY . $5=1(0,0,0,0)and (r/2,7/2,7/2,7/2),
DY, : §=(0,0,0,0)and (0,0,0, ).

(2.40)

(2.41)

(2.42)

(2.43)

The four dimensional minimal doubling fermions have the same symmetries as the two

dimensional ones.

The minimal doubling fermions break discrete symmetries and (hyper)cubic symme-

try. In quantum theory, we must perform fine-tuning parameters to restore the broken

symmetries. In gauge theory with the twisted ordering action, there are two relevant op-

erators, whose canonical dimension is three, which are clearly needed fine-tuning (same

SWe can apply the same laws to four-dimensional theory, using p; — p instead.

64T represents site and link reflection in lattice space. In the case of Dpqgs, it has link reflection

positivity [18].

17



indices are summed),

(1) ,
O; YivaY,

(2) L
O3 = Y1y,

and eight marginal operators, whose canonical dimension is four,

C)'l“ — l.'l),f'll-"
0(12) = YDy,
O“:s) = YiD, v, 59,

O‘,” = YiDgy4vs,
0y = FuFu,
0 = FuF,,
O(IT) u FulFul-
O = FuFu,

where the F,, is a magnetic field, F,, = %(,“,,,,,F,.,,. On the other hand, there are a

relevant operator in the case of the dropped twisted ordering action,

(1)
Oy

Diva,
and four marginal operators,

(1) .
O, = YiD,y,
(2) -
O,” = YiDs,
0¥ = F,F
1 T puvd pvs
0(1) i F F
1 - pudd pd-

We can easily see that there are many operators, which are needed to fine-tune, because
several symmetries in the continuum action are broken by the doubler suppressing terms
of the minimal doubling fermions. Actually, reducing the numerical time of fine-tuning

for these operators is a practical problem in the numerical simulations.

18




3 ~vs-hermiticity, R-hermiticity and PT symmetry

In this section, we define <ys-hermiticity, R-hermiticity and PT symmetry in lattice
fermion formulation and show how they restrict a kinetic term. ~s-hermiticity is closely
related to sign problem, i.e., the fermion determinant is not a positive value, and it is
sometimes used as an hermite condition. R-hermiticity is a classical hermite condition,
which is used in e.g., Ref. [7]. In quantum theory, we will show that this condition
restricts effective coupling constants to real values in perturbation. PT symmetry is
important for a fermion kinetic term and doublers. We will discuss these issues in detail
below.

For a concrete discussion, we will focus on only kinetic terms in four dimensions. We
can easily extend the following discussion to even dimensions. We define a translation-

invariant kinetic term in momentum space as follows (the lattice space a = 1):

d‘k -
= [ G =R, (3.1)
with
D) = > fulk) (3.2)

where f, (k) are complex numbers in general and f(k), — ik, in the classical continuum
limit.

We define ys-hermiticity, R-hermiticity and PT symmetry as follows ":

vs-hermiticity : D(k) = vsDT(k)7s, (3.3)
R-hermiticity : D(k) = D'(=k), (3.4)
PT symmetry : D(k) = vsD(—k)7s. (3.5)

These conditions are not independent from each other. We can easily derive that, a
kinetic term satisfies two of the three conditions is a sufficient condition for that the
other condition is automatically satisfied. However, this is not a necessary condition. If
fu(k) is pure imaginary, vs-hermiticity assures an anti-hermite condition for the kinetic

term and a real positive fermion determinant. R-hermiticity is also used as an hermite

In following discussion, we can use C symmetry instead of PT symmetry because of CPT symmetry
is satisfied.
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condition, e.g. in Ref.[7]; however, it is not suitable because the forward-difference kinetic

o) = ik "~ 343
term, Dg(k) =3, (e™ — 1) 7, satisfies this condition.
Hence, we will show that R-hermiticity is a condition for real effective coupling con-
stants in perturbation. We assume that a fermion kinetic term has R-hermiticity and

that the effective coupling constants have the following form:

Gess = G+ I, (3.6)

n=1

with

"1 Pk T o o
1(”) & / H (277)" . It(u.)il -vn,j,.(_kl' s _I") i H bnl'il(l\‘]). (3()
=T i=1 j=1

where g, is a real bare coupling constant whereas g.¢ is an effective coupling constant.
S.5(k) is a fermion propagator and 7 is the n-loop quantum effect, which is constructed
from r-fermion propagators. If hermite conjugate acts on the second term on the r.h.s.
of Eq.(3.7), the effective parameter is real if the following condition is satisfied;

I =R —he) = IS o (ke k), (3.8)

oy 81 ap By Bray - Bray
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where this equation is derived by replacing S, 3 (k;) — SL,(., (—k;), which is R-hermiticity.
If the action is constructed from hermite terms except a fermion kinetic term, this equa-
tion is satisfied; hence, Eq.(3.8) is the hermite condition for /™. Therefore R-hermiticity
is a reality or hermite condition for coupling constants as long as Eq.(3.8) is satisfied.
Figures.1-3 show the renormalization group flows(RGFs) of the Gross-Neveu model in
two dimensions using the naive action(NA) and the minimal doubling actions(MDAs).
This is the simplest model for visualizing complex or non-hermite coupling constants
caused by quantum correction. We define MDAs and Gross-Neveu model in subsection
2.3 and appendix A.2 respectively. And we explain how to calculate the Wilsonian RGFs
in appendix A.3. Because the MDAs have only 75-hermiticity, the mass term has an off-
diagonal or complex quantum correction, which is proportional to a ¥ matrix. A more
complicate example is given in Ref.[22]. Using the Wilsonian method [10], we calculate
numerically the RGFs for the mass and coupling constant starting from the trivial fixed
point, m = g*> = 0. In the case of the MDAs, we use doublers as the different flavor

fermions, and, in the case of the NA, we use only two poles, p = (0,0) and (7, 7). We
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Figure 1: The RGFs of the NA and MDAs. The initial parameters are my; = maqy =
may = myy = 0,£0.25,£0.5,¢° = (a)0,(b)0.2,(c)0.4. The RGFs run from the initial
conditions toward infrared, which the ¢g* are increasing.

represent the spinor indices explicitly, and we distinguish 0, 1 from 2, 3 as different flavors.
We assume that high-frequency modes of fields v'(1 < |k|), v(1 < |k|), and o(1 < |k|)
are not effective, and we neglect their contributions. We choose the initial conditions for
the mass to be mgyy, = my; = moy = maz = 0, £0.25, £0.5, and for the coupling constant
to be g2 = 0,0.2,0.4. We set the off-diagonal mass components equal to zero in all cases.

We will calculate numerically the one-loop quantum effects and RGFs, which run from

21



o x
0.208 | = E ome | X X ETF "x,\
0.207 | ® R 0.207 %8
Xas
0.206 L P - 0.206 0
£ 5
o s 4 o 3
& 0205 £ & 0205 =
£ o
0.204 |- E 0.204 s
0.203 8 . 0.203 } :
o °
0202 |- 2 Remoimd1 x ] 0202 - 2 Rem0imd2 x
L] Im m01 md_1 o o Imm0imd 2 o
0.201 % RemiOmd 1 1 0.201 s RemiOmd 2
° Im m10 md_1 ° e ImmiOmd 2 o
02 . A A A A N 02 A L A - g H R
2 15 1 08 0 05 1 5 2 2 15 41 08 0 08 1 1.5
m m
(ﬂ) Dmdl (h) Dlud?

Figure 2: The off-diagonal mass and coupling constant of the MDAs, (a)Dy,q1. (b)Dynaz.
The initial parameters are my; = mgy = magy = my = 0,¢9° = 0.2. The RGFs run
from the initial conditions toward infrared which the ¢g* are increasing. The RGFs have
irregular forms and the off-diagonal mass components show non-hermiticity.

the initial conditions ®. In our calculation we define v matrices as follows:

m={" ) w=] ) (3.9)
i 0 1- 0

The results are shown in Fig.1. The RGFs of the NA and MDAs have similar forms
and the difference among each value is O(107%). In the MDA cases, however, off-diagonal
mass components ( or complex eigenvalues in a diagonal matrix ) are generated by the
RGFs, except the initial value, which is a trivial fixed point, m = 0, ¢* = 0. We show
this fact in Fig.2 and 3 with an initial condition of m = 0,¢* = 0.2. Figures.2(a) and
(b) show the RGFs of Dyq1(p) and D,q2(p), respectively. Figures.3(a) and (b) show
the relationship between the off-diagonal mass components and iterations using Dy,a1
and D,,q0. respectively. Though the off-diagonal mass components amplify as the flows
approach IR because of the scaling effect, they do not break chiral Z,; symmetry .
These Am, which is defined as Am o iv,, are not always complex but off-diagonal.

We can choose a v matrix representation, which diagonalizes one matrix, e.g., v, =

8To estimate integrating part of the one-loop calculation, we used the sectional measurement method.
We chose the division length to be Ap,, = 0.01. The error is O(0.01%) by one iteration.

9These generated couplings are essentially different from mass. They do not break chiral symmetry
because Am o i7,. These terms couple U1 to ¥ and ¥k to UR.
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initial parameters are m;; = magy = magy = myy = 0,9°> = 0.2. The off-diagonal mass
components are generated and have non-hermiticity.

1 0 0 —i
y Vg = ' . In this representation, shifted mass is complex and
0 -1 0
i 0
0 —2
In principle, these terms can be canceled by counterterms; therefore, we can fine-tune

diagonal, Am x iy, =

the perturbation [22]. However, nonperturbative analysis is difficult and this problem
must be solved in future work.
Next, we will show that PT symmetry is always broken if we add extra kinetic terms

to a NA to reduce it to doublers .

Statement.
In even dimensions, a PT-symmetric kinetic term with assumed periodicity and continu-

ity always has 2P or more than 2P poles.

Proof.

For simplicity, we also assume translation invariance '!.

A general 27 periodic and

"0This argument has been discussed in Ref.[23], although not mathematically.

We can similarly arrive at same statement without translation invariance. In the case of non-
translation invariance, a kinetic term has two-momenta dependence D(k,p). and at least 4¢ doublers
appear.
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continuum D(k) has the following form:

d 00
D(k) = 3" Y [(Aw(n) + iBu(n)) cos(nyk,) + (Cpu(n) + iDy(n)) sin(nyk,) + E,u) 3.10)

pw=1 HGN'I

where A,,(n), B,,(n),C,.(n), D,,(n) are real constants and E,, are complex constants.

From PT symmetry,
A,(n)=B,(n)=E, =0, forall uvmn. (3.11)

The D(k) always has two poles at & = 0 and 7 for each dimension. Therefore D(k)

has 27 or more than 27 poles.

This statement means that we cannot reduce the number of doublers using PT-
symmetric kinetic terms '?. In a numerical simulation context, ys-hermiticity is a very
important condition to avoid the sign problem. Assuming translation invariance, R-
hermiticity is not satisfied if D(k) satisfies v5-hermiticity but not PT symmetry. There-
fore, the effective parameters have explicit non-hermiticity.

In the process of rewriting from Minkowskian to Euclidean, hermite fermion kinetic
terms transmute to anti-hermite ones. In the Minkowski formulation, we forbid non-
hermite or complex couplings using the hermite condition. In contrast, the definition of
“hermite” in Euclidean space is ambiguous. Though some MDAs have reflection sym-
metry or reflection positivity, which are equal to the hermite conjugate or unitarity in
Minkowski space, these conditions do not properly have hermiticity in quantum theory.
Similarly, v5-hermiticity is commonly used as an hermite condition, but we cannot forbid
non-hermite or complex couplings directly. A kinetic term that reduces the number of
doublers allows the possibility of generating these anti-hermite effective coupling con-
stants. R-hermiticity is a criterion to remove non-hermiticity, at least, for 2D Gross

Neveu model or models coupling scalar fields.

12We cannot apply this statement to the non-v,, linear case, e.g., the Wilson fermion.
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4 Non ~v;-hermiticity minimal doubling fermions

4.1 2D non-v;-hermiticity fermions

In this subsection, we define 2D fermions without ~s-hermiticity (non-vs-hermiticity
fermions) based on the minimal doubling fermion and investigate the symmetries and
properties of the fermions. The minimal doubling fermions were formulated by Karsten
et al. [14]-[17] and do not interfere with the no-go theorem of Nielsen-Ninomiya because
two doublers, which are a +-chiral charge pair, appear. The fermions preserve trans-
lation invariance, chiral symmetry, locality and 45-hermiticity, but break (hyper)cubic
symmetry and some discrete symmetries, e.g. charge conjugation, parity symmetry and
so on. We refer the reader to Refs. [14]-[29] for more details on the minimal doubling
fermion in detail.

Now, we construct non-vys-hermiticity fermions by adding PT symmetry breaking
terms because lattice fermions with PT-symmetric doubler-suppressing kinetic terms
always generate 27 doublers [29]. We define five free massless non-vs-hermiticity fermions

in coordinate space as follows (lattice spacing a = 1) '*:

! = § A (2) ,/,
S = Y HDnm Vm,
n,m
(2) Z | 3 i B g ' . ‘
l)l nm 3 ((sll‘/].lll = (sn-[l.m) 7 + __)‘ (-)-(5”.771 - h,,_i(,“ - (»”71‘”') ™M, (-ll)
n=14" -
(2) Z L oo c . K o5¢ N S . y
2 nm 3 ((»N'*ﬂJH o (l’n—;‘:.m) ol + _) (2011.11' o A,,-]_,,, o (5”_ i.m) I S E) (‘12)
u=14 - -
(2) § : 1 o : v 98 3 ; ‘
3nm 3 ((511';)Jn o Au—;).m) . A"/t + 3 ("'AH.’H o (sn»[mn o ‘511—;1.111) ’ A,'u- (‘13)
pu=14 " “ ou=14
(2) . : K Z AR g . -
Dl nm 3 ((’n»;hm o dn—;).m) . * ) (2(511‘111 = An*;:.m - (‘u—;}.m) 72
pu=14" - uwr=14 p#v
(4.4)
(2) | > . K prpe - . R
DF) nm E 3 ((»u'ﬂ.m o (5117;1.”:) T + ; (2{ non (511‘;1.111 o (,H*}II.YH) AT
u=14 " T ou=14
(4.5)

13We define the non-ys-hermiticity fermions up to exchanging a temporal index and a spatial one: In
(2) ~(2) . ) o 2 ) .
the D" case, D™ (p1.ps) = Z“_l yisinp, -y, + k(1 —cospy)-v1. The D" preserves P symmetry but
breaks T symmetry defined below.
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and in momentum space,

el d*p ‘ 2 ;
S = / PE w(=p)D™ (p)v(p),

1)‘1"”(/)) = Z t sinp, - v, + k(1 —cospy) - m, (4.6)
p=14

l).i,""(p) = Z i sinp, - v, + &(1 —cospy) - M, (4.7)
pu=14

[):(,"”(p) = Z $ SIND, Y+ K Z (1 =.co8p,) * Vi, (4.8)
pu=14 pu=14

1)1‘2;“)) = Z i sinp, Y.+ K Z (1 —cosp,) : Vv, (4.9)
pu=14 =14 p#v

Dy (p) = i sinpu Ytk Y (1= cospu) -, tiaR)
pu=14 pu=14

where & is a hopping parameter which is a real number . Note that 1)}‘2’ at k = —1(+1)

is just a Dirac operator with a forward(backward) difference operator. Next, we define

charge conjugation(C), parity transformation(P) and time reversal(T) as follows:

C : D(p1,p) — —('D-(—pl.—p,;)("l.
P : D(p1,p1) = vaD(=p1,pa)a, (4.11)
T : D(p1,ps) = nD(p1, —pa)n,

where C' is a charge conjugation matrix. In two dimensions, we can define C' = iy, as a
charge conjugation matrix where v; = ¢ and 74 = ¢'. We also define a Dirac operator

preserving chiral symmetry and 75-hermiticity as follows:

chiral : D(p1,ps) = —v5D(p1, pa)7s,

vs-hermiticity :  D(py.p1) = D (p1, pa)7s,

where 7 is a chiral matrix defined as 75 = i7;74. All the Dirac operators have preserved
chiral symmetry and CPT symmetry but broken C, P, CT and PT symmetries. D‘,Z).
D&zl. and D;” also preserve T and CP symmetry, but 1);(,2’ and D(‘Z) do not. D(,z'. 1),‘_,"”
and Dﬁf’ have the discrete symmetries as the Karsten-Wilczek minimal doubling fermions

(14, 15|, and l):',g' and D(‘z) have the same ones as the Borici-Creutz ones [16, 17]. We

14We regard indices 1 and 4 as temporal and spacial directions, respectively.




| [CIP]T[CP|CT]|PT]CPT] chi|yh
PP I x[xlolo]l x| x] ool x
PP x[x|olol x| x] olo] x
D:(,;z) X | X | x| x| x| X O O] x
Dflz) X | x| x| x| x X O 1O x
D§2) x|x|O| O x X O |1 O] x

Table 2: The symmetric properties of discrete symmetries, which are C, P, and so on,
chiral symmetry and ~ys-hermiticity for the Dirac operators D§2_)5.

summarize their symmetric properties in Table 2.

To find the model application possibilities, we obtain the eigenvalue distribution and
the number of doublers of the fermions. Firstly, we present eigenvalue distribution in
Fig.4. We clearly see that the eigenvalues of DéZ), D§2), Df) and Déz) spread around the
origin. The eigenvalues spread over the ReA-ImA plane entirely within the continuum
limit. This is a typical feature of the sign problem. In the Dgz) case, by contrast, there are
spaces that are enclosed eigenvalues it the plane. In the continuum limit, the eigenvalues
tend to the infinity boundary in the plane and are distributed along the Im\ axis. The
distribution of D§2) in the limit has the same features as the Dirac operators that satisfy
~s-hermiticity, e.g. the naive fermion. In Fig.5, we also present the number of poles for
the fermions at k = 0.5,1, and 2. The figure shows that there are two poles, p = (0,0)
and (0,7), in D§2) at k < 1. However, the other fermions have more than two poles.

As noted above, the eigenvalue distribution of D§2) in the continuum limit is identical
with the continuum fermion, whose eigenvalues are distributed along the imaginary axis.
On the other hand, the eigenvalues of the others are distributed on the ReA-ImA plane
entirely within the limit. According to the lattice theory principles, a lattice fermion in
the continuum limit should recover the continuum fermion, ip - y1). Using appropriate
regularization, e.g. small mass or anti-boundary condition, we can probably use D§2_)5 to
analyze a model. By the lattice principle, however, the Dirac operators Dgz_)s should be
excluded from the candidates for application to a practical calculation.

According to the analysis of the number of poles, there are generally an odd number
or more than four poles. The intuitive reason for odd or many doublers is that the

dispersion relations of the fermions are complex. For example, in the Df) case, the
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Flgure 4: The eigenvalue distribution of Dirac operators (a) Dm (b) D(22). (c) D:(,Q). (d)
D? and (e) D{¥. The horizontal and vertical axes denote the real and the imaginary
parts of eigenvalues, respectively. The hopping parameter, the fermion mass and lattice
size are fixed at k = 1, m = 0, and L? = 36 x36. The blue circle points denote eigenvalues
for momenta p = (0,0), (0,7), (7,0), and (7, 7).
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dispersion relation is derived as follows:

Z sin® Pu — K21 — ('().\'1),)2 — 2iksinpy (1 —cospy) = 0. (4.12)
=14
The first term on the L.h.s. has an opposite signature to the second term. This can easily

lead to six real solutions for Eq.(4.12).

(p1.pa) = (0,0),(m,0),
(0,4tan"" [k + V1 + &2]), (.4 tan"' [k + V1 + K2)),
(().—4(;11171[;\'—m}).(ﬂ._“ml—l[”_m]).

(4.13)

In a similar way, the solutions for Df) at K = —1, which is the forward difference fermion,
are obtained as

(p1,pa) = (0,0),(7/2, —7/2),(—7/2,7/2). (4.14)

Now. we study the relationship between doublers and ~5-hermiticity in detail. We
define a Dirac operator D(p) which is assumed by continuity, periodicity, translation

invariance, locality, and ~,-linear as follows:

D(I’) - Z [‘4‘11'71,,,, '\‘i“(”;u'pu) + B;tl/n,,,, (.()H(”[ll’[)}l)} Yo
[TR7X P
= ) Dup)w (4.15)

where A, . By, are complex constant numbers and n,, € N+ {0}. We assume that

D(p) = 0 at p = p. From the Taylor expansion around p,

Dp+0p) = Y [Auwn. cos(upy) = Bum,, sin(nupu)] nudp, - 7 + O(0p?)
[TRZR TP
JD, ; . g
= Y = ) 0 - Y + O(6p?). (4.16)
TR ()1)“ p=p

If we take the continuum limit, only the dp-linear terms survive and are imposed by the
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following condition,

dp, # 0 for any v, (4.17)

ap #lp=p

oD,
Z (p)

because if this condition is not satisfied, D(p) has no excitation modes or flat directions
around p = p. From Eq.(4.17) and the intermediate-value theorem, we can derive that
D(p) generates even doublers which are pairs of -chirality. However, this derivation is
insufficient where D(p) is not satisfied with ~s-hermiticity because its poles appear at not
only D(p) = 0. If we assume ys-hermiticity to D(p), the complex constants A,y , Bun,,
are pure imaginary. Hence D?(p) = 0 is a necessary and sufficient condition for D(p) = 0;
namely, D,(p) at p = p satisfies a dispersion relation if and only if D,(p) = 0 for any
v. Therefore, D(p) always generates even doublers which are +-chiral pairs, i.e. in the
framework of Nielsen-Ninomiya theorem [2]-[4]. On the other hand, we can obtain the
Taylor expansion of Déz) (p + 6p), which does not satisfy with vs-hermiticity, around
p=(m/2,—7/2) as

DP(B+06p) = (=p+i—1)-m + (0ps—i—1) -7+ O(0p").
(4.18)

We can see that D:(f)(ﬁ) is not equal to zero but the squared Déz)(;ﬁ) is. In addition,
the Eq.(4.18) does not approach the continuum fermion, D.(p) = izp DPuYy, in the
continuum limit. From this discussion, we can state that non-vs-hermiticity affects not
only odd doublers but also non-trivial doublers, which appear at D(p) # 0 and D?(5) = 0.
Additionally the non-trivial doublers do not approach an appropriate continuum limit.

Finally, we prove the reflection positivity for Dirac operators defined as follows:

_ 1 K
D?)nm = Z 5 (6n+ﬂ,m - énr—ﬁ,m) Y T 5 (Qan,m - 5n+fl,m - 5n,—21,m) " Y4»
n=14
(4.19)
D@ = Ls 5 (260 m — 6 5
2nm Z 5( n+gm "—ﬂ,m) m + 5 (2 mm T Untim T n—i,m) * Y4,
u=14
(4.20)
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x

D(‘.’) =l

9 nm

((sn-—[l.m - (su—;':.m) *Yu T = Z (2571.111 uh (sn-—[l.m i (sn—[l.m) * Y4,

pu=14 pu=1,4

b | =
o

(4.21)

The reflection positivity is the unitarity condition in Euclidean space. Although there
are two kinds of reflection positivity, site-reflection and link-reflection, we prove only the
link-reflection positivity from now on '*. Now, we prove it in the only D(,z) case. We can
also prove the link-reflection positivity of Df) and D,(-,z) in way similar way, described

below. Here, we define an anti-linear mapping © acting on the fermions as follows:
e(c'n].ru) = Yny,1-ng V4 O(Lvnl.ru) = Y4¥n;,1-n4» (422)
and on fermion bilinear,

8(“'71,.714 FL'ml my ) - e(“m..nu )Fte(L'nl.ru)

L'm,.l—nu’)-lrt'nuvnl.l—n4~ (423)

where T is an arbitrary function depending on the y-matrix. Let us denote the fermions
in the half-space with ny > 1 by ¢¥*) and ¢'*), and in the other half-space ny < 0 by

=) and ¢¥'7). According to the above notation, the action Eq.(4.1) can be written as
S = S,,[L'(*). L,(+)] P S-[u"_). L,(—)] o Sc[h‘(”. o) () L,(—)]. (4.24)

where
A=Ky o) 1 FEag )
S(' - 2 Lynl.()')4l‘vn|.l . 2 Lvnl‘]ﬂHL'nM)

1+I\' (=)T

l—kK (- i T
) W T‘*n,.() e(h'r(.,.)il X (4.25)

- T“nl.(le(l‘nl.())+

S, depends only on the fermions in positive time, and related with S_ as

O(S: [y, 9] = Sle™),ew™)
S_[2, 9. (4.26)

For proof of the reflection positivity, we must show (O(F)F) > 0, where F is an arbitrary

15The procedure for proof of the site-reflection positivity is similar to the case of link-reflection, but
we cannot prove the site-reflection positivity.
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function depending on positive time fermions, %(~) and ¢(7). (©(F)F) can be written

as follows:
(O(F)F) = Z“l/D@(—)D,(/)(—)F[l/}(—),@(—)]e—s_[w(—)ﬂz,(—)]

. / Dy DY FHp), Jo)e=Ss WD i =8 (4.97)

From Eq.(4.25) and demanding that S, is positive, the expectation value (O(F)F) is
positive and converge for every —1 < x < 1.
We can prove the link-reflection positivity for D{ at any x and DI at —1 < k< 1

from the same discussion.

4.2 Gross-Neveu model in two dimensions

In this section, we apply the non--s-hermiticity fermion defined in Subsect.4.1 to the 2D
Gross-Neveu model and draw phase diagrams [32]. The model is investigated as a toy
model for QCD and can be solved exactly in the large-N limit using the saddle point
approximation. In this limit, we can also obtain the parity broken phase diagram, called
Aoki phase [33]-[43].

Now, we apply the Dirac operator D§2) in Eq.(4.1) and study the phase diagrams. At
first sight, the fermion seems to be unsuitable for a practical calculation because it does
not preserve vs-hermiticity. These analyses are simple tests for application of the fermion
to a concrete model. In this paper, we analyze two cases, (1) parity symmetry breaking
and (2) chiral symmetry breaking, which is caused in the model with an imaginary
chemical potential. We also compare the phase diagrams using the fermion with those
using the naive fermion. The chiral broken phase diagrams are studied in the next
section.

Here, we define the continuum Gross-Neveu model in two dimensions as follows,

2

— 2 — —
SEN / Pz [w 0y +m)w = 5= ()" - 2= (irsv)’| , (4.28)

where we omit the flavor indices, ¥ = S %%’ In this action, the fermions have
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imposed Uy (1) symmetry:

1 . (IU 9
. =10 )
v = Ye . (4.29)
In massless case, the fermions preserve continuum chiral symmetry for g2 = ¢ and

chiral Z; symmetry for g> # g2. Then, we introduce an auxiliary scalar field o and an
auxiliary pseudo-scalar field 7. The partition function in the continuum theory is defined

as follows,

Z = /l)L‘DL'l)(TD?T e Scimx (4.30)
where
NS 9 ,\' 9 4\' 2
SSN = /(I‘_r Y(0-y+m+o+miys )Y+ 750"+ —7°| . (4.31)
- y 295 297

Integrating out the auxiliary fields o and =7, the action (4.31) recovers the former action,

Eq.(4.28), from the following relations:

N

0 = =-ung,

9a

N : p
=T = —iyY. (4.32)
9=

Next, we define a lattice action from the continuum action. We choose Dirac operator
as D(l")). defined in Eq.(4.19). Note that the Dirac operator 1)(12) is not suitable for our
purpose because we study the parity broken phase diagrams. One difference between
D;z) and D‘lz) is the components in the doubler suppressing terms, temporal or spatial.
1)112) preserves parity symmetry but not time-reversal symmetry. Hence, D;Q'. which has
broken parity symmetry, is not fit for our purpose. We define the lattice action of the

Gross-Neveu model as follows:

"W ’ N 0.2 ﬂ.2
YGN (2) * - n e
‘Slm.;mx - § Wn [ Dl nm -t (”I + On + TnlYs )(Sn.m} Ym + ‘_)‘ 2 (]_') 5 _([;' . (453)
n,m “ n i N

where the lower indices denote a coordinate in lattice space. Integrating out the fermion,
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we can obtain an effective action Sgg:

Z = / Do, Dr,e~ NSelom) (4.34)
1 afl 7r,2l
Serlom) = 5 ; [E + E] —Tr log D, (4.35)

where D is defined as follows:
Dym = Dﬁlm + (m+ op + Tnivs ) Onm. (4.36)

In the large-N limit, we can integrate out the auxiliary field ¢ and 7 from the partition
function using the saddle point approximation. The solutions &,,7, are given by the

saddle point condition,

5503(0, 7T) _ 5Scﬂr(0', 7T)

doy, 67y,

= 0. (4.37)

We impose translation invariance, &, = 0¢ and 7, = 7 for any n; the partition function

is written as

Z f— e_v'veff(o'l)"’ro), (438)
1 [o? 2 1
Va = 3 [;—g + 7;-3] ~ = Tr log D, (4.39)

where V' is the volume of the system. The last term in Eq.(4.39) is obtained using Fourier

transformation:

d’k 2
Tr logD = V/W log [(m + 00)” + 73 + H(K)]

Y
=V / e E(k), (4.40)
where

H(k) = sin? ky + [sinky — ir(1 — cos ky)]®. (4.41)

We can easily see that Eq.(4.40) is real because £(k) is a kj-even function and the sum
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Figure 6: The phase diagram of Aoki phase using the naive fermion (red line) and the
non-vys-hermiticity fermion D(,z) (blue line) with g2 = ¢2/2. We fix the hopping parameter
of the non-v5-hermiticity fermion at x = 1. The horizontal and vertical axes denote the
critical mass m, and the squared four-fermi coupling constant g2, respectively. The center
and both sides in this diagram are parity broken and symmetric phase respectively.

of £(ky, ky) with E(ky, —ky) is real:
= log (m + 09)? + 7r"': + Z sin® k, — k2(1 — cos ky)?
u=14

+ {2k sinky(1 — cos ky) }?] . (4.42)

According to the saddle point condition (4.37), we can obtain the following equation:

0_2 5 / 11'21,.‘) ‘) 27,,, . (4.43)
95 (2m)? 03, + m5 + H(K)
. - / ‘IQA", <ozl . (4.44)
9z J (2m)? ol + m5 + H(K)

where o, = m + 0y. 7 is an order parameter for parity symmetry breaking; hence,
7o approaches zero near the critical line in the parameter space. Near the line ,we can

derive the following gap equations:

ad {Ifk 2(7”,
). - . 4.45
pe /(27r)'-’rr?,,. THK) (445)
1 d’k 2
—_ = ; 4.46
P / @m2 oz, + H(k) (4.46)

where 0,,, = m. + 05. m. represents a critical mass depending on g2 and g2. At
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Figure 7: The phase diagrams for the Aoki phase using the naive fermion (red line)
and the non-v5-hermiticity fermion D‘lz’ (blue line) adding the flavored mass term with
(left) g2 = g2 and (right) g2 = ¢?/2. We fix the flavored mass factor and the hopping
parameter of the non-vs-hermiticity fermion at my = 0.4 and x = 1, respectively. The
horizontal and vertical axes denote the critical mass m, and the squared four-fermi
coupling constant g2 respectively. The center and both sides in this diagram are parity
broken and symmetric phase respectively.

g2 = g2 = ¢°, we can obtain the critical mass by dividing Eq.(4.45) by Eq.(4.46):
0y = O, = m.=0 for any ¢° (4.47)

and a pion mass m? on the critical line as follows:

2 - 6230”
m e
" 57"()571'0

_ v 1 /(1"’1.' 2 +/ d*k 473
g J @)ool +mi+H(k) S (27) (02 + 72+ H(k))?

me

(4.48)

From (4.46) and the fact that 7, approaches to zero near the critical line, the pion mass

is obtained as

e

= 0. (4.49)

m

We also study phase diagrams with fermions adding a flavored mass term [44, 45]. A
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flavored mass is defined as follows:

my - cospycospy for the naive fermion
myg(p) = . (4.50)
My - COS Py for the non- y5-hermiticity fermion

16 We add the flavored mass to the fermion mass term:

where my on r.h.s. is constant

m — m+mg(p).

From this modification, the gap equations change as follows,

) / d*k 2(om, +myg(k))
(27)2 (o, + my(k))2 + H(k)

2
95

1 dk D) :
E - /(271’)2 (Om. + my(k))? + H(k) (4.52)

We present the phase diagram without the flavored mass in Fig. 6 and with the
flavored mass in Fig. 7 '. We fix the hopping parameter at x = 1. The four-fermi
couplings in the action are related as g2 = g2/2 in Fig. 6. In Fig. 7, we fix the hopping
parameter and the flavored mass factor at x = 1, and m; = 0.4 respectively, and the four-
fermi couplings are related as (left) g? = g2 and (right) g = ¢2/2. We clearly see that
the phase diagrams using the non-vs-hermiticity fermion have a very similar structure
to those using the naive fermion. The critical mass and the four-fermi couplings are real

numbers, despite using a fermion without ~s-hermiticity:.

4.3 Gross-Neveu model with imaginary chemical potential

In this section, we focus on the 2D Gross-Neveu model with an imaginary chemical
potential and study the chiral broken phase diagrams [46, 47]. The outline for obtaining

the chiral broken phase diagram is the same as in Subsect.4.2.

16We can choose some variations as a flavored mass [45]. In our definition, the doublers of non-vs-
hermiticity fermions defined in Eq.(4.19) at momenta (0,0) and (0, 7) have m +my and m — m; masses
respectively. On the other hand, the half doublers of the naive fermion at (0,0) and (7, 7) also have
m +my and those at (0,7) and (7,0) have m — my. By the definition, we can compare phase diagrams
using fermions that have the same mass spectra but different numbers of doublers.

""In the phase diagrams using the fermions plus the flavored mass, there is 1st-order phase transition
at the bottom of the diagrams enclosing the critical line. Because of that, we cannot use the gap
equation, Eqs.(4.51) and (4.52), in this area. However, we ask leave not to correct this, to emphasize
that we can obtain solutions for the gap equations.
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We define the 2D Gross-Neveu model adding an imaginary chemical potential term

as follows:

s = [da[p@-7+m)v

2 2
— 2% (99)" - I (i) + i |

(4.53)

where ¢ is a chemical potential. Note that the third term in the action is different from
Eq.(4.28), replacing -5 with 4. This action imposes Uy (1) symmetry. In addition, the
action preserves chiral Z, symmetry for m = 0 and any g2.

Introducing an auxiliary scalar field o and an auxiliary vector field 74, we rewrite the

action as follows:

SON = /dzx [0(8-v+0+ min) ¥

N N
s (0 —m)’+— 297 5 (m4 — )’

(4.54)
where
N _
g—Q(U —-m) = —Py, (4.55)
N -
?(TM —p) = —iyy. (4.56)

In this analysis, we adopt D§2’, defined in Eq.(4.1), as a lattice fermion. We cannot
apply DP, defined in Eq.(4.19), because its determinant is always a complex number.
In other words, the coupling constants in the chiral phase diagrams are always complex
numbers. We discuss this issue in the next section.

We discretize space-time and write down a lattice action as follows:

lat aux Z "pn [ 1nm (00 + TantVs ) 5nr,m} Ym

5 Z [_2 —m)*+ 9—12(7r4n - u)Q] : (4.57)

0’ T
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Figure 8: The chiral broken phase diagrams using the naive fermion (red line) and the

non-7s-hermiticity fermion D{* (blue line) with (left) g2 = ¢2 and (right) g2 = 2¢2.
We choose the hopping parameter in the non-vs-hermiticity fermion to be k = 2. The
horizontal and vertical axes denote the critical chemical potential and the squared four-
fermi coupling constant g2>. The center and both sides in this diagram are chiral broken
and symmetric phase respectively.

(2)

where D)7, is defined in Eq.(4.1). Integrating fermions in the action, an effective action

is obtained as follows:

Z = / Do, Drye~NSenloma) (4.58)
S =z : i 2| —Tr log D 5
(0, Tg) = EZ: E(a,,—m) +E(m,,—;1) —Tr log D, (4.59)
where
) d*k 7 . &
TrlogD = V- | — log [a,, + H(A-)] . (4.60)
(2m)?
and
H(L) = [sink; — ik(1 — cos k,)]2 + (sin kg + m4n)?. (4.61)

We can integrate out the auxiliary fields o and 74 in the large N limit, and solutions

are obtained from the saddle point approximation:

0Sea(0,m4)  0Se(0, m4)

(S(I” 5”471

=0. (4.62)

Imposing translation invariance on the solutions #,, = oy and 74, = 749, we can derive
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the following gap equations,

oo —m d*k 200

—_ = — 4.63
9z (2m)? o + H(k) 69

Tag — M _ / d2k' 2(774() + sin k4) (4 64)
P (2m)? of+ H(k) '

Now we fix the fermion mass at m = 0 and draw the chiral broken phase diagrams. The
auxiliary field oq approaches zero near the critical line because oy is an order parameter
for chiral symmetry breaking. Hence, gap equations for the chiral broken phase diagrams

are derived as follows:

1 _ / k2 (4.65)

g2 (2m)? H(k)'
40 — M dzk‘ 2(7’('4() + sin k4)
a0~ He _ ~ , 4.66
== e (4.6

where . is a critical chemical potential. At g2 = g2 = g%, we can also obtain a meson

mass m2 on the critical line from the following equation:
m? & Sen
7 50’0(50’0

- [% - / ((21:;2 o2 +2H(k) +/ (Z:; (02 f (;?g(k))Q} '

(4.67)

From Eq.(4.65) and the fact that oy approaches zero on the critical line, we can obtain
the meson mass on the critical line,
m2 = 0. (4.68)
The chiral broken phase diagrams with the naive fermion and the non-ys-hermiticity
fermion D?) are presented in Fig.8. In this figure, we set the hopping parameter at
k = 2, and the four-fermi coupling constants g2 and g2 are related as (left) g2 = g2
and (right) g2 = 2¢g2. We can see that the phase diagram using the naive fermion has
a qualitatively very similar structure to that using the non-vys-hermiticity fermion. As
with the non-chemical potential case in Subsect.4.2, all of the couping constants in the

phase diagrams are real numbers.
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4.4 Reality condition

In Sects. 4.2 and 4.3, we investigated the parity and chiral phase diagrams for the Gross-
Neveu model using the non-v5-hermiticity fermion. The results showed not only that the
phase structure using the non-ys-hermiticity fermion has a qualitatively similar structure
to the naive fermion, but also that the coupling constants in the phase diagram are real
numbers despite breaking ~s-hermiticity. In this section, we discuss why the coupling
constants in the phase diagrams drawn in Sects. 4.2 and 4.3 are real numbers:

To see the reason, we compare two fermions adding an imaginary chemical potential:

Di,z'(p) — Z i sinp, -y +K(l—cospy) m+ip-nu= Z fup)

pu=14 pu=14

Df;z’(p) = Z i sinp, -y, +K(1 —cospy) - ya+ip-v4 Z fulp)

u=14 pu=14

(4.69)

(4.70)

The former has a ys-hermiticity breaking term with a temporal index, and the latter has
Y :

one with a spatial index. Firstly, we present the eigenvalue distribution of these fermions
in Fig.9. Because a determinant of the Dirac operator is obtained by the product of
all of the eigenvalues, the eigenvalues of the Dirac operator must be complex conjugate

. ) N : : 2)
pairs for a real determinant. Figure 9 shows that all the eigenvalues obtained from D!

£ . . 2 .

have complex conjugate pairs, but the eigenvalues of D!”’ do not. The Dirac operators
seem to have very similar forms, but only D;” preserves hermiticity, which indicates a
real determinant.

To investigate in more detail, we obtain the products of the eigenvalues of the Dirac

operators, namely determinants. The determinants are obtained as follows:

det D? = T Y. (1) f2w), (4.71)

p pu=14

det D = [ D (1) f2w), (4.72)

p pu=14

where f,(p) and f,(p) are defined in Eqs.(4.69) and (4.70). A determinant of a Dirac
e e » . 2

operator that preserves 7s-hermiticity is a real number because ZFH .(p) for any

momentum is always real. By contrast, a determinant of fermion without ~5-hermiticity

is, in general, a complex number. However, if an arbitrary Dirac operator D(p) =

42




Im A
Im A

Re A

Figure 9: The eigenvalue distribution of the Dirac operators with an imaginary chemical
potential: (left) D and (right) D). We set the hopping parameter and the chemical
potential at x = 1.0 and p = 0.5, respectively. The lattice size is 36 x 36. The blue circle
points denote eigenvalues of momenta p = (0,0), (0,7), (7,0), and (7, 7).

>, Fulp) - v, satisfies the following condition, we can obtain its Dirac determinant,

which is real:

Z .7:5(1)) = z fﬁ‘({)) for any p, (4.73)

p=14 p=14
where * denotes complex conjugate and p is a momentum which satisfies this condition.
The fermion D!* defined in Eq.(4.69) satisfies the condition at p = (—p;,ps); hence,
the determinant of D!*) is a real number. On the other hand, we cannot obtain the
determinant of D!* as a real number because D!* cannot satisfy the condition for any
p. This fact suggests that although det D,(-z]( p1.p4) is a complex number, it is real-valued
by the product with det D‘@)(—pl.m) because det D(FQ)(m.pA;) and det D (py,ps) are

related with the following condition,

*

det D' (py,p4) = [d(’t Dﬁ_z)(—pl.m)] . (4.74)
In the D case, however, det D,(‘Z)(p) cannot be real-valued by any momentum mode.

Therefore, Eq.(4.73) guarantees reality for the fermions, at least, in free theory and

Yukawa theory.
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5 Conclusion and discussion

Conclusion

We have analyzed the translation-invariant, continuum and periodic function lattice
fermion kinetic term using vs-hermiticity, R-hermiticity and PT symmetry. These con-
ditions are not independent, because satisfying two of the three conditions is a sufficient
condition for the other condition. However, it is not a necessary condition. Additionally
we have suggested that R-hermiticity is a condition for removing non-hermiticity or com-
plex couplings. In principle, these terms can be canceled by counterterms; therefore, we
can fine-tune the perturbation [22]. However, nonperturbative analysis is difficult and
this problem must be solved in future work.

We have proved that the PT-symmetric kinetic term does not reduce doublers. Be-
cause minimal doubling fermions have only 75-hermiticity it generates a renormalized
non-Hermite or complex mass by quantum correction. As a simple example of non-R-
hermiticity, we visualize the complex coupling constant using one-loop Wilsonian renor-
malization group flows of the two-flavor Gross-Neveu model in two dimensions.

We have constructed fermions without ~s-hermiticity (non-v5-hermiticity fermions)
based on the minimal doubling fermion in two dimensions and investigated symmetries
and properties of the fermions. The fermions preserve translation invariance, chiral
symmetry and locality but break cubic symmetry and some discrete symmetries. To
investigate the model application possibilities, we have studied the eigenvalue distribution
and the number of poles for the fermions. The eigenvalues of D:z). defined in Eq. (4.1),
are distributed along the imaginary axis in the continuum limit. However, the eigenvalues
of the other operators, defined in Egs. (4.2)-(4.5), are distributed in the entire plane in
the limit. We can also see that the fermions have more than four or odd poles in
general. In the D‘,z’ case, only two poles appear at x > 1. We have also stated that
non-vys-hermiticity affects not only odd number of doublers but also non-trivial doublers
which appear at D(p) # 0 and D?(p) = 0 and do not have appropriate kinetic term
in the continuum limit. Also, the non-trivial doublers do not approach an appropriate
continuum limit. In addition, we have proved the link-reflection positivity in the Diz'
case. From the proof, the hopping parameter is restricted to |x| < 1.

As simple tests for application to a concrete model, we studied the parity broken phase
diagram, called Aoki phase, for the 2D Gross-Neveu model using the non-v5-hermiticity

fermion. We also studied the chiral broken phase diagram for the Gross-Neveu model,
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adding an imaginary chemical potential in the massless case. Both phase diagrams are

qualitatively very similar to those using the naive fermion. All of the coupling constants
in the analyses were obtained as real numbers, despite using a fermion without ~s-
hermiticity.

We have discussed the reason for the reality for the Gross-Neveu model using the
non-vs-hermiticity fermion, D§2). To understand this, we investigated the eigenvalue
distribution of D and D&, defined in Egs. (4.69) and (4.70). We can see that the
eigenvalues of D¥ are complex conjugate pairs, but the eigenvalues of D are not.
Hence, the determinant of D is a real number but D& is not. Although a determi-
nant of D& (pl,p2) is obtained as a complex number, it is real-valued by the product
with a determinant of Dgz)(—pl, p4). Therefore all the coupling constants in the theory
using the non-vys-hermiticity fermion D§2) are real numbers, and the theory preserves the

hermiticity, despite broken the 7s-hermiticity.

Forward to resolution of the sign problem

In the high density region, we can not obtain observable even if we use Monte Carlo
simulation, because Dirac determinant has complex phase. As is well known, general
continuum Dirac operator with a chemical potential has eigenvalues distributed entirely,
such as Déz), in the ReX-ImA plane. However, eigenvalues of the D?) do not have
the aspect. On the other hand, the non-vs-hermiticity fermions D§2) defined in Eq.
(4.19) seem to be fermions with a momentum-dependent chemical potential, replacing the
hopping parameter « with a chemical potential p. In this procedure, we can interpret this
fermion as that half of doublers, which appear at momenta (0,0) and (,0), have zero-
chemical potential, the others have 2u chemical potential at (0, 7) and (7, 7). Thanks to
the lattice artifact, we might be able to obtain observables without regard to the mass
regularization or boundary condition at finite lattice spacing, at least, in free theory or
Yukawa theory.

We will investigate gauge theory using a non-ys-hermiticity fermion and higher-

dimensional extension in future work.
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A Appendix

A.1 Notation

In this subsection we summarize the notation, which we use in this thesis, in arbitrary

even dimensions, D = 2n for n € N.

A.1.1 Minkowski space

Metric g* :

Juv = gl“’ =diag(+,—,—,"'
for u,»=0,1,2,3,5,--- , D,

Au = guuAua

A-B = g, A"B" = A*B, = A,B* = AyBy — A - B,

Dirac matrix v* :
{*,7"}

(v
Tr ~*

Chiral matrix yP+! :

D+1

(7D+1)T

=)

A= g™ A,

47

(A.1.1)
(A.1.2)
(A.1.3)

(A.1.4)
(A.1.5)
(A.1.6)

(A.1.7)
(A.1.8)
(A.1.9)



Charge conjugation matrix ' :

-1 Cc'=C -C, (A.1.10)
o Jom. T (A.1.11)
C~PH -1 ~DHIT (A.1.12)

A.1.2 Euclid space

To formulate field theory in Euclid space from Minkowski space, we carry out Wick

rotation and redefine time,
t - 71 it (A.1.13)
and Dirac matrix.,

A0y A0 _: oyl = jE (A.1.14)

for 3 =1,2,3,5,~+D,

on

where 7 and the upper index “E” denote time and Dirac matrix in Euclid space, re-
spectively. From the manipulation, a metric and Dirac matrix in Euclid space have the

following properties,

Metric 7, :

e diag(+,+,+,-- ,+) = d,u,
for y,v=1,2,---, D, (A.1.15)
A, nwA” = n"A, = A#, (A.1.16)
A-B = 9,A,B,=A,B,, (A.1.17)

(A.1.18)




Dirac matrix v, :

{7;17 ’Yu} = 277;:1/,
(7#)1 = Tw
Trvy, = 0,

Chiral matrix yp.1 :

Yb+1 = (i)DC2 TiYe

(7D+1)Jr = YD+1,
Tr’YD—}-l = 07

Charge conjugation matrix C :

YD,

ct = Ct=C"=-C,

Oy = =,

Cyp+1C71 = ’Yg+1a

A.1.3 Other notes

Condition for fermion

Anti-fermion : ¢ =¥,

Charge conjugation : ¢°=C¥’,

only for Minkowski
I»Lc = _ch_lv

Time reversal : %(zg,X) = i¥s71%(—xg, X),

Parity transformation : ¥(zg,x) — iv4¥(xg, —X),

1 5
Chiral projection : %z = q;fy

Majorana condition : =1,

Weyl condition : 3 =1,
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¥,

(A.1.19)
(A.1.20)
(A.1.21)

(A.1.22)
(A.1.23)
(A.1.24)

(A.1.25)
(A.1.26)
(A.1.27)



Identity

Fierz identity :

1 ] :
M—2 ,rl_ [r\ (I*If)14 = ’».\If. (\l;r))
, 2

mz (I‘_\)'ﬂ([“‘):"1 ,\'”,,(5'/,1. (A.1.36)

© A=l

where

I-,\ {1..’m_.‘,1:|;:;.'” .,\!/u;t; ;:,1}. (“\157)
M2 ."m_’/:.- R for fy < g < -+ < Jig (A.1.38)

A.2 N-flavors Gross-Neveu model and Renormalization Group

Flow in Two Dimensions

In this section, we describe the N-flavors Gross-Neveu(GN) model [32] and calculate
Wilsionian renormalization group flows(RGFs) using the NA and MDAs numerically.
Firstly we will review the N-flavors GN model and then we will calculate the RGFs.

We define the continuum Euclidean Lagrangian of N-flavors GN model as follows:
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2

Low = $@-7+m)y— 3= (9)°, (A.2.39)

where m is a fermion mass and ¢ is a coupling constant of four fermi interaction. We

omit flavor indices if we do not have to write explicitly, Vv = Z::x U;1;, where "1

means flavor degrees of freedom.

This Lagrangian has U(1) symmetry:

v = e . (A.2.40)
In the case of massless fermions, this Lagrangian has chiral Z; symmetry:

Y = (ivs)" ¥,

Y = Y(@y)". (n=0,1,2,3) (A.2.41)




In the case of massive fermions, chiral Z, symmetry reduces to chiral Zs symmetry(n =

0,2). In addition, if all flavors have same masses it has the SU(N)r symmetry:

v = Ui,
i = UL, (U e SUN)) (A.2.42)

It is convenient to redefine the GN action using an auxiliary scalar field o instead of

(¥)):
- N, _
Lon = Y(@-v+m)Y+ 57 + goyp. (A.2.43)

According to this manipulation, we can obtain the action which involves Yukawa inter-
action instead of four fermi interaction. According to perturbative calculation, the NG

model has asymptotic freedom property [8, 9].

A.3 Wilsonian Renormalization Group

In this appendix, we review a method to calculate the Wilsonian renormalization
group flow in the case of GN model in two dimension [10].

We define the partition function of the GN model in momentum space 8:

Z = / Do Dy Dy exp(—San), (A.3.44)
with
d?p
S = / —=LGN, A.3.45
N 0<|pl<1 (2m)? e ( )
where

Do= [[ dotk), Dy= [ dw(k), D= [[ du(k), (A.3.46)

0<lki<1 0<|k|<1 0<ik|<1

and Lgy is given in (A.2.43). We can treat of N as a mass parameter of auxiliary field

o. Here we assumed that the high frequency modes had already integrated and they do

18We omit the subscript which means flavors.
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not contribute effectively. Then we split the field configurations as follows:

o(p) = oip) + on(p), (A.3.47)
where
a(p) olp) if0<|p - zero otherwise, (A.3.48)
5
4 .
on(p) o(p) if = <|pl <1, zero otherwise, (A.3.49)
5

and the other fields are also split similarly . We choice renormalization conditions as

follows:

I (0.0) —mRg, (A.3.50)
r;?(0,0) —Ng. (A.3.51)
r'(0,0,0) ~gr. (A.3.52)

where I''" are renormalized i-point functions, mpg, Ng, gr are renormalized parameters
and arguments of I''” are external momenta. In order to obtain effective parameters, we

calculate one-loop effect and integrate out only high frequency modes:

. 2 2 [ Pk
K <‘)) My '“—f/‘/ ——5Sas(k)D(k) (A.3.53)
4 ‘ Jaciki<r (27)2
‘ 'll’ 5 . 2 N (]"T (I‘“)l\' e L
r = () |75 o o ses® nss
5\ 4 . &2k
9Rr (—) I]fl},, g+ ”25/ ﬁ(b'(/f)ﬁ'(/\')),.41)(1\') .’5“1.
4 Ji. k<1 (2m)°
(A.3.55)
where S(k) and D(k) are propagators of each fields presented below, "tr” is a trace

operation of the fermionic indices and 7,, and 7, are rescaling parameters of fermion and

auxiliary field respectively. We can define these parameters with dimensional analysis in

i

9On account of numerical efficiency, we choose a division which split between o; and o, as p =




the following values:

5\ 3/2
4
5
e = - (A.3.57)
4
We can obtain propagators from the GN action:
- -1
Sk) = [Df(k+k)+m] , (A.3.58)
1
Dk) = — A3
(k) = ~ (A.3.59)

where Dy (k) is one of the lattice fermion kinetic terms in (2.36) and % is a zero-mode
momentum in (2.38). Substituting (A.3.58) and (A.3.59) to (A.3.54)-(A.3.55), we can
obtain effective mass and coupling constant after integrating out over fields o (3 < |k| <
1),9(3 < |kl <1)and 9(% < |k| < 1).
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