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1. Introduction

There are three results which allow to deduce properties of the category of motives
for numerical equivalence: Deligne’s proof of the Weil conjectures, Jannsen’s semi-
simplicity theorem, and the existence of the Frobenius automorphjigfor motives

M. If one further assumes Tate’s conjecture, one can give a very precise description
of this category (Milne [10]). For example, simple motives are determined by their
Frobenius endomorphism, and one can recover the endomorphism algebra with the
Frobenius. Our first result is a partial converse of this. &gt be the Frobenius
endomorphism for a motiv&/ for numerical equivalence (it can be identified with

an algebraic number modulo the action of the Galois group)of

THEOREM 1.1.The following statements are equivalent for the finite figld

(1) Tate’s conjecture holds for all smooth projective varieties dyer
(2) For simple motivedf andM’', M = M' < my = my.

(3) For a simple motivéM, M =1 < my = L.

(4) For every motiveM, Q[my,] is the center oEnd(M).

We use this result as a starting point to stuchtheory in characteristip.

* Supported by Deutsche Forschungsgemeinschaft.
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THEOREM 1.2.If Tate’s conjecture holds and numerical and rational equivalence
over finite fields agree rationally, then for all smooth projective varielesverF,,
anda > 0, K,(X)g = 0 (Parshin’s conjecture).

The proof uses Jannsen’s semi-simplicity theorem, the characterization of motives
via their Frobenius endomorphism and an argument on eigenvalues of Frobenius,
which was first used by Saei[11]. We have to assume that numerical and rational
equivalence agree in order for the Adams eigenspacgstbeory to factor through
motives for numerical equivalence.

We prove that Parshin’s conjecture implies the following bounds on ratiknal
groups in characteristig, which have been independently conjectured by Beilinson
[2] and Kahn [7].

THEOREM 1.3.Letk be afield of characteristip and assume Parshin’s conjecture.
Then

(i) Ka(k)o =0 for a > trdegk/F,,
(i) Koo = Koy = KM (k).

The proof uses de Jong’s theorem on alterations and an induction argument in the
Gersten—Quillen spectral sequence. Kahn [8] proved the same statement assuming
Bass’s conjecture (saying th&tgroups of schemes of finite type ov&are finitely
generated).

Finally, this conjecture has various consequenceskfagroups of varieties in
characteristip. The first corollary gives bounds on Adams operatorsifarvariety
of dimensiond over a fieldk of transcendence degree

min(a+d,r+d) )
K.a= @ K.0d.
j=a
The theorem also implies that the Gersten—Quillen spectral sequence degenerates
with split filtration atE», K, (X)Y’ = H/~*(X, K))a.

2. Motives and Tate’s Conjecture

In this section we recall the definition of the category of (pure) motives. We derive
consequences from Jannsen’s theorem that the category of pure motives for numerical
equivalence is a semi-simple Abelian category. Finally, we recall Tate’s conjecture,
give some consequences for the category of motives, and give a formulation of Tate’s
conjecture in terms of motives and their Frobenius endomorphism.

2.1. MOTIVES

Let k be a field and’(k) be the category of smooth projective varieties duerix
an adequate equivalence relatisron the group of algebraic cycles tensored with
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Q, i.e. such that pull-back, push-forward and intersection are defined modulo the
relation. For a variety and an integej = 0, let AZ(X) be the group ofd-linear
algebraic cycles of codimensignon X modulo~. For equi-dimensional varieties,
one can define a composition law

ATMXLFr (X1 % Xp) x AIMX2HS (X5 x Xg) — AIMX1+rHs () 5 X3)
by sending(f, g) to

g o fi= p13,(pIaf - P338)

and extend this to arbitrary varieties. In particuldf™ X (X x X) is a ring.

The categoryM - (k) of (pure) motives with respect te is defined as follows
[4]: .

Objects ofM (k) are triples X, p, m), whereX is a varietyp € AYMX (x x X)
is a projector, and: an integer.

Morphisms are defined to be

Hom-((X, p,m), (Y.q.n)) = q o AAMX=m+n(x x y)o p

and the composition of morphisms is induced by the composition law above.

Denote by 1 the unit motivé, id, 0) and by£! the Lefschetz motivek, id, —i)
such tha" = @"_,£'. Note that by definitiom’_(X) = Hom. (L', X).

We consider the following equivalence relations: rational, homological (for a fixed
Weil cohomology theory), and numerical. For rational equivalence we have by defi-
nition Al,(X) = CH'(X)q. Consequently, we call motives for rational equivalence
Chow motives. As rational equivalence implies homological equivalence implies
numerical equivalence, we get functors

V(k) — Mrat —> Mhom — Mnpum.

It is conjectured that homological equivalence agrees with numerical equivalence
and, in particular, is independent of the chosen Weil cohomology theory. This would
follow, for example, from the standard conjectures.

If k = F, is afinite field, then as a consequence of Deligne’s proof of the Weil
conjectures, the #nneth components of the diagonal are algebraic (for homological
equivalence), and so there is a decompositigxi) = 691.210 hi(X).

We have the following theorems of Jannsen [4, Theorem 1, Corollary 2]

THEOREM 2.1.The categoryMnum is a semi-simple Abelian category. For every
objectX of this categoryEnd,ym(X) is a finite-dimensional semi-simpliealgebra.

COROLLARY 2.2.If the Kiinneth components of the diagonal are algebraic, the
kernel of the surjective ring homomorphism

End(X)hom — ENd(X)num

is the Jacobsen radical and is a nilpotent ideal.
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2.2. THE FROBENIUS MAP

For a varietyX over[F,, we denote byry the geometric Frobenius map &f, i.e.
the map which is the identity on the topological space andthgpower map on its
structure sheaf. We have the following proposition of $oul

PROPOSITION 2.3[11, Prop. 2.ill.etc: X — Y be a correspondendéor rational
equivalencg thenc oy = my oc.

In particular, we can (for an arbitrary adequate equivalence relation) define the
Frobenius endomorphismy, for the motiveM = (X, p,m) toberx o p - g™
(the factorg™™ is due to the fact that, = ¢). Obviously, there is an inclusion
Q[my] S EndM).

PROPOSITION 2.4If k = F, is a finite field, then for any simple motivé, the
algebra Q[my/] generated byr,, in End,ym(M) is a finite-field extension af.
Consequently, we can identifyy, with an algebraic number up to conjugation by

Gal(Q/Q).
Proof. By Jannsen’s theorem@[r;/] is a commutative subalgebra of the finite
dimensionalR-division algebra En@V)nym. a

2.3. TATE’S CONJECTURE

LetX be asmooth projective variety oV, letX = X xf_ Fgandl’ = Gal(Fy/Fy).
Consider thé-adic cycle map

et AT(X) — HZ (X, Qu(r)'.

By definition, its image is isomorphic ta,.(X). Denote theld;-subspace gener-

ated by the image by{  .(X) - @;. The strong form of Tate’s conjecture is

CONJECTURE 2.5.Let X be a smooth projective variety ovigy. Then
dimg A’tjlum(X) = ordy—, ¢ (X, s).

This can be formulated in terms of the following conjectures, see Tate [14]:

E : numerical and homological equivalence agree,

| : the cycle map, ® Qy is injective,

T : the cycle map, ® Qy is surjective,

S : the eigenvalue 1 of the Frobenius endomorphismHi(X, Q;(r)) has
multiplicity 1.
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According to [14, Prop. 2.8], we get the following diagram of inequalities, where
a letter indicates that the corresponding conjecture implies equality:

E T _ N
dimg Apym(X) < dimg, Afn(X) - Q < dimg, H? (X, Qi(r)" < ord—-¢(X, 5),

el il

dimg Af,,(X) = dimg, A}, (X) @ Q

If we denote byE™* the conjecture dual t& (i.e. for dimX — r instead of-), then
we get the following implications between the conjectures:

PROPOSITION 2.6 [14, Prop. 2.6, Cor. 2.7].
E+T=T"+S=E, S+T = E*

2.4. CONSEQUENCES OF TATE’S CONJECTURE

Let W(g) be the set of Weilj-numbers, i.e. algebraic numbetse @ such that
there is am with ¢" 7 an algebraic integer, andwa such that for all embeddings
p:Q[r] — C we havelpr| = ¢g»/2.

In [10], Milne gives a description of the category of motives over a finite field
assuming Tate’s conjecture. For example, the following statements are consequences
of Tate’s conjecture:

e [10, Cor. 1.16, Prop. 3.7] Thetale cohomology functor
i Mnum(Fg) ® Qi —> Vi(Fy)

is a fully faithful tensor functor to the category;(F,) of semi-simple, finite-
dimensional, continuous representation§ ajver Q.

It identifies Mnum(Fy) ®¢q Q; with the full subcategory oW (F,) consisting
of semi-simple representations such that the eigenvaluggFabh,) are Weilg-
numbers.

¢ [10, Prop. 1.17, Prop. 3.8] The crystalline cohomology functor

wp. Mnum(”:q) X0 @p - Vp(”:q)
is a fully faithful tensor functor to the categoW (F,) of semi-simpleF-isocrystals
overf,.
ItidentifiesMnum(F4) ®a Q) with the full subcategory of isocrysta{s/, Fy,)
such thatr,, acts semi-simply o/ with eigenvalues that are Wej-numbers.
¢ [10, Prop. 2.4] For asimple motivef overlF,, EndM) = E isacentral division
algebra ovef[x),] with invariants

1 v real, M of odd weight

[Q[WM]V: Qp] v|ip
otherwise.

2
invy,(E) = { _ ord, ()
ord, (¢)
0
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¢ [10, Prop. 2.6] There exists a bijection between the simple objects of the category
Mnum and Weilg-numbers up to conjugation:

Y Mnum = W(Q)/Gal(@)
M — [my].

2.5. REFORMULATION IN TERMS OF MOTIVES

Tate’s conjecture amounts to an identity theorem for motives for numerical equiva-
lence:

THEOREM 2.7.The following statements are equivalent for a figjd

(1) Tate’s conjecture holds for all smooth projective varieties dyer
(2) For simple motives/ andM’', M = M' <= my = myy.

(3) For a simple motiveM, M =1 <= my = L.

(4) For every motiveM, Q[my,] is the center oEnd(M).

Proof. The implications(i) = (ii) = (iii) and(i) = (iv) follow from the last
section.

(iii) = (i) Let X be a smooth projective variety, then by Proposition 2.6 it suffices
to show that the inequality

dimg Ap,m(X) < dimg, HZ (X, @ (i)’

is an equality. Decomposé = @ M; into simple motives ioMym. AS a consequence
of Corollary 2.2, one can lift orthogonal idempotents from Rpg X) to orthogonal
idempotents in Engm(X), and thus can defiritale cohomology groups of motives
in Mpym up to nonunique isomorphism. This is not functorial, but the geometric
Frobenius still acts on these groups because it is central ipRE). SO we may
assume thak is a simple motive.

Assume the right-hand side is nontrivial. Then the arithmetic Frobenius, Fsob
trivial on some subspace &% (X, @;(i)). Consequently, the geometric Frobenius
my acts likeg' on the same subspace. But then by hypothesis

nx:qi = fxgi=1 = X@Li=1 = x=cr.

In this case both sides are one-dimensional.

(iv) = (ii) Assume there are two different simple motivegsand N with 7y, =
7. Then EndM & N) = End(M) x End(N) and the center of this algebra contains
Q[rp] x Q[rrn]. But Qs < ] is strictly smaller than this algebra (in fact, it embeds
diagonally intoQ[s] x Q[w]). O

Remark Itis aninteresting question if it is possible to prove without using Tate’s
conjecture that, for a simple motive, Q[s,] is the center of End\).
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3. Algebraic Cycles and RationalK-Theory

In this section, we recall some facts abd{itheory. Then we give a criterion for
rational and numerical equivalence to agree and show that this implies Parshin’s
conjecture [3, 12.2]. Parshin’s conjecture in turn implies that rationally, Milnor and
Quillen K -theory agree in characteristic From this we derive further corollaries.

3.1. ALGEBRAIC K-THEORY

Let K,(X) be Quillen’s higher algebrai& -groups associated to the category of
vector bundles oiX. It is a contravariant functor on the category of schemes over
a field. Similarly, letk/ (X) be theK -groups associated to coherent sheaves. It is a
covariant functor for projective morphisms and contravariant for flat morphisms.

For regularX, the groupsk,(X) and K/, (X) agree and we will tacitly identify
them. This identification gives us a covariant and contravariant functoriality on the
category of smooth projective schemes over a field gtX)g = K,(X) ® Q and
KX)o = K,(X)® Q.

There are Adams operatogd acting naturally on th& -groups, and the rational
K-groups decompose into eigenspaces for this operation:

dim X+a )
K.X)o= P K.X)g'.
j=0

wherey* acts likek/ on Ka(X)q(;,{) forall k [12, Prop. 5].

Adams operators foK} (X) are defined by choosing an embeddikiginto a
smooth schem@/ and using the identityk’ (X) = KX(M) for K-theory with
support inX [12].

For Z a closed subscheme of codimensioof X with complement/, there is a
localization sequence

= K2 — K0y — KLY — K 2T —

Itis a consequence of the Grothendieck—Riemann—Roch theorem that the Adams
eigenspaceKa(X)q(j{) factor through the category of Chow motives [11].
PROPOSITION 3.1[12, Prop. 8.1]. The map induced by the absolute Frobenius map
on K -theory agrees with the Adams operatdt. Consequently, fox a scheme over
F,. the geometric Frobenius of acts Iikeqf on Ku(X)g).

There is a fourth quadrant Gersten—Quillen spectral sequence induced by the
coniveau filtration [12, Teoeme 4]:

= @ Kk =KL 008).

x codim s
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Let K, be the Zariski sheaf associated to the presiigat K,(U). Then the
Eo-term of the spectral sequenceﬂﬂgt = H(X,K_¢).
For example, there is a filtration &fp such that

gr'Ko(X) = H (X, K;) = CH (X)
which splits rationally, i.e.
Ko(X)$) = H* (X, K)o = Ajy(X).
Denote byk ™ (F) Milnor's K -groups of fields. According to [12, Ho@me 2],

KM(F)g = Ko(P)E.

3.2. PARSHIN’S CONJECTURE

In order to factor the Adams eigenspace&atheory through the category of motives

for numerical equivalence, we need numerical and rational equivalence to agree. This
is in fact a conjecture of Beilinson. For arbitrary base fields, it is still expected that
there exists a separated filtration on Chow groups such that the graded pieces factor
through numerical equivalence, see [5, Remark 4.5 b].

PROPOSITION 3.2Assume that Tate’s conjecture holds, that Chow groups of
smooth projective varieties over finite fields are finite-dimensional, and that there
is no Chow motivé/ with the following properties:

(1) Qy] = QIT]/(T — ¢")" as a subalgebra dEndrar(M):
(2) CH (M)q # O;
(3) M is trivial considered as a motive for numerical equivalence.

Then rational and numerical equivalence over finite fields agree.

Proof. We have to show that CkM)g = Af]um(X) for any indecomposable
Chow motive M. As the former group surjects onto the latter, we can assume
CH (M)g # 0.

Since CH(M)g is finite dimensional by assumption, the subalgebra generated
by the Frobenius endomorphis@ir,,] is isomorphic toQ[¢]/(f (¢)) for somef.

If f had two relatively prime factor® and Q, we could use the Chinese reminder
theorem to find two polynomialR andS such that

R = 1 modP g— 0 modP
10 modQ “ 11 modQ.

ThenR () + S(;r) would be a decomposition of 1 into orthogonal central idempo-
tents, contrary to the assumption thdtis indecomposable. We concluge= P”
for some irreducible polynomia?.

If P does not have a rogt, then 0= P()" = P(g')" # 0 on CH(M)g by
Proposition 3.1, which shows that G#1)g = 0. ThusQ[r] = Q[T]/(T — ¢")".
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Consider the functoF: Mgt — Mpum- F maps Engy(M) onto Enchym(M),
and as the latter is semi-simple aRdM) # 0 by assumption, it surject3[n] =
Q[T]/P" ontoQ[T]/P. By Theorem 2.7 we conclude thAt(M) is a finite direct
sum of motives of the fornt!. It remains to show that/ = £/, for then we have
CH (M)g = Aﬁ,um(M) = @ by the known structure of cycles of the projective space.

Fix a summands’ of F(M). As F is surjective on endomorphisms and
Endat(£) = Endwm(£’) = Q, the embedding and projection gf lift to maps
f andg in Homeat(£?, M), respectively Homy(M, £'), suchthag o f = id ;. But
then the endomorphisrfio g € Endai(M) is a projector with image’. As M was
supposed to be indecomposabiie = £'. O

THEOREM 3.3.If Tate’s conjecture holds and numerical and rational equivalence
over finite fields agree, then for all smooth projective variekesverF, anda > 0,
K, (X)g = 0 (Parshin’s conjecture).
Proof. We show that the Adams elgenspa0§§(X)(J) vanish. Decompose
X = ®M; into simple motives. According to our assumptions, we can decom-

posekK, (X)(J) accordingly and thus assume that= M is a simple motive with
Frobenlusw Let Pys be the minimal polynomial of ;.

If M = £/, thenK,(£HE < K,(PHY =0
If M # L/, then Py does not have,/ as a root by Theorem 2.7. So @
Pu(tm) = Pu(g?) # 0 onKo (M) o

Remark SouE uses a similar technique in [11] to prove unconditional results in
cases where he can control the occurrence of the motivic factorsor example,

he proves thak, (X)(’) =0fora > 0andj = dimX — 1in caseX is a smooth
curve, an Abelian varlety, a unirational variety of dimension at most 3 or a Fermat
hypersurface of leveh with p fm, [11, theoeme 4].

3.3. CONSEQUENCES FOR K-THEORY

In this section we derive consequences from Parshin’s conjecture for rational
K -theory of fields in characteristig:

THEOREM 3.4.Letk be afield of characteristip and assume Parshin’s conjecture.

() Ka(k)g =0 for a > trdegk/F,.
(i) Kaba = Ka0E = KM (k)q.

Proof. As K-theory (of rings) commutes with direct limits, we can write=
lim k; with k; finitely generated and assume thas finitely generated of transcen-
dence degreeoverf,.



118 THOMAS GEISSER

According to de Jong [6, Remark 3.2], there is a smooth projective vakiety
over[F, such that the function field(X) of X is a finite extension ot. Since the
composition of the inclusion and the transfer map

Kq(k) — Ka(k(X)) —> Kq(k)

is multiplication by the degree of the extension, we can assume (X).
Consider the (rational) Gersten—Quillen spectral sequenck:for

By = @ Koik()g™ = Ko

x codims

Itis a fourth quadrant spectral sequence kithik)g = Eg’ ~“and allE,-terms

vanish except on the diagonal because the higher raticgabups ofX vanish. The
only terms in the spectral sequence to which there can be differentials coming from

Ef’_” are subquotients of

Ey = @ Kaeak)d ™
x codims

(i) We proceed by induction ontr dégLeta > tr degk. Thefields(x) occurring
in Ei"”_s*l have smaller transcendence degree thao by induction hypothesis
the groupsk,_1(k(x))g vanish. Thusk,(k)g = E%‘a = EX % is a quotient of
Ka(X)@ =0. .

(i) We proceed by induction amn. We haveX, (k)g) = 0forj > aby[12,Cor.1].
Butforj < aands = 1we havej —s <a — 1, henceKa,l(k(x))g_s) = 0 by
induction hypothesis. O

Remark (1) The statement of the theorem is a conjecture of Beilinson [1, 8.3.3]
and in greater generality by Kahn [7]. It was shown to be a consequence of Bass
conjecture by Kahn [8].

(2) One should compare the result for global fields in characterjstic the
statement that fot a number field withr; real and-» complex embeddings we have

. T (@ _[T2 aeven
dimg Kz,-1(k)a = dimg K210 = {12 527 oga.

The following corollary gives a generalization of 3.3 to quasi-projective varieties
over arbitrary fields of characteristic

COROLLARY 3.5. Assume Parshin’s conjecture and}ebe a variety of dimension
d over a fieldk of characteristicp withtr deg k/F, = r. Then

min(a+d,r+d) )
KiX¥a= @ Kog

j=a

In particular K, (X)g = 0fora > d +r.
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Proof. From the Gersten—Quillen spectral sequence Xgr K;(X)g) has
a filtration such that the graded pieces are subquotientsEpf* ™ =
D, codims Ka (k(x))gfs). From 3.4(ii), this is nonzero only fof — s = a, hence
j = a. From 3.4(i), we know thaE] "~ “ = 0 fora > d + r — s, because the
function field of a subvariety of codimensieron a variety of dimensiod over a
field of transcendence degredas transcendence degege- r — s.

This provesK;(X)g) = Ounless: = j < d + r, and the corollary is a conse-
guence of this and [12, Prop. 5]. a

RemarkFor nonproper schemes we cannot expect a bound which is independent
of the dimension, because for exam@lg(A[z, 1) = K, (A) & K _,(A).

However, one might expect th&t, (X)g = 0 fora > tr degk andX a smooth
projective variety ovek.

COROLLARY 3.6. If Parshin’s conjecture holds, the rational Gersten—Quillen spec-
tral sequence degenerates B with split filtration for a smooth varietX over a
field of characteristicp,

KX = HI™(X, Kj)a-

Proof. One gets the degeneration of the spectral sequence and the splitting of the
filtration in a standard way using Adams operators. O

We have the following corollary for the homology of 8):

COROLLARY 3.7. Assume Parshin’s conjecture andidte a field of transcendence
degreer overf,. Then

Hy, (SL(k), @prim =0 for n>r.

Furthermore, the outer automorphism®if.(k) acts like(—1)" on H,(SL(k), Q).
Proof. The first statement follows from Theorem 3.4 and

Hy (SL(k), @)prim = Ha(BSL(K) ", Q)prim = 7, (BSL(K) T, Q) = K, (k)

for n = 2. The second statement follows because the outer automorphism corre-
sponds to the Adams operatpr 1, which is 1 on even Adams eigenspaces and

on odd Adams eigenspaces. As the generators in degrethe homology of Sik)

come fromk,,, which is concentrated in degreewe get the corollary. O

4. Relations to Motivic Cohomology

In this section, we explain how our results fit into the context of mixed motives.
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Higher rationalK -groups are linked to this theory as they are expected to agree
with motivic cohomology groups,

Koj—i(XOY = HL (X, Q())).

All statements in this section are consequences of the work of Beilinson [2] and
Jannsen [5]. Beilinson gives the following consequence of 3.4:

COROLLARY 4.1. Assume Parshin’s conjecture, &, be a flat proper model of
the smooth projective variety over@ and definef (X, Q(j))z to be the image
of Hiy (X7, Q()) — Hi, (X, Q()).

(a) One hasH}, (X, Q(j)z = Hj,(X,Q(j)) unlessj <i<2j —1and
j<dmX+1

(b) If X has potential good reduction at every prime, then the above inequalities
may be replaced b®j —2=i — 1 < 2dimX.

Proof. By way of the localization sequence, the cokernel is contained in
®, Kéj_i_l(Xp)g_l), whereX, runs through the fibers df7 at the primegp.

(a) By Corollary 3.5, the termKéj_i_l(Xp)g_l) are trivial unless O< 2j —i —
l<j—1andj—1=< dimX.

(b) By hypothesis, we can assume that the fidgssare smooth and projective.
Then by Theorem 3.3 we musthavg2i —1=0andj — 1 < dimX. a

COROLLARY 4.2.Letk be of characteristicy and assume Parshin’s conjecture.
ThenH!, (X, Q(j)) = OunlessO < j < min{i, dim X + tr deg k}. In particular,
motivic cohomology vanishes in negative degrees.

Proof. This is a reformulation of Corollary 3.5. O

4.1. FINITE FIELDS

A weight argument as in [10, Theorem 2.49] shows that if the category of mixed
motives ovef, exists, then every mixed motive is a direct sum of pure motives. Thus,
the category\I My, agrees with the category(r, and in particular is semisimple.

By the interpretation of highek'-groups as groups of extensions MMy,
Parshin’s conjecture holds. Thus we assume Parshin’s conjecture when we speculate
about properties oM Mg, as itis implied by its existence.

Let U be a smooth quasi-projective variety. Then one expktis) to have
weightsi < w < 2i. On the other hand,

KoY = HZ (U, Q(j)) = Hom(L, k% =4 U) ()

and the latter is trivial unless? —¢(U) has a weight 2. From this we conclude
0 < a = j and get back Corollary 3.5.

If Y is a projective variety, theh!(Y) has weights O< w < i. From this the
analogous argument shows thats 0 < j, henceKa(Y)g) = 0 fora > 0. Note
that this is wrong folk, (Y).
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4.2. GLOBAL FUNCTION FIELDS

Letk be a global field and’ be the corresponding smooth proper curve, respectively
number ring. The cohomological dimensionkaf expected to be 1, and we get for
X smooth and proper ovét i < 2; identities

H (X, Q())) = Ext (L A1) ()
Recall that thd.-function of a smooth projective varie®y overk is given by

L(h'(X),s) = [] detd — (Nv) " Fr}|H (X, @) Y.
veC

There is a (conjectured) analytic continuation and a functional equation
L' (X),5) = e(s) - LW (X),i +1—)

with center(i + 1)/2. Beilinson’s conjecture on special valued efunctions states
that, fori + 1 —n < (i)/2,

ordy—i 11—, L(A'(X), 5) = dim Exty ., (1, h'(X)(n)
= dim H 7YX, Q(n))z.

In the global function field case we have (because there are no infinite places and
thus norI'-factors in thelL-series)

Ordy—i+1-nL(H (X),5) =0 for i+1—n < ’5
So according to Beilinson’s philosophy, one should exmédTl(X, Q(n))z = 0.

Using Corollary 4.1, we get back Corollary 3.5 plus the stronger claim thét if
has potential good reduction at every prime, then

Ka(X)g) =0 wunless a =1

EXAMPLE. Let X be smooth projective curve over a function field, then there are
the following exact sequences

2 1
0— K2(X2)@ — K2(X0)¥ — P K(X)E
V

2 2
— K1(X2) — K1(X)¥ — 0

0— KiXn)® — K1(0f — Po
%

1 1
— Ko(X2)§ — Ko(X)§) —> 0.

The analogon to Beilinson’s conjectures indicates that the first terms are zero and
thath(X)g) is trivial if X has potential good reduction at every prime.
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