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Abstract. We show that for a fieldk of characteristicp, Hi (k,Z(n)) is
uniquelyp-divisible for i 6= n (we use higher Chow groups as our definition
of motivic cohomology). This implies that the natural mapK M

n (k)→ Kn(k)
from Milnor K -theory to QuillenK -theory is an isomorphism up to uniquely
p-divisible groups, and thatK M

n (k) andKn(k) arep-torsion free. As a con-
sequence, one can calculate theK -theory modp of smooth varieties over
perfect fields of characteristicp in terms of cohomology of logarithmic de
Rham Witt sheaves, for exampleKn(X,Z/pr ) = 0 for n > dimX. Another
consequence is Gersten’s conjecture with finite coefficients for smooth var-
ieties over discrete valuation rings with residue characteristicp. As the last
consequence, Bloch’s cycle complexes localized atp satisfy all Beilinson-
Lichtenbaum-Milne axioms for motivic complexes, except possibly the
vanishing conjecture.

1. Introduction

The purpose of this paper is to study thep-part of the motivic cohomology
groupsHi (k,Z(n)) and the higher algebraicK -groupsKn(k) of a fieldk of
characteristicp. We take Bloch’s higher Chow groups as our definition of
the motivic cohomology of a smooth quasi-projective variety over a field,

H p(X,Z(q)) = CHq(X,2q− p).

This agrees with the motivic cohomology defined by the second author by
[21, II, Theorem 3.6.6], and with the motivic cohomology groups defined
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by Voevodsky if one assumes resolution of singularities, [30, Prop. 4.2.9,
Theorem 4.3.7]. Motivic cohomology andK -theory are related by the spec-
tral sequence of Bloch and Lichtenbaum [6], having motivic cohomology
groups asE2-term and converging toK -theory. It is known that the mo-
tivic cohomology groupsHi (k,Z(n)) are trivial for i > n, and agree with
the Milnor K -group K M

n (k) for i = n. However, the motivic cohomology
groups are not known to vanish fori < 0.

The question of determining motivic cohomology groups ofk can be
divided into the calculation of the rational motivic cohomology groups,
Hi (k,Q(n)), and the motivic cohomology groups with modl r -coefficients,
Hi (k,Z/l r (n)). For l different from the characteristic ofk, the Beilinson-
Lichtenbaum conjecture states that there should be an isomorphism

Hi (k,Z/l r (n)) ∼= Hi (két, µ
⊗n
lr ), (1)

for i ≤ n. Suslin and Voevodsky [28] show that, assuming resolution of
singularities, the Bloch-Kato conjecture

K M
n (k)/l

r ∼−→ Hn(két, µ
⊗n
lr )

for all n ≤ m implies (1) for all i ≤ n ≤ m. A partial result along these
lines was obtained by the second author in [19] and forms the basis of our
arguments. In a forthcoming paper [10], we use the methods of this paper
to remove the resolution of singularities hypothesis in the theorem of Suslin
and Voevodsky. On the other hand, Voevodsky [31] proved the Bloch-Kato
conjecture forl = 2 and all fields of characteristic different from 2, thereby
proving the Beilinson-Lichtenbaum conjecture in this case.

If k has characteristicp, then a conjecture of Beilinson states that Milnor
K -theory and QuillenK -theory should agree rationally:

K M
n (k)Q

∼−→ Kn(k)Q . (2)

By results of Kahn [17], this follows from Bass’s conjecture, and by results
of the first author this follows from Tate’s conjecture on algebraic cycles [8].

The main result of this paper is

Theorem 1.1. Let k be a field of characteristicp. Then the motivic co-
homology groupsHi (k,Z/pr (n)) vanish for alli 6= n.

By the spectral sequence of Bloch and Lichtenbaum, this implies a modp
version of the conjecture (2), namely, that the natural map

K M
n (k) −→ Kn(k)

is an isomorphism up to uniquelyp-divisible groups. Furthermore,Kn(k)
is p-torsion free and there is an isomorphism

K M
n (k)/pr −→ Kn(k,Z/pr ).
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We derive various applications of this result. For example, we show that
Gersten’s conjecture with modp-coefficients holds for smooth varieties
over discrete valuation rings with residue characteristicp.

As another application, we determine the motivic cohomology andK -
theory sheaves for the Zariski topology on a smooth schemesX over a perfect
field of characteristicp. Via local to global spectral sequences, this implies
that there is a spectral sequence from motivic cohomology toK -theory

Hs−t(X,Z/pr (−t))⇒ K−s−t(X,Z/pr ),

andKn(X,Z/pr ) = 0 for n > dim X.
Finally we show that Bloch’s cycle complexeszn(−, ∗)[−2n], localized

at p, satisfy most of the axioms for Beilinson and Lichtenbaum, as extended
by Milne [23]. Further applications to topological cyclic homology will
appear in [9].

The proof of the theorem is another variation on the theme that the
Bloch-Kato conjecture implies the conjecture of Lichtenbaum and Quillen,
and is motivated by the ideas in [19]. In the case at hand, the conjecture of
Bloch-Kato should be reinterpreted as the theorem of Bloch-Kato [5]

K M
n (k)/pr d log−−−→

∼
H0(két, ν

n
r ),

whereνn
r = WrΩ

n
log is the logarithmic de Rham Witt sheaf of Milne and

Illusie [15] (we writeνn for νn
1).

We give an outline of the proof:
In Paragraph 2, we recall the definition of the logarithmic de Rham-

Witt groups and define its relative version as the kernel of the restriction
map. Relative motivic cohomology groups are defined as the cone of the
restriction map on cycle complexes. We prove two results relating mo-
tivic cohomology to Milnor-K -theory in Paragraph 3. For example, for
a semi-localizationR of a regular finitely generatedk-algebra,k a field
of characteristicp, we haveHn(R,Z/p(n)) ∼= νn(R). In particular, there
is a map from relative motivic cohomology to the relative logarithmic de
Rham-Witt groups.

Let �̂m be the semi-localization of the algebraicm-cube
Speck[t1, . . . , tm] with respect to the 2m points where all coordinates are
either 0 or 1. LetTm be the set of ideals(ti − ε), 1≤ i ≤ m, ε ∈ {0,1}, and
Sm = Tm − {(tm)}. In Paragraph 4, we show, assuming the main theorem
for n− 1, that

Hn(�̂m, Sm,Z/p(n)) ∼= νn(�̂m, Sm)

Hi (�̂m, Sm,Z/p(n)) = 0 for i 6= n

Hi (�̂m, Tm,Z/p(n)) = 0 for i > n.
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In particular, the long exact relativization sequence for the sets of idealsTm
andSm gives an exact sequence

0−→ Hn−m(k,Z/p(n)) −→ Hn(�̂m, Tm,Z/p(n)) −→
Hn(�̂m, Sm,Z/p(n))

tm=0−→ Hn(�̂m−1, Tm−1,Z/p(n)) −→ 0.

Thus, it suffices to show that the mapHn(�̂m, Tm,Z/p(n)) −→
Hn(�̂m, Sm,Z/p(n)) is injective. Comparing with the analogous sequence
for the relative logarithmic de Rham Witt sheaves, the snake lemma shows
that this in turn follows from the surjectivity of

Hn(�̂m, Tm,Z/p(n))
αm−→ νn(�̂m, Tm)

for a different value ofm.
To prove this statement, let∂�̂m+1 be the boundary of̂�m+1, i.e. the

closed subscheme defined by the ideal
∏

i ti (ti − 1), and view�̂m as the
facetm+1 = 0 of∂�̂m+1. Since Bloch’s higher Chow groups give reasonable
motivic cohomology groups only for smooth schemes, we define motivic
cohomology of∂�̂m+1 to be the cohomology of the complex formed by
cycles on the faces of∂�̂m+1 which agree on the intersections. We define

Hn(X,Y1, . . . ,Ym,Z/p(n))ker =
ker

(
Hn(X,Z/p(n)) −→ ⊕ j H

n(Yj ,Z/p(n))
)
.

Paragraph 5 is devoted to the proof of the existence of the following
commutative diagram. Heres is a functorial splitting of the canonical map
(we omit the coefficientsZ/p(n)).

Hn(�̂m, Tm)
αm−−−→ Hn(�̂m, Tm)

ker
∼=−−−→ νn(�̂m, Tm)∥∥∥ ∥∥∥ γ

x
Hn(∂�̂m+1, Sm+1)

αm−−−→ Hn(∂�̂m+1, Sm+1)
ker ←−−− νn(∂�̂m+1, Sm+1)

s

x s

x s

x
Hn(∂�̂m+1) −−−→ Hn(∂�̂m+1)

ker ←−−− νn(∂�̂m+1)

The proof that the mapγ is surjective (Paragraph 6) relies on the under-
standing of the structure of torsion sectionsνn(∂�̂m, Tm) ⊆ νn(∂�̂m), i.e.
the sections inνn(∂�̂m) which vanish on each of the faces(ti − ε).

We finish the proof of the main theorem in Paragraph 7, where we show
that for each sectionx ∈ νn(∂�̂m+1), there is a semi-local smooth scheme
Ux over k containing∂�̂m+1 as a closed subscheme, such thatx lifts to
νn(Ux) ∼= Hn(Ux). But Hn(Ux) maps to all groups in the lower row of the
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above diagram. Since the right vertical composition is surjective, the same
holds for the middle composition, and this implies the surjectivity ofαm.

Finally, in Paragraph 8 we derive consequences of the main theorem.

Acknowledgement.It is a pleasure to thank Bruno Kahn for his helpful comments.

2. Preliminaries

For a commutative ringR, let ΩR be its absolute Kähler differentials and
Ωn

R = Λn
RΩR. ThenΩ∗R forms a complex with differentialsd, and we denote

by ZΩn
R anddΩn−1

R the cycles and boundaries, respectively. For two rings
R andS, we have

ΩR⊗S
∼= (R⊗ΩS)⊕ (S⊗ΩR).

Consequently,

Ωn
R⊗S
∼=
⊕

i+ j=n

Ωi
R⊗Ω

j
S, (3)

andΩ∗R⊗S is the total complex associated to the double complexΩ∗R⊗Ω∗S.
For a principal ideal( f ) of R, the second exact sequence for differentials

gives us an exact sequence

f ΩR+ Rdf −→ ΩR −→ ΩR/( f ) −→ 0,

and hence we get

Ωn
R/( f ) = Ωn

R/ f Ωn
R+ dfΩn−1

R . (4)

For anFp-algebraR, the inverse Cartier operatorC−1 is the map

Ωn
R

C−1−→ Ωn
R/dΩn−1

R

a0da1 ∧ . . . ∧ dan 7→ ap
0ap−1

1 · · · ap−1
n da1 ∧ . . . ∧ dan.

Note that the Cartier operatorC is defined only for smoothR, and gives an

isomorphismZΩn
R/dΩn−1

R
C−→ Ωn

R in this case. We define the logarithmic
de Rham Witt groupνn(R) of R as the kernel of the Artin-Schreier map

νn(R) = ker
(
Ωn

R
1−C−1−→ Ωn

R/dΩn−1
R

)
.

If R is essentially smooth over a perfect field of characteristicp, then by
Illusie [15] νn is the subsheaf ofΩn generated locally for théetale topology
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by d loga1 ∧ . . . ∧ d logan, andνn(R) its global sections. Moreover, forR
semi-local, there is an exact sequence [14]

0−→ νn(R) −→
⊕

x∈R(0)

νn(k(x)) −→
⊕

x∈R(1)

νn−1(k(x)) −→ . . . . (5)

If I1, . . . , Im are ideals ofR, we define the relative logarithmic de
Rham-Witt groups as the kernel of the restriction maps

νn(R, I1, . . . , Im) = ker
(
νn(R) −→

m⊕
j=1

νn(R/I j )
)
.

The Milnor K -groups of a fieldF are defined as the quotient of the
tensor algebra on the group of unitsF× by the Steinberg relations

K M
∗ (F) = T∗F×/〈a⊗ (1− a) | a ∈ F − {0,1}〉.

For a fieldF with nontrivial discrete valuation, uniformizerπ and residue
field k, the tame symbol homomorphism

K M
n (F)

δ−→ K M
n−1(k)

is defined by{π,u2, . . . ,un} 7→ {ū2, . . . , ūn} and{u1,u2, . . . ,un} 7→ 0
for uj ∈ F units in the valuation ring. ForRan essentially smooth semi-local
ring over a fieldk, we define

K M
n (R) = ker

( ⊕
x∈R(0)

K M
n (k(x))

δx−→
⊕

y∈R(1)

K M
n−1(k(y))

)
.

There exists a universally exact Gersten resolution for MilnorK -theory [7,
Example 7.3(5)], hence we have

K M
n (R)/p= ker

( ⊕
x∈R(0)

K M
n (k(x))/p

δx−→
⊕

y∈R(1)

K M
n−1(k(y))/p

)
. (6)

The fundamental theorem of Bloch-Gabber-Kato [5] relates MilnorK -
theory and logarithmic de Rham Witt sheaves of fields:

K M
n (F)/p

d log−−−→
∼

νn(F). (7)

The QuillenK -groups of a ringRare the homotopy groups of the classi-
fying space of the Q-construction, similarly forK -groups with coefficients.
There is a long exact sequence

. . . −→ Kn(R)
×pr−→ Kn(R) −→ Kn(R,Z/pr ) −→ Kn−1(R)

×pr−→ . . . .

The product structure ofK -theory induces a canonical map from Milnor
K -theory of fields to QuillenK -theory.
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ForRan essentially smooth semi-local ring over a field, there is a Gersten
sequence [25, theorem 5.11]

0−→ Kn(R,Z/p) −→
⊕

x∈R(0)

Kn(k(x),Z/p) −→
⊕

x∈R(1)

Kn−1(k(x),Z/p) −→ . . . , (8)

and a spectral sequence [25, prop. 5.5, 5.11]

Est
2 = Hs(XZar, (K/p)−t)⇒ K−s−t(X,Z/p).

Via the Gersten sequences, the map from Milnor to QuillenK -groups of
fields induces a mapK M

n (R) −→ Kn(R) for any regular ring of essentially
finite type over a field. This is clear for a smooth ring over a perfect field,
and in general one uses a colimit argument as in the proof of Proposition 3.1
below.

We recall the definition of the cubical version of motivic cohomology
groups. Letk be a field, and let

�q = Speck[t1, . . . , tq].
We have the 2q faces of codimension 1,�εi ⊆ �q defined by(ti − ε) for
i = 1, . . . ,q and ε ∈ {0,1}. We call an arbitrary intersection of these,
including�q itself, afaceof �q. Let ∂+�q be the divisor consisting of all
faces�εi except�0

q.
For a regulark-variety X, the cubical version of Bloch’s cycle complex

is defined as follows [20]: LetS be a finite set of closed subsets ofX with
X ∈ S, and assume for simplicity that the intersection of two sets inS is
again contained inS. If Y ⊆ X is a subscheme ofX, then by abuse of
notation we denote the set of closed subsets{S ∈ S|S ⊆ Y} again byS
when we talk about cycles onY.

The groupzn(X,q)S is the group of codimensionn cyclesZ on X×�q
such that

• Z intersectsS× D properly onX ×�q, for S∈ S andD a face of�q
• Z · (X × ∂+�q) = 0

Intersection with the face�0
q defines a mapdq : zn(X,q)S → zn(X,q−1)S .

Since

dq−1 ◦ dq(Z) = �0
q−1 · (�0

q · Z) = �0
q · (�0

q−1 · Z) = 0,

we get a complex(zn(X, ∗)S,d), which we will also denote byzn(X)S,

. . .
dq+1−→ zn(X,q)S

dq−→ . . .
d1−→ zn(X,0)S .
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By associativity of the intersection product, we have for smoothS∈ S

(S× ∂+�q) ·S×�q ((S×�q) · Z) = (S× ∂+�q) ·X×�q Z

= (S× ∂+�q) ·X×∂+�q ((X × ∂+�q) ·X×�q Z) = 0,

hence intersecting withS×�q determines a map of complexes

i ∗S : zn(X, ∗)S → zn(S, ∗)S. (9)

If X is affine, then the inclusion

zn(X, ∗)S ↪→ zn(X, ∗) (10)

is a quasi-isomorphism: By [21, Ch.2, Theorem 3.5.14] this holds for the
simplicial version of cycle complexes, and by [20, Theorem 4.7] the sim-
plicial version and the cubical version agree.

SupposeX = SpecR is affine, with closed subschemesY1, . . . ,Yq. For
eachJ ⊆ {1, . . . ,q} including J = ∅, let YJ = ⋂ j∈J Yj . We assume that
each subschemeYJ of X is regular, and letS be the set of allYJ. Since the
complexes we are going to construct are quasi-isomorphic if we increase
the numberq of closed subschemes by (10), we may increase this number
if necessary.

Therelative cycle complexzn(X,Y1, . . . ,Ym, ∗)S is defined as the total
complex of the double complex, withJ ⊆ {1, . . . ,m},

0−→ zn(X, ∗)S d0−→
⊕
|J|=1

zn(YJ, ∗)S d1−→
⊕
|J|=2

zn(YJ, ∗)S d2−→ . . . .

The complex⊕|J|=szn(YJ, ∗)S lies in degrees, and each complex is viewed
as a cohomological complex concentrated in negative degrees. In other
words,⊕|J|=szn(YJ, t) lies in degree(s,−t). The mapsdj are the alternating
sum of the restriction maps (9).

If m+ 1≤ q, then one easily sees that the map of complexes

zn(X,Y1, . . . ,Ym+1, ∗)S −→ zn(X,Y1, . . . ,Ym, ∗)S,
identifies the first term with

cone
(

zn(X,Y1, . . . ,Ym, ∗)S −→
zn(Ym+1,Y1 ∩ Ym+1, . . . ,Ym ∩ Ym+1, ∗)S

)
[−1].

We define relative motivic cohomology groups ofX to be

H2n−i (X,Y1, . . . ,Ym,Z(n)) = Hi (z
n(X,Y1, . . . ,Ym, ∗)S)

H2n−i (X,Y1, . . . ,Ym,Z/pr (n)) = Hi (z
n(X,Y1, . . . ,Ym, ∗)S ⊗ Z/pr ).
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By (10), this is independent of the choice ofS . There is a long exact sequence

. . . −→ Hi (X,Y1, . . . ,Ym,Z(n))
×pr−→ Hi (X,Y1, . . . ,Ym,Z(n)) −→

Hi (X,Y1, . . . ,Ym,Z/pr (n)) −→ Hi+1(X,Y1, . . . ,Ym,Z(n)) −→ . . . .

Since the cubical and simplicial version of the cycle complexes agree, there
is a hypercohomology spectral sequence [3]

Es,t
2 = Hs(X,H t(Z(n)))⇒ Hs+t(X,Z(n)),

and similarly withZ/pr -coefficients. ForR essentially smooth overk and
semi-local there is a Gersten resolution [1]

0−→ Hi (R,Z/p(n)) −→
⊕

x∈R(0)

Hi (k(x),Z/p(n)) −→
⊕

x∈R(1)

Hi−1(k(x),Z/p(n− 1)) −→ . . . . (11)

3. Motivic cohomology andK -theory

For a fieldk, Hi (k,Z(n)) = 0 for i > n, and there is an isomorphism

K M
n (k)

∼−→ Hn(k,Z(n)), (12)

in particular,Hn(k,Z/pr (n)) = K M
n (k)/pr .

In the cubical version, the map of (12) is given by [29]:

{u1, . . . ,un} 7→
(

u1

u1− 1
, . . . ,

un

un − 1

)
∈ (�n

k)
(n).

In the simplical version, the map is given by Nesterenko-Suslin [24, theo-
rem 4.9]:

{u1, . . . ,un} 7→
( −u1

1−∑ ui
, . . . ,

−un

1−∑ui
,

1

1−∑ui

)
∈ (∆n

k)
(n).

(13)

Proposition 3.1. Let R be a semi-localization of a regular finite type
k-algebra fork a field of characteristicp. Then there are isomorphisms

Hn(R,Z/p(n))
∼←−−− K M

n (R)/p
d log−−−→
∼

νn(R).
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Proof.We use Quillen’s method to reduce to the caseR essentially smooth
over a perfect field: There exists a subfieldk′ of k which is finitely generated
overFp and a semi-localizationR′ of a regulark′-algebra of finite type such
that R is a localization ofR′ ⊗k′ k. By letting ki run through the finitely
generated subfields ofk containingk′, we can assume thatk is finitely
generated overFp, since all functors in the proposition commute with direct
limits. But if R is a localization of a regulark-algebra of finite type, andk
is finitely generated overFp, thenR is a localization of a finite type regular
Fp-algebra, so we can assumek = Fp.

Consider the following diagram, where the vertical maps are the symbol
maps and the horizontal maps are the residue maps:⊕

x∈R(0)

Hn(k(x),Z/p(n)) −−−→
⊕

x∈R(1)

Hn−1(k(x)),Z/p(n− 1))x x⊕
x∈R(0)

K M
n (k(x))/p −−−→

⊕
x∈R(1)

K M
n−1(k(x))/p

d log

y d log

y⊕
x∈R(0)

νn(k(x)) −−−→
⊕

x∈R(1)

νn−1(k(x))

The upper square is commutative by the following lemma, and the lower
diagram is commutative up to sign by [14]. The vertical maps are isomor-
phisms by (7) and (12). This implies that the induced map on the kernel
of the horizontal maps is an isomorphism as well. But the kernel of the
upper horizontal map isHn(R,Z/p(n)) by (11), of the middle horizontal
mapK M

n (R)/p by (6), and of the lower horizontal mapνn(R) by (5). Q.E.D.

Lemma 3.2. Let Rbe a discrete valuation ring over the fieldk with quotient
field F and residue fieldf. Then the following diagram commutes

K M
n (F)

δ−−−→ K M
n−1(f)y y

Hn(F,Z/p(n))
δ−−−→ Hn−1(f,Z/p(n− 1)).

Proof. By multi-linearity of symbols, we only have to check commu-
tativity of the diagram for symbols of the form{u1, . . . ,un−1, π} and
{u1,u2, . . . ,un} with ui 6= 1 units of R. The first symbol maps to the
point (

u1

u1 − 1
, . . . ,

un−1

un−1 − 1
,

π

π − 1

)
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in zn(F,n). This point extends to a curve inzn(R,n), and the boundary map
for motivic cohomology is calculated by intersecting it with faces to get an
element ofzn(R,n−1) = zn−1(f,n−1). But this curve only meets the face
tn = 0 of�n,R, in the point(

u1

u1− 1
, . . . ,

un−1

un−1 − 1

)
∈ zn−1(f,n− 1)

(recall that Specf is the subscheme of SpecR given byπ = 0). Similarly,
a symbol of the second type is mapped to the point(

u1

u1− 1
, . . . ,

un

un − 1

)
,

which does not meet any of the faces of�n,R. Hence its image inzn(R,n−1)
is zero. Q.E.D.

If R is the semi-localization of a smoothk-algebra andI1, . . . , Im ideals
of R such thatR/I j is essentially smooth, then Proposition 3.1 implies that
there is a canonical map

Hn(R, I1, . . . Im,Z/p(n)) −→ νn(R, I1, . . . , Im). (14)

In fact, defining

Hn(R, I1, . . . , Im,Z/p(n))ker=
ker

(
Hn(R,Z/p(n)) −→

⊕
j

Hn(R/I j ,Z/p(n))
)
, (15)

there is a map

Hn(R, I1, . . . , Im,Z/p(n)) −−−→ Hn(R, I1, . . . , Im,Z/p(n))ker

d log−−−→
∼

νn(R, I1, . . . , Im).

Bloch and Lichtenbaum [6] prove that there is a spectral sequence relat-
ing motivic cohomology and algebraicK -theory of fields:

Hs−t(k,Z(−t))⇒ K−s−t(k).

We will use the following proposition in the proof of Theorem 8.1.

Proposition 3.3. The composition of the isomorphism of Nesterenko-Suslin
with the edge homomorphism of the Bloch-Lichtenbaum spectral sequence,

K M
n (k)

θn−→ Hn(k,Z(n)) −→ Kn(k), agrees with the natural map from
Milnor K -theory to Quillen K-theory.
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Proof. We use the simplicial definition of motivic cohomology and first
recall how the edge morphismεn : Hn(k,Z(n)) −→ Kn(k) is constructed,
see [6] for details:

Let ∂∆n
k denote the set of faces{ti = 0 | i = 0, . . . ,n} of ∆n

k and∂0∆
n
k

be the set of faces{ti = 0 | i = 0, . . . ,n− 1}. By the homotopy property,
K p(∆

n
k, ∂0∆

n
k) = 0 for all p ≥ 0. Identifying∆n−1

k with the facetn = 0 of
∆n

k gives the relativization sequences

K p+1(∆
n
k, ∂0∆

n
k)

tn=0−→ K p+1(∆
n−1
k , ∂∆n−1

k ) −→
K p(∆

n
k, ∂∆

n
k) −→ K p(∆

n
k, ∂0∆

n
k).

This in turn gives isomorphisms

K p+1(∆
n−1
k , ∂∆n−1

k )
∂−−−→
∼

K p(∆
n
k, ∂∆

n
k),

and hence the identification

Kn(k) ∼= K0(∆
n
k, ∂∆

n
k). (16)

We note that the terms in the relativization sequence have a natural
right-K∗(k)-module structure via the structure morphism, compatible with
the maps in the sequence.

Let Z be a closed subscheme of∆n
k which is disjoint from∂∆n

k. The
canonical identificationK p(Z) ∼= K p(Z,∅, . . . ,∅) gives the functorial
push-forward homomorphism

i Z
∗ : K p(Z)→ K p(∆

n
k, ∂∆

n
k).

In particular, a zero dimensional subschemez on ∆n
k which has support

disjoint from∂∆n
k canonically determines an elementi z∗(1) ∈ K0(∆

n
k, ∂∆

n
k).

The map sendingz to i z∗(1) factors through

εn : Hn(k,Z(n))→ K0(∆
n
k, ∂∆

n
k),

and the composition ofεn with the identification (16) is the edge homo-
morphism of the spectral sequence. We have to show that the following
diagram commutes

K M
n (k)

ιn−−−→ Kn(k)

θn

y ∂

y∼=
Hn(k,Z(n)) εn−−−→ K0(∆

n
k, ∂∆

n
k)

We first consider the casen = 1.
For a commutative ringRand idealI , letH R,I be the category of finitely

generatedR-modulesM of finite projective dimension, with

TorR
p(M, R/I ) = 0
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for all p > 0. LetH R/I be the category of finitely generatedR/I modules
of finite projective dimension. By Quillen’s resolution theorem,ΩBQH R,I
is a model for theK -theory spaceK(R) of R, andΩBQHR/I is a model
for K(R/I ). The functor

M 7→ M ⊗R R/I

is exact onH R,I , so we may use the homotopy fiber of the induced map

ΩBQH R,I → ΩBQH R/I

as a model for the relativeK -theory spaceK(R, I ).
Let (M,M′, g) be a triple withM,M′ ∈ H R,I , and

g : M/IM → M′/IM ′

an isomorphism. The triple(M,M′, g) gives rise to an element[M,M′, g] ∈
K0(R, I ) as follows: The mapg determines a path[g] from M/IM to
M′/IM ′ in ΩBQHR/I , and[M,M′, g] is the pair consisting of the point
M − M′ of ΩBQH R,I , together with the path fromM/IM − M′/IM ′ to
0 in ΩBQH R/I gotten by translating [g] by−M′/IM ′. With the obvious
notion of exact sequences of triples(M,M′, g), it is not hard to see that
the functor sending(M,M′, g) to [M,M′, g] is additive. In addition, ifg
is an automorphism of(R/I )n, then the image ofg under the boundary
homomorphism

∂ : K1(R/I )→ K0(R, I )

is the class[Rn, Rn, g].
We apply these considerations toK0(∆

1
k, ∂∆

1
k), setting

R= k[t0, t1]/(t0+ t1− 1); I = t0t1.

Let 1 6= u ∈ k× be a unit, giving the pointz = ( −u
1−u,

1
1−u) of ∆1

k. The
inclusion ofz into ∆1

k gives the map

i z
∗ : K0(k(z))→ K0(∆

1
k, ∂∆

1
k).

Explicitly, we havei z∗(N) = [N,0,0], where N is a finite dimensional
k(z)-vector space viewed as anR-module via the mapR−→ k(z).

We identify K1(k) with the componentK1({(1,0)}) of K1(∂∆
1
k), so the

image of a unitu ∈ K1(k) = k× under the boundary isomorphism

∂ : K1(k)→ K0(∆
1
k, ∂∆

1
k)

is given by the triple(R, R, (1,u)),

(1,u) ∈ k((0,1))× × k((1,0))× = k(∂∆1)×.

Let

α = 1− u

u

(
t0+ u

1− u

)
∈ R.
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Note thatα(0,1) = 1, α(1,0) = u−1, andR/α is the R-modulek(z). The
short exact sequence of triples

0−→ (R, R, id)
(id,×α)−→ (R, R, (1,u−1)) −→ (0, R/α,0) −→ 0

and the fact that the first term represents 0∈ K0(∆
1
k, ∂∆

1
k) then shows that

the boundary of(1,u−1) is the class[0, k(z),0].
Since[0, N,0] = −[N,0,0], for eachR-moduleN with N/IN = 0, we

see that
i z
∗(1) = ∂(u),

completing the casen = 1.
We prove the general case by induction onn. Takeu1, . . . ,un in k× with∑n

i= j ui 6= 1 for all j = 1, . . . ,n. Let

z=
( −u1

1−∑i ui
, . . . ,

−un

1−∑i ui
,

1

1−∑i ui

)
∈ ∆n

k.

The lineLu ⊆ ∆n defined by the equations

ti−1 = −ui

1−∑i ui
; i = 1, . . . ,n− 1

contains the pointz, and intersects∂∆n only in the facestn = 0 andtn−1 = 0.
We calculate the class ofi z∗(1) ∈ K0(∆

n
k, ∂∆

n
k) by factoring the embed-

ding throughLu:

K0(k)

i z∗
y

K1(k)
∼−−−→ K0(Lu, {p,q})

iq∗
y i Lu∗

y
Kn(k)

∼−−−→ K1(∆
n−1
k , ∂∆n−1

k )
∼−−−→ K0(∆

n
k, ∂∆

n
k).

Herep andq are the points of intersection ofLu with the facetn−1 = 0 and
tn = 0. One easily checks that

q =
( −u1

1−∑ui
, . . . ,

−un−1

1−∑ ui
,

1− un

1−∑ui

)
.

The map

(t0, . . . , tn) 7→
(

tn−1

tn−1 + tn
,

tn
tn−1 + tn

)
defines an affine-linear isomorphism of(Lu, tn−1 = 0, tn = 0) with
(∆1

k, (0,1), (1,0)), and sends the pointz to( −un/1−∑i ui

1− un/1−∑i ui
,

1/1−∑i ui

1− un/1−∑i ui

)
=
( −un

1− un
,

1

1− un

)
.
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Using the casen = 1, we see that the imagei z∗(1) in K1(k) in the above
diagram isun. We have to calculatei q

∗(un) ∈ K1(∆
n−1
k , ∂∆n−1

k ) ∼= Kn(k).
Since this map is a map of rightK∗(k)-modules, we havei q

∗(un) = i q
∗(1)∪un,

wherei q
∗(1) is the image of 1 underi q

∗ : K0(k) −→ K0(∆
n−1
k , ∂∆n−1

k ). One
checks that the image of the symbol{ u1

1−un
, . . . ,

un−1
1−un
} under the map (13)

is the pointq, hence by induction hypothesis the image ofi q
∗(1) in Kn−1(k)

is { u1
1−un

, . . . ,
un−1
1−un
}. Consequently, we have

i z
∗(1) = i q

∗(qn) = i q
∗(1) ∪ un =

{
u1

1− un
, . . . ,

un−1

1− un
,un

}
in Kn(k). By the Steinberg relation, the last term agrees with{u1, . . . ,
un−1,un}. Q.E.D.

4. The semi-localm-cube

Let �̂m be the semi-localization of�m with respect to the 2m points where
all coordinates are 0 or 1. We define the set of ideals

Tm = {(ti − ε) | i = 1, . . . ,m; ε ∈ {0,1}}.
We order the idealsIs of Tm by

Is =
{
(ts− 1) for s≤ m
(ts−m) for s> m,

and letTs
m be the subset ofTm consisting of the firsts ideals. Let

Sm = T2m−1
m = Tm− {(tm)}.

For an idealIs, let �̂s
m be the closed subscheme of�̂m defined byIs, and

�̂s,t
m the closed subscheme defined byIs+ I t. Forr > s, let Ts

m/Ir be the set
of ideals in the ring of functions of̂�r

m
∼= �̂m−1 given by the image of the

ideals inTs
m, after deleting those ideals which become the unit ideal, i.e.

Ts
m/Ir =

{
Ts

m−1 for r ≤ m or s< r −m
Ts−1

m−1 for r > m and s≥ r −m.

Throughout this paragraph, letS be the set of all faces of̂�m, i.e. the set of
closed subsets of̂�m given by the ideals ofTm and all their intersections.

For 1≤ s≤ m let

i s : (t1, . . . , tm−1) 7→ (t1, . . . , ts−1,0, ts, . . . , tm−1)

js : (t1, . . . , tm−1) 7→ (t1, . . . , ts−1,1, ts, . . . , tm−1)
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be the inclusion of the facests = 0 and ts = 1 into �̂m. We have the
identities

i t i s =
{

i s+1i t s≥ t
i si t−1 s< t

; jti s =
{

i s+1 jt s≥ t
i s jt−1 s< t

;

jt js =
{

js+1 jt s≥ t
js jt−1 s< t

.

(17)

Similarly, we define projection maps for 1≤ s ≤ m and 1≤ s < m,
respectively,

ps : (t1, . . . , tm) 7→ (t1, . . . , ts−1, ts+1, . . . , tm)
qs : (t1, . . . , tm) 7→ (t1, . . . , ts−1,1− (ts− 1)(ts+1− 1), ts+2, . . . , tm).

The following identities hold

ps jt =


jt−1ps t > s
id t = s
jt ps−1 t < s

; psi t =


i t−1ps t > s
id t = s
i t ps−1 t < s

(18)

qs jt =


jt−1qs t > s+ 1
jsps t = s, s+ 1
jtqs−1 t < s

; qsi t =


i t−1qs t > s+ 1
id t = s, s+ 1
i tqs−1 t < s

. (19)

We have the subcomplexzn(�̂m, Ts
m, ∗)ker

S of zn(�̂m, Ts
m, ∗)S defined by

zn(�̂m, T
s
m, ∗)ker

S = ker
(

zn(�̂m, ∗)S −→
⊕
t≤s

zn(�̂t
m, ∗)S

)
.

Proposition 4.1. The canonical map

zn(�̂m, T
s
m, ∗)ker

S → zn(�̂m, T
s
m, ∗)S

is a quasi-isomorphism fors≤ 2m andn > 0, and the inclusion

zn(�̂m, T
s
m, ∗)ker

S ⊆ zn(�̂m, T
s−1
m , ∗)ker

S

is functorially split fors<2m.

Proof.By contravariant functoriality, there are maps

i ∗s, j ∗s : zn(�̂m, ∗)S −→ zn(�̂m−1, ∗)S
p∗s,q

∗
s : zn(�̂m−1, ∗)S −→ zn(�̂m, ∗)S .

Let

ιs =
{

j ∗s for s≤ m
i ∗s−m for s> m

; ρs =
{

p∗s for s≤ m
q∗s−m for s> m

.
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We can assume that the proposition holds for�̂m−1 and proceed by in-
duction ons. Fors≤ 2m, consider the following commutative diagram of
complexes:

zn(�̂m, Ts
m, ∗)ker

S
incl−−−−→ zn(�̂m, Ts−1

m , ∗)ker
S

ιs−−−−→ zn(�̂s
m, T

s−1
m /Is, ∗)ker

Sy y y
zn(�̂m, Ts

m, ∗)S −−−−→ zn(�̂m, Ts−1
m , ∗)S −−−−→ zn(�̂s

m, T
s−1
m /Is, ∗)S .

The vertical maps are the natural maps, and by induction onm ands we
can assume that the middle and right vertical map is a quasi-isomorphism.
If we can show that the mapιs is split surjective fors< 2m and surjective
for s= 2m andn > 0, then the second statement of the proposition follows,
and both rows of the diagram define distinguished triangles in the derived
category of complexes. Since by induction the two right vertical maps are
quasi-isomorphisms, the left vertical map will be a quasi-isomorphism as
well.

Consider the following diagram

0 0y y
zn(�̂m, Ts

m, ∗)ker
S −−−−→ zn(�̂m, Ts−1

m , ∗)ker
S

ιs−−−−→ zn(�̂s
m, T

s−1
m /Is, ∗)ker

Sy y y
zn(�̂m, Is, ∗)S −−−−→ zn(�̂m, ∗)S ιs−−−−→ zn(�̂s

m, ∗)S∏
t<s ιt

y ∏
t<s ιt

y⊕
t<s zn(�̂t

m, ∗)S
⊕

t<s zn(�̂t,s
m , ∗)S

(20)

Let α be an element ofzn(�̂s
m, T

s−1
m /Is, ∗)ker

S , i.e. an element of
zn(�̂s

m, ∗)S mapping to zero underιt for t < s. If s< 2m, let ᾱ = ρs(α) ∈
zn(�̂m, ∗)S . We have to show that̄α lies in the kernel ofιt for t < s. This
follows from (18) fort < s≤ m:

ιt ᾱ = j ∗t p∗sα = p∗s−1 j ∗t α = 0.

For s> t > m this follows from (19):

ιt ᾱ = i ∗t−mq∗s−mα = q∗s−m−1i
∗
t−mα = 0

and fort ≤ m< s,

ιt ᾱ = j ∗t q∗s−mα =


q∗s j ∗t−1α = 0 t ≥ s−m+ 1
p∗s−m j ∗t α = 0 t = s−m, s−m+ 1
q∗s−m−1 j ∗t α = 0 t < s−m.

(21)
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It remains to show forn > 0 the surjectivity of the restriction map

zn(�̂m, Sm,q)
ker
S

i∗m−→ zn(�̂2m
m , Tm−1,q)

ker
S . (22)

The groupzn(�̂m−1,0)S is zero, as a cycle on̂�m−1 which intersects a vertex
properly must necessarily avoid the vertex, and�̂m−1 is the semi-local
scheme of the set of vertices in�m−1. Thus

zn(�̂2m
m , Tm−1,0)ker

S ⊆ zn(�̂m−1,0)S = 0,

proving surjectivity in this case. Now supposeq > 0. Identify�q × �m
with �q+m by

((x1, . . . , xq), (t1, . . . , tm))→ (x1, . . . , xq, tm, . . . , t1)

and make a similar identification of�q ×�m−1 with �q+m−1. This identi-
fies�q × �̂m and�q × �̂m−1 with subschemes of�q+m and�q+m−1, and
identifies the mapi ∗m of (22) with the mapi ∗q+1 for �q+m. Let ī q+1 andq̄q

be the restriction ofi q+1 andqq, respectively. Then the pull-back alongq̄q

gives a splitting to (22) becausei ∗q+1q
∗
q = id. It is a map fromzn(�̂2m

m ,q)S to

zn(�̂m,q)S , because the restriction ofq̄∗q(x) to all but the last face of�q is

trivial if the same holds forx. Similarly, it is a map fromzn(�̂2m
m , Tm−1,q)ker

S

to zn(�̂m, Sm,q)ker
S , because the restriction ofq̄∗q(x) to all but the last face

of �̂m is trivial if this holds forx. Note however that the mapi ∗m of (22) is
not split surjective as a map of complexes, becauseq̄∗q does not commute

with the differential̄i ∗q of the complexes. Q.E.D.

We are now ready to calculate some relative motivic cohomology groups:

Proposition 4.2. a) There is an isomorphism

Hn(�̂m, Sm,Z/p(n))
∼−→ νn(�̂m, Sm).

b) Let i 6= n and assume thatHi−1(k,Z/p(n − 1)) = 0 for all fields of
characteristicp. Then

Hi (�̂m, Sm,Z/p(n)) = 0.

Proof. We first show by induction onm that fors < 2m, there is an exact
sequence

0−→ Hi (�̂m, T
s
m,Z/p(n))

γ−→
Hi (�̂m,Z/p(n))

(ιt)−→
⊕
t≤s

Hi (�̂t
m,Z/p(n)).
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Indeed, by Proposition 4.1, there is an exact sequence

0−→ Hi (�̂m, T
s
m,Z/p(n)) −→

Hi (�̂m, T
s−1
m ,Z/p(n)) −→ Hi (�̂s

m, T
s−1
m /Is,Z/p(n)) −→ 0,

and by induction onm, the last term injects intoHi (�̂s
m,Z/p(n)).

Taking i = n and s = 2m − 1, this proves (a) in view of Proposi-
tion 3.1. Note thatγ factors throughHi (�̂m, (t1−1, . . . , tm−1),Z/p(n)),
so for (b) it suffices to show that this latter group vanishes. The long exact
relativization sequence

−→ Hi (�̂m, (t1 − 1, . . . , tm− 1),Z/p(n)) −→
Hi (�̂m,Z/p(n)) −→ Hi (k,Z/p(n)) −→

is split by the structure map and gives

Hi (�̂m,Z/p(n)) ∼= Hi (�̂m, (t1−1, . . . , tm−1),Z/p(n))⊕Hi (k,Z/p(n)).

Thus we have to show that the mapHi (k,Z/p(n))→ Hi (�̂m,Z/p(n)) is
an isomorphism, or by homotopy invariance, that the restriction map

Hi (Am,Z/p(n))→ Hi (�̂m,Z/p(n))

is an isomorphism. For this, we know by the same proof as in [27, theo-
rem 2.4], that the hypercohomology spectral sequence

Hs(Am,H t(Z/p(n)))⇒ Hs+t(Am,Z/p(n))

is concentrated on the lines = 0: Hi (Am,Z/p(n)) = H0(Am,H i (Z/p(n))).
Similarly, the Gersten conjecture for semi-local regular rings gives

Hi (�̂m,Z/p(n)) = H0(�̂m,H
i (Z/p(n))).

Comparing the Gersten resolution for the sheafH i (Z/p(n)) onAm and�̂m
we get the exact sequence

0−→ H0(Am,H i (Z/p(n))) −→ H0(�̂m,H
i (Z/p(n)))

−→
⊕

x∈(Am−�̂m)(1)

Hi−1(k(x),Z/p(n− 1)).

By assumption, the last term vanishes, giving the isomorphism we need.
Q.E.D.
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Corollary 4.3. We have

Hn−1(�̂m−1, Tm−1,Z/p(n)) ∼= Hn−m(k,Z/p(n))

Hi (�̂m, Tm,Z/p(n)) = 0 for i > n.

In particular, there is an exact sequence

0−→ Hn−m(k,Z/p(n)) −→ Hn(�̂m, Tm,Z/p(n))
βm−→

Hn(�̂m, Sm,Z/p(n)) −→ Hn(�̂m−1, Tm−1,Z/p(n)) −→ 0.

Proof. By definition of Tm and Sm, there is a long exact relativization
sequence

. . . −→ Hi (�̂m, Tm,Z/p(n)) −→ Hi (�̂m, Sm,Z/p(n))
tm=0−→

Hi (�̂m−1, Tm−1,Z/p(n)) −→ Hi+1(�̂m, Tm,Z/p(n)) −→ . . . . (23)

We see from this sequence for varyingm, together with Proposition 4.2(b),
that

Hn−1(�̂m−1, Tm−1,Z/p(n)) ∼= Hn−2(�̂m−2, Tm−2,Z/p(n)) ∼=
. . . ∼= Hn−m(k,Z/p(n)),

and that, fori > n,

Hi (�̂m, Tm,Z/p(n)) ∼= Hi+1(�̂m+1, Tm+1,Z/p(n)) ∼=
. . . ∼= H2n+1(�̂m+2n+1−i , Tm+2n+1−i ,Z/p(n)).

But by Proposition 4.1, the latter group is the cohomology in degree zero
of the complexzn(�̂m+2n+1−i , Tm+2n+1−i , ∗)ker

S , which is zero. Q.E.D.

Corollary 4.4.

Hi (�̂m, Sm,Z(n)) = 0 for i > n

Hi (�̂m, Tm,Z(n)) = 0 for i > n.

In particular, the mapHn(�̂m, Sm,Z/l(n)) −→ Hn(�̂m−1, Tm−1,Z/l(n))
is surjective.

Proof.The only place where we usedZ/p-coefficients in this section is the
hypothesis in Proposition 4.2(b). Hence the same proof as in Proposition 4.2
together with the (trivial) fact thatHi (F,Z(n)) = 0 for i > n and any field
F proves the first statement. The second statement follows as in the proof
of Corollary 4.3. Similarly, the same holds with modl coefficients, and we
get the last statement with the long relativization sequence. Q.E.D.
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5. The boundary of the semi-localm-cube

Let ∂�̂m be the boundary of̂�m, i.e. the closed subscheme defined by∏
i ti (ti − 1). Let

b : ∂�̂m −→ �̂m

be the inclusion. Again, we letS be the set of all faces of̂�m, order the
ideals of Tm as in the previous paragraph, and denote the subset ofTm
consisting of the firsts ideals byTs

m. We remind the reader that for ideals
Is, I t ∈ Tm, ∂�̂s

m
∼= �̂m−1 denotes the closed subscheme defined byIs and

∂�̂s,t
m
∼= �̂m−2 denotes the closed subscheme defined byIs+ I t .

Bloch’s higher Chow groups form a Borel-Moore homology theory,
hence our definition of motivic cohomology via higher Chow groups is
reasonable only for smooth schemes. In order to deal with∂�̂m, we give
the following ad hoc construction of a cycle complex:

zn(∂�̂m, ∗)S = ker
( ⊕

1≤s≤2m

zn(∂�̂s
m, ∗)S −→

⊕
1≤u<v≤2m

zn(∂�̂u,v
m , ∗)S

)
.

If i is the inclusion of∂�̂u,v
m into ∂�̂s

m, then the mapzn(∂�̂s
m, ∗)S −→

zn(∂�̂u,v
m , ∗)S is i ∗ for s = u < v, −i ∗ for u < v = s, and zero otherwise.

In other words, we consider cycles on the faces which agree on their inter-
sections. This definition is motivated by the blow-up long exact sequence
for motivic cohomology, see [4].

More generally, we define the following relative complex, whereιt is
the projection to the corresponding summand:

zn(∂�̂m, T
s
m, ∗)S = ker

(
zn(∂�̂m, ∗)S (ιt)−→

⊕
t≤s

zn(∂�̂t
m, ∗)S

)
= ker

(⊕
t>s

zn(∂�̂t
m, ∗)S −→

⊕
1≤u<v≤2m

zn(∂�̂u,v
m , ∗)S

)
. (24)

In particular, the second description shows that we have

zn(∂�̂m, Sm, ∗)S = zn(�̂m−1, Tm−1)
ker
S .

We define the relative motivic cohomology groups

H2n−i (∂�̂m, T
s
m,Z/p(n)) = Hi (z

n(∂�̂m, T
s
m, ∗)S ⊗ Z/p).

To simplify notation, we drop the coefficientsZ/p(n) for the rest of this
section and define the groups

Hn(∂�̂m)
ker = ker

( ⊕
1≤s≤2m

Hn(∂�̂s
m) −→

⊕
1≤u<v≤2m

Hn(∂�̂u,v
m )
)
,
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with the same sign convention as above, and more generally

Hn(∂�̂m, T
s
m)

ker = ker
(

Hn(∂�̂m)
ker (ιt )−→

⊕
t≤s

Hn(∂�̂t
m)
)

= ker
(⊕

t>s

Hn(∂�̂t
m) −→

⊕
1≤u<v≤2m

Hn(∂�̂u,v
m )
)
. (25)

Again, these are the cohomology classes on faces which agree on the inter-
sections of two faces. Note that there are restriction maps

b∗ : zn(�̂m, T
s
m, ∗)ker

S −→ zn(∂�̂m, T
s
m, ∗)S,

because cycles coming from̂�m agree on the intersection of the faces
of ∂�̂m. On the other hand, the cohomology of the kernel of a map between
two complexes maps to the kernel of the induced map on cohomology,
hence by Proposition 4.1 the mapb∗ induces restriction maps

b∗ : Hn(�̂m, T
s
m) −→ Hn(∂�̂m, T

s
m) −→ Hn(∂�̂m, T

s
m)

ker.

If we let ιt be the map induced by the inclusion∂�̂t
m→ ∂�̂m, then by

Proposition 3.1 and (25) we have

νn(∂�̂m, T
s
m) = ker

(
νn(∂�̂m)

(ιt )−→
⊕
t≤s

νn(∂�̂t
m)
)

(ιt)−→

ker
(⊕

t>s

νn(∂�̂t
m)→

⊕
u<v

νn(∂�̂u,v
m )
) ∼= Hn(∂�̂m, T

s
m)

ker. (26)

Consider the following commutative diagram:

Hn(∂�̂m, Ts
m) −−−→ Hn(∂�̂m, Ts

m)
ker ←−−− νn(∂�̂m, Ts

m)y y y
Hn(∂�̂m, Ts−1

m ) −−−→ Hn(∂�̂m, Ts−1
m )ker ←−−− νn(∂�̂m, Ts−1

m ) .

Proposition 5.1. The vertical maps in the above diagram are compatibly
split for s< 2m. In particular, there is a commutative diagram:

Hn(∂�̂m, Sm) −−−→ Hn(∂�̂m, Sm)
ker ←−−− νn(∂�̂m, Sm)

s

x s

x s

x
Hn(∂�̂m) −−−→ Hn(∂�̂m)

ker ←−−− νn(∂�̂m) .
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Proof. We will show in each case that there are mapsi ∗s, j ∗s , p∗s andq∗s sat-
isfying the equations (18) and (19); the proof of Proposition 4.1 gives the
desired splitting. Forνn, we have the four maps by contravariant functori-
ality, and there is a short exact sequence

0−→ νn(∂�̂m, T
s
m) −→ νn(∂�̂m, T

s−1
m )

ιs−→ ν(∂�̂s
m, T

s−1
m /Is).

Hereιs is induced byj ∗s for s≤ mand byi ∗s−m for s> m. As in diagram (20),
one checks that the mapιs is split by ρs, whereρs = p∗s for s ≤ m and
ρs = q∗s for s> m.

For zn andHn(−)ker we have exact sequences

0−→ zn(∂�̂m, T
s
m, ∗)S −→

zn(∂�̂m, T
s−1
m , ∗)S ιs−→ zn(∂�̂s

m, T
s−1
m /Is, ∗)S,

0−→ Hn(∂�̂m, T
s
m)

ker −→
Hn(∂�̂m, T

s−1
m )ker ιs−→ Hn(∂�̂s

m, T
s−1
m /Is)

ker.

Hereιs is the projection to the corresponding summand in (24), and (25),
and one sees from the second description in (24) and (25) that the image
of ιs is contained in the relative cohomology group indicated. It suffices
to show that the mapιs is split surjective. We define maps̄p∗s and q̄∗s by
factoring through�̂m:

zn(�̂m, ∗)S p∗s,q∗s−→ zn(�̂m, ∗)S b∗−→ zn(∂�̂m, ∗)S .
Hn(�̂m)

p∗s,q∗s−→ Hn(�̂m)
b∗−→ Hn(∂�̂m)

ker,

Note that the maps̄p∗s andq̄∗s have image in the kernel defining the relative
cycle complex and cohomology groups, respectively. Furthermore, together
with the mapsιs they satisfy the equations (18) and (19), hence the proof in
diagram (20) extends to this situation.

Compatibility for the map between cohomology groups is obvious, be-
cause the map id−ρsιs on complexes induces the map id−ρsιs on cohomo-
logy.

For the compatibility for the map betweenνn and Hn(−)ker with the
splitting, we have to check that the splitting is compatible with the map
of (26). Since the splitting is given byx 7→ x − ρsιsx, it suffices to show
that

(ιtρsιsx)t = ρsιs(ιt x)t ∈
⊕
t>s

νn(∂�̂t
m).
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But this follows from the following commutative diagram. The upper com-
position isρsιsx, since the mapρs for νn factors throughνn(�̂m):

νn(∂�̂m)
ιs−−−→ νn(�̂m−1)

ρs−−−→ νn(�̂m−1)
b∗−−−→ νn(∂�̂m)

(ιt )

y ∥∥∥ ∥∥∥ (ιt )

y⊕
t ν

n(�̂m−1)
projs−−−→ νn(�̂m−1)

ρs−−−→ νn(�̂m−1)
(ιt)−−−→ ⊕

t ν
n(�̂m−1)

Q.E.D.

6. Torsion in νn

In this section we are going to prove the following theorem

Theorem 6.1. Let τ be a section ofνn(∂�̂m, Tm). Then we can writeτ as
a sum of elements of the formdf1 ∧ . . . ∧ dfn, with

∏
i fi = 0 on ∂�̂m.

Consider�̂m as the facetm+1 = 0 of ∂�̂m+1, and let

pm+1 : ∂�̂m+1 −→ �̂m

be the projection. For the proof of Theorem 1.1, we need the following:

Corollary 6.2. The restriction map

νn(∂�̂m+1, Sm+1) −→ νn(�̂m, Tm)

is surjective.

Proof.Letω ∈ νn(�̂m, Tm) and consider the following short exact sequence:

0−→ νn(�̂m, ∂�̂m) −→ νn(�̂m, Tm) −→ νn(∂�̂m, Tm).

By Theorem 6.1, each element ofνn(∂�̂m, Tm) is a sum of elements of the
form df1∧ . . .∧dfn with

∏
i fi = 0 on∂�̂m. Let f̂ i be lifts of the functions

fi to �̂m. We pull these functions back to∂�̂m+1 via pm+1, and let f ′i be the
function p∗m+1( f̂i ) · (1− tm+1) on ∂�̂m+1. Let g= 1

1− f ′1··· f ′n , then

dg

g
∧ df ′2

f ′2
∧ . . . ∧ df ′n

f ′n
= 1

1− f ′1 · · · f ′n
df ′1 ∧ . . . ∧ df ′n

is a section ofνn(∂�̂m+1, Sm+1) with restrictiondf1 ∧ . . . ∧ dfn to ∂�̂m
and with trivial restriction to the other faces. Thus we can assume thatω is
contained inνn(�̂m, ∂�̂m).



The K -theory of fields in characteristicp 483

Cover ∂�̂m+1 by the two open setsU = ∂�̂m+1 − {tm+1 = 0} and
V = ∂�̂m+1− {tm+1 = 1}. We lift ω via pm+1 to νn(V). Sinceω|

∂�̂m
= 0,

this lift agrees with the zero section ofνn(U ) on U ∩ V. Thus we can
glue these sections, to get a section ofνn(∂�̂m+1) which vanishes on
∂�̂m+1− {tm+1 = 0}. Q.E.D.

We proceed with the proof of Theorem 6.1. We call the differentials on
∂�̂m which vanish on each facetorsion differentials:

Ωn
∂�̂m,tor

= ker
(
Ωn
∂�̂m
−→

⊕
1≤s≤2m

Ωn
∂�̂s

m

)
.

Lemma 6.3. Each section ofΩn
∂�̂m,tor

can be written as a sum of terms of

the form f0df1 . . . dfn, with
∏

i fi = 0.

Proof. For each vertexv of ∂�̂m, let Tv be the product of the functionsti ,
ti − 1, 1≤ i ≤ m, which are non-zero atv, T ′v the product of the functions
which vanish atv. Note thatTvT ′v = 0 on∂�̂m. It suffices to show that, for
eachv, each sectionω of Ωn

∂�̂m,tor
can be written as a sum of sections of

the form f0df1∧ . . .∧ dfn, with T ′v| f0
∏

i fi . Indeed, sinceTv(v) = ±1 and
Tv′(v) = 0 for v 6= v′, the functionu =∑v Tv is a unit on∂�̂m, and

ω =
∑
v

1

u
Tvω

is in the desired form.
To prove the local statement, we may assumev = (0, . . . ,0). We

lift ω to a sectionω̃ of Ωn
�̂m

such thatω̃ maps to zero inΩn
�̂s

m
for each

1 ≤ s ≤ m. Now Ωn
�̂m

is a freeO
�̂m

-module with basisdti1 ∧ . . . ∧ dtin ,

1≤ i1 < . . . < i n ≤ m, and the kernel of the restriction mapΩn
�̂m
→ Ωn

�̂s
m

is tsΩn
�̂m
+ dtsΩ

n−1

�̂m
. Thus, if we write

ω̃ =
∑

I=(i1<...<in)

aI dti1 ∧ . . . ∧ dtin ,

either ts|aI , or s is in I , for each indexI . Since this holds for eachs, we
haveT ′v|aI ti1 · · · tin as desired. Q.E.D.

Proposition 6.4. We have

νn(∂�̂m, Tm) = dΩn−1

∂�̂m
∩Ωn

∂�̂m,tor
.
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Proof.We first recall that

C−1( f0df1 ∧ . . . ∧ dfn) = f p
0 ( f1 · · · fn)

p−1df1 ∧ . . . ∧ dfn,

By Lemma 6.3, this implies thatC−1 is zero onΩn
∂�̂m,tor

. The proposition

now follows in view of the following commutative diagram, where 1≤
s ≤ 2m, and the fact that the upper right horizontal map is the canonical
surjection.

0 0 0y y y
0 −−−−→ νn(∂�̂m, Tm) −−−−→ Ωn

∂�̂m,tor

id−C−1−−−−→ Ωn
∂�̂m,tor

/dΩn−1
∂�̂m
∩Ωn

∂�̂m,tory y y
0 −−−−→ νn(∂�̂m) −−−−→ Ωn

∂�̂m

id−C−1−−−−→ Ωn
∂�̂m

/dΩn−1
∂�̂my y y

0 −−−−→ ⊕sν
n(∂�̂s

m) −−−−→ ⊕sΩ
n
∂�̂s

m

id−C−1−−−−→ ⊕sΩ
n
∂�̂s

m
/dΩn−1

∂�̂s
m

Q.E.D.

By Lemma 6.3 and Proposition 6.4, Theorem 6.1 is equivalent to the
statement:

dΩn−1
∂�̂m,tor

= dΩn−1
∂�̂m
∩Ωn

∂�̂m,tor
.

Obviously,

dΩn−1
∂�̂m,tor

⊆ dΩn−1
∂�̂m
∩Ωn

∂�̂m,tor
⊆ ZΩn

∂�̂m,tor
,

hence it suffices to show that the complex

. . . −→ Ωn
∂�̂m,tor

−→ Ωn+1
∂�̂m,tor

−→ . . .

is exact. We begin with the following special case:

Proposition 6.5. Let Rm = Fp[t1, . . . , tm]/(t1 · · · tm). Then for anyFp-
algebra A, the complex

Ω∗Rm⊗A,tor := ker
(
Ω∗Rm⊗A −→

⊕
i

Ω∗Rm/ti⊗A

)
is exact.
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Proof.First note thatΩ∗Rm⊗A is isomorphic to the total complex of the double

complexΩ∗Rm
⊗Ω∗A by (3). SinceΩ j

A is anFp-module, tensoring withΩ j
A

overFp is exact. HenceΩ∗Rm⊗A,tor is the total complex of the double complex
Ω∗Rm,tor ⊗Ω∗A. On the other hand, the total complex is exact if the rows of
the double complex are exact, so it suffices to prove the proposition forRm.

We proceed by induction onm and assume the result form− 1 and all
Fp-algebrasA. We have

Ωn
Rm
=

⊕
i1<...<in

Rmdti1 ∧ . . . ∧ dtin/
(∑

i

∏
l 6=i

tldti
)
Ωn−1

Rm
.

Assigning degree one totm anddtm and degree zero toti anddti for i < m, we
can give each element ofΩn

Rm
a degree, since

∑
i

∏
l 6=i tldti is homogeneous.

This is compatible with differentials, hence decomposesΩn
Rm

into a direct
sum of subcomplexes.

Supposeω is in ZΩn
Rm,tor. Thendω = 0 and we can assume thatω has

nonzero degreei in tm. Write

ω = ω1t
i−1
m dtm+ ω2ti

m.

The mapΩn
Rm
−→ Ωn

Rm−1
induced bytm 7→ 1 sendsω toω2, henceω2 is in

ZΩn
Rm−1,tor. By induction,ω2 = dτ for someτ ∈ Ωn−1

Rm−1,tor. Thenτti
m is in

Ωn−1
Rm,tor,

ω− d(τti
m) = ω− ω2t

i
m− iτti−1

m dtm = (ω1− iτ)ti−1
m dtm,

and we can assumeω2 = 0.
Let S= Fp[tm, t−1

m ]and consider the localization mapRm −→ Rm−1⊗S.
FromΩ∗S= S⊕ Sdtm we get

Ωn
Rm−1⊗S,tor = S⊗Ωn

Rm−1,tor ⊕ S⊗Ωn−1
Rm−1,tordtm.

Thus

0= dω = d(ω1t
i−1
m dtm) = ti−1

m dω1dtm

in Ωn
Rm−1⊗S,tor implies thatω1 is in Ωn−1

Rm−1,tor and dω1 = 0. By induc-

tion, ω1 = dτ1 for someτ1 in Ωn−2
Rm−1,tor. Thenτ1ti−1

m dtm is in Ωn−1
Rm,tor, and

d(τ1ti−1
m dtm) = ω1ti−1

m dtm = ω. Q.E.D.
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Lemma 6.6. The complexΩ∗
(∂�̂m)v,tor

is exact for the localization(∂�̂m)v

of ∂�̂m at the pointv = (0, . . . ,0).

Proof. Applying the proposition toA = k, we see that the complexΩ∗Sm,tor

is exact forSm = k[t1, . . . , tm]/(t1 · · · tm). Since(∂�̂m)v ∼= Spec(Sm)v,
it suffices to show that exactness is preserved by localization. Recall that
d(xpω) = xpdω for all differentials, because we are in characteristicp. Let
ω
s ∈ Ωn

(Sm)v,tor with dωs = 0.Then

0= dωsp−1

sp = 1
sp d(ωsp−1) ∈ Ωn

(Sm)v,tor.

This means that there is at ∈ (Sm)
×
v , such thattd(ωsp−1) = 0 and hence

dωt psp−1 = t pdωsp−1 is trivial in Ωn
Sm,tor.By the proposition,ωt psp−1 = dτ

in Ωn
Sm,tor for someτ, and

d τ
t psp = 1

t psp dτ = ω
s .

Q.E.D.

To finish the proof of Theorem 6.1, we show that the complexΩ∗
∂�̂m,tor

is exact if it is exact for the localization of∂�̂m at each of the verticesv.
Letω ∈ Ωn

∂�̂m,tor
with dω = 0. By the lemma, for eachv the image ofω in

Ωn
(∂�̂m)v,tor

can be written asdτv for τv = σv
sv
∈ Ωn−1

(∂�̂m)v,tor
, σv ∈ Ωn−1

∂�̂m
and

sv a function on∂�̂m which does not vanish atv.

We first show that we can chooseσv ∈ Ωn−1
∂�̂m,tor

. We can assume that

v = (0, . . . ,0). Sinceτv vanishes inΩn−1

(∂�̂i
m)v

for eachi > m, there are

functionsuv,i on ∂�̂m which do not vanish atv, such thatuv,i τv is zero in
Ωn−1
∂�̂i

m
. We now replaceσv andsv by their product with

∏
i uv,i (ti −1), a unit

atv. Thenτv does not change, butσv is contained inΩn−1
∂�̂m,tor

.

Finally, choose functionscv on ∂�̂m such that
∑

cvsv = 1. Then∑
cp
vsp
v =

(∑
cvsv

)p = 1, and

d
∑

v cp
vsp−1
v σv =∑v cp

vsp
v dσvsv =

∑
v cp

vsp
v ω = ω.

Q.E.D.
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7. The theorem

In this section we finish the proof of Theorem 1.1. Using coefficient se-
quences, one easily sees that it suffices to consider the caser = 1. By
Corollary 4.3, the groupHn−m(k,Z/p(n)) is the kernel ofβm in the follow-
ing commutative diagram:

0y
Hn−m(k,Z/p(n)) 0y y

Hn(�̂m, Tm,Z/p(n))
αm−−−→ νn(�̂m, Tm)

βm

y y
Hn(�̂m, Sm,Z/p(n))

∼=−−−→ νn(�̂m, Sm)y y
Hn(�̂m−1, Tm−1,Z/p(n))

αm−1−−−→ νn(�̂m−1, Tm−1)y
0

The injectivity ofβm is equivalent to the injectivity ofαm, and the snake
lemma in a diagram for a differentm shows thatαm is injective if and only
if αm+1 is surjective. Thus Theorem 1.1 follows from

Theorem 7.1. For anym, the map

αm : Hn(�̂m, Tm,Z/p(n)) −→ νn(�̂m, Tm)

is a surjection.

We first show that we can lift sections ofνn(∂�̂m+1, Sm+1) to sections
of smooth schemes:

Proposition 7.2. Letx ∈ νn(∂�̂m+1). Then there exists a smooth semi-local
schemeUx containing∂�̂m+1 as a closed subscheme, such thatx lies in the
image of the restriction mapνn(Ux) −→ νn(∂�̂m+1).

Proof. We prove more generally the following statement: Letk be a field,
X ⊆ AN

k be an open subset of an affine space, andY the subscheme ofX
defined by some polynomialf . Then for every sectionωY ∈ νn(Y), there is
anétale neighborhoodU of Y in X such thatωY is the restriction of a section
of νn(U ).
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Let x1, . . . , xN be the standard coordinates ofAN
k . For indicesI = (1≤

i1 < . . . < i n ≤ N), let dxI = dxi1 ∧ . . . ∧ dxin andxI = xi1 · · · xin . Lift
ωY to a sectionω ∈ Ωn

X, and writeω =∑I aI dxI . The condition forω|Y to
be a section ofνn(Y) is (1− C−1)ω|Y ∈ dΩn−1

Y , i.e.∑
I

(aI − ap
I (x

I )p−1)dxI = dχ + fη+ df · τ

for somen− 1 formsχ, τ and ann-form η on X. As d( fτ) = df · τ + fdτ,
we may absorb the termdf · τ into dχ and fη, and assumeτ = 0. Write
dχ =∑I bI dxI , giving the equation∑

I

(aI − ap
I (x

I )p−1− bI )dxI = fη.

In Ωn
X⊗OX OY, the right hand side vanishes. SinceΩn

X⊗OX OY is free over
OY with generatorsdxI , we get

aI − ap
I (x

I )p−1− bI = 0 (27)

on Y for eachI . Now define the closed subscheme ofA1
X

AI = SpecOX
OX[tI ]/(tI − (xI )p−1t p

I − bI ).

Since the coefficient oftI is 1,AI is flat over X. Since

d(tI − (xI )p−1t p
I − bI ) = dtI ∈ ΩA I /X,

we haveΩA I /X = 0, soAI is unramified, hencéetale overX.
Let q : U → X be the fiber product of theAI for all I over X. The

relation (27) determines a sectionaY : Y −→ U by sendingtI to aI ,
identifying Y with the closed subscheme ofU defined bytI − aI = 0 for
all I , henceU is anétale neighborhood ofY in X.

Sinceq : U → X is étale, the pull-backs of thedxI give a basis ofΩn
U

overOU . Let yi = q∗(xi ), thenq∗(dxI ) = dyI andq∗(dχ) =∑I q∗(bI )dyI .
LetωU =∑I tI dyI ∈ Ωn

U , then

(1− C−1)(ωU) =
∑

I

(tI − t p
I (y

I )p−1)dyI .

Since we are onU, we havetI − t p
I (y

I )p−1 = q∗bI , hence(1−C−1)(ωU) =
q∗db= d(q∗b). ThusωU defines a section ofνn overU. As Y is given by
tI = aI , ωU extends the given form

∑
I aI dxI . Q.E.D.
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To finish the proof of Theorem 7.1, consider now the following diagram,
where we omit the coefficientsZ/p(n):

Hn(�̂m, Tm)
αm−−−→ Hn(�̂m, Tm)

ker
∼=−−−→ νn(�̂m, Tm)∥∥∥ ∥∥∥ x

Hn(∂�̂m+1, Sm+1)
αm−−−→ Hn(∂�̂m+1, Sm+1)

ker ←−−− νn(∂�̂m+1, Sm+1)

s

x s

x s

x
Hn(∂�̂m+1) −−−→ Hn(∂�̂m+1)

ker ←−−− νn(∂�̂m+1)x x x
⊕xHn(Ux) ⊕x Hn(Ux)

∼=←−−− ⊕xν
n(Ux) .

The upper and lower squares are commutative by definition of the co-
homology groups and construction of the maps, and the middle squares
are commutative by Proposition 5.1. The composition in the right vertical
column is surjective by Corollary 6.2 and Proposition 7.2, hence the compo-
sition in the middle column is surjective. But then the mapαm is surjective,
concluding the proof of the theorem.

8. Consequences

Theorem 8.1. For any fieldk of characteristicp, the groupsK M
n (k) and

Kn(k) are p-torsion free. The natural map

K M
n (k)/pr −→ Kn(k,Z/pr )

is an isomorphism, and the natural map

K M
n (k) −→ Kn(k)

is an isomorphism up to uniquelyp-divisible groups.

Proof. Since Hn−1(k,Z/p(n)) = 0, the long exact coefficient sequence
shows thatK M

n (k) is p-torsion free, reproving Izhboldin’s theorem [16].
Appyling the Bloch-Lichtenbaum spectral sequence [6] with coefficients
[26, Appendix B],

Hs−t(k,Z/p(−t))⇒ K−s−t(k,Z/p),

we getK M
n (k)/p ∼= Hn(k,Z/p(n)) ∼= Kn(k,Z/p), induced by the natural

map from Milnor K -theory to QuillenK -theory by Proposition 3.3. In
particular, the coefficient sequence forK -theory shows thatKn−1(k) is
p-torsion free and thatK M

n (k)/p∼= Kn(k)/p.
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Since the composition of the natural map with the Chern class map
from Quillen K -theory to MilnorK -theory is multiplication by(n− 1)! on
K M

n (k), and sinceK M
n (k) is p-torsion free, we get, working modulo prime

to p-torsion, a short exact sequence

0−→ K M
n (k) −→ Kn(k) −→ Q −→ 0.

This gives us

0−→ pQ −→ K M
n (k)/p−→ Kn(k)/p−→ Q/p−→ 0.

Since the middle map is an isomorphism,Q is uniquelyp-divisible. Q.E.D.

The following consequence of our result has been pointed out to us by
B. Kahn:

Theorem 8.2. Let Rbe a semi-local ring, essentially smooth over a discrete
valuation ring. Then Gersten’s conjecture forR holds with finite coefficients,
i.e. for anym there is an exact sequence

0−→ Kn(R,Z/m) −→
⊕

x∈R(0)

Kn(k(x),Z/m) −→⊕
x∈R(1)

Kn−1(k(x),Z/m) −→ . . . .

Proof. The casem prime to the residue characteristicp of the base DVR
was handled by Gillet [12], so we can restrict ourselves to the casem= pr .
By [2], or [11, Corollary 6], it suffices to show this in the case whenR
is a discrete valuation ring. The statement is a special case of the modp
Gersten conjecture for regular local rings containing a field [25] and [13],
if R has equal characteristicp. In general, letF be the quotient field,k the
residue field ofR andt a uniformizer. We have a localization sequence

. . . −→ Kn+1(R,Z/pr ) −→ Kn+1(F,Z/pr )
∂−→

Kn(k,Z/pr ) −→ Kn(R,Z/pr ) −→ . . . .

Let {x1, . . . , xn} ∈ K M
n (k) be a lifting of some element inKn(k,Z/pr ) =

K M
n (k)/pr . Then one easily sees that{t, x1, . . . , xn} mod pr lifts this elem-

ent toK M
n+1(F)/pr , hence toKn+1(F,Z/pr ). The resulting short exact se-

quence proves Gersten’s conjecture. Q.E.D.

Note by the same argument, there is a Gersten resolution with rational
coefficients, hence with integral coefficients, if Beilinson’s conjecture (2)
holds.

To get consequences for theK -theory of smooth varieties over perfect
fields of characteristicp, we have to sheafify our result.

For a schemeX, we let (K/pr )n denote the Zariski sheaf associated
to the presheafU 7→ Kn(U,Z/pr ), andH i (Z/pr (n)) the i th cohomology
sheaf of the motivic complex.
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Theorem 8.3. Let X be a smooth variety over a perfect field of character-
istic p. Then

H i (Z/pr (n)) = 0 for i 6= n
Hn(Z/pr (n)) ∼= νn

r

(K/pr )n ∼= νn
r .

Proof. The sheavesνn
r , H i (Z/pr (n)) and (K/pr )n admit Gersten reso-

lutions by (5), (11) and (8). HenceH i (Z/pr (n)) = 0 for i 6= n follows
from the corresponding result for fields, and Proposition 3.1 implies that
Hn(Z/pr (n)) = νn

r . The result forK -theory follows from Proposition 3.1
and Theorem 8.1. Q.E.D.

Theorem 8.4. Let X be a smooth variety of dimensiond over a perfect field
of characteristicp. Then

Hs(XZar, ν
r
t )
∼= Hs+t(X,Z/pr (t)),

and there is a spectral sequence from motivic cohomology toK -theory

Hs−t(X,Z/pr (−t))⇒ K−s−t(X,Z/pr ).

In particular, we haveKn(X,Z/pr ) = 0 for n > dim X.

Proof. The hypercohomology spectral sequence for motivic cohomology
collapses to a line, proving the first equality. The second statement is the
first equality plugged into the Brown-Gersten spectral sequence forK -
theory, and the third statement follows becauseνn

r = 0 for n > dim X.
Q.E.D.

Our result also implies that Bloch’s cycle complexes satisfy most of the
Beilinson-Lichtenbaum [22] axioms for motivic complexes, as extended by
Milne [23]. Let X be a smooth variety over a perfect field of characteristicp,
and consider the complex of presheavesZ(n) = zn(−, ∗)[−2n] on the small
étale site ofX. It is in fact a complex of sheaves for theétale topology,
in particular for the Zariski topology. LetZ(p)(n) = Z(n) ⊗ Z(p), and
ε : Xét −→ XZar the change of topology map. We claim thatZ(p)(n) satisfies
all the axioms of Beilinson-Lichtenbaum, except possibly acyclicity below
degree 0 (i.e. the Soulé-Beilinson vanishing conjecture). This is clear for all
axioms, except the following two:

Theorem 8.5. There are exact triangles in the derived category of sheaves
on XZar and Xét, respectively:

Z(n)Zar
×p−→ Z(n)Zar

d log−→ τ≤nRε∗νn[−n]
Z(n)ét

×p−→ Z(n)ét
d log−→ νn[−n].
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Proof.The cohomology sheavesH i (Z(n)Zar) are trivial fori > n by Gersten
resolution and the (trivial) fact that this holds for fields. Consequently, the
map of complexesτ≤nZ(n)Zar−→ Z(n)Zar is a quasi-isomorphism. On the
other hand,νn[−n] is (trivially) isomorphic toτ≤n Rε∗νn[−n]. We define
the mapd log to be the following composition of maps of Zariski sheaves

Z(n)
qis←− τ≤nZ(n) −→ Hn(τ≤nZ(n)) ∼= Hn(Z(n))

d log−→
νn ∼−→ τ≤nRε∗νn[−n].

By Theorem 8.3, the sheavesH i (Z(n)) are uniquelyp-divisible for i 6= n,
and there is an exact sequence

0−→ Hn(Z(n)Zar)
×p−→ Hn(Z(n)Zar) −→ νn −→ 0.

This proves the theorem for the Zariski topology. The same argument works
for any étale covering ofX, hence the statement for theétale topology.

Q.E.D.

Theorem 8.6. (Hilbert’s theorem 90) LetX be a smooth variety over a per-
fect field of characteristicp, then

Rn+1ε∗Z(p)(n)ét= 0.

Proof.SinceH i (Z(n)ét) = 0 for i > n, and since motivic cohomology with
Q-coefficients is the same as theétale version, we know thatRn+1ε∗Z(p)(n)ét
is p-power torsion. Consider the following map induced byZ(n)Zar −→
Rε∗Z(n)ét,

. . . −−−→ Hn(Z(n)Zar⊗ Z/p) −−−→ pH
n+1(Z(p)(n)Zar) −−−→ 0y y

. . . −−−→ Rnε∗(Z(n)ét⊗ Z/p) −−−→ pRn+1ε∗Z(p)(n)ét −−−→ 0 .

The upper right hand group is trivial, so it suffices to show that the left
vertical map is an isomorphism. But by the previous theorem, both terms
agree withνn. Q.E.D.

References

1. S. Bloch, Algebraic Cycles and HigherK -theory, Adv. in Math.61 (1986), 267–304
2. S. Bloch, A note on Gersten’s conjecture in the mixed characteristic case, Appl. of Alg.

K -theory to Alg. Geometry and Number Theory, Cont. Math.55 Part I (1986), 75–78
3. S. Bloch, The moving lemma for higher Chow groups, J. Alg. Geom.3 (1994), no. 3,

537–568



The K -theory of fields in characteristicp 493
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