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Abstract. We show that for a field of characteristicp, H' (k, Z(n)) is
uniquely p-divisible fori # n (we use higher Chow groups as our definition
of motivic cohomology). This implies that the natural ma (k) — K, (k)
from Milnor K -theory to QuillerK -theory is an isomorphism up to uniquely
p-divisible groups, and thatM (k) andK (k) are p-torsion free. As a con-
sequence, one can calculate theheory modp of smooth varieties over
perfect fields of characteristig in terms of cohomology of logarithmic de
Rham Witt sheaves, for exampig, (X, Z/p") = 0 forn > dim X. Another
consequence is Gersten’s conjecture with finite coefficients for smooth var-
ieties over discrete valuation rings with residue charactenstiss the last
consequence, Bloch’s cycle complexes localized satisfy all Beilinson-
Lichtenbaum-Milne axioms for motivic complexes, except possibly the
vanishing conjecture.

1. Introduction

The purpose of this paper is to study thpart of the motivic cohomology
groupsH' (k, Z(n)) and the higher algebrai€-groupsK, (k) of a fieldk of
characteristicp. We take Bloch’s higher Chow groups as our definition of
the motivic cohomology of a smooth quasi-projective variety over a field,

HP(X, Z(@) = CHY(X, 29 — p).

This agrees with the motivic cohomology defined by the second author by
[21, I, Theorem 3.6.6], and with the motivic cohomology groups defined
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by Voevodsky if one assumes resolution of singularities, [30, Prop. 4.2.9,
Theorem 4.3.7]. Motivic cohomology ari¢-theory are related by the spec-
tral sequence of Bloch and Lichtenbaum [6], having motivic cohomology
groups askEp-term and converging t&-theory. It is known that the mo-
tivic conomology groupsH' (k, Z(n)) are trivial fori > n, and agree with
the Milnor K-group KM (k) for i = n. However, the motivic cohomology
groups are not known to vanish fok 0.

The question of determining motivic cohomology groupskafan be
divided into the calculation of the rational motivic cohomology groups,
H'(k, Q(n)), and the motivic cohomology groups with miecoefficients,
H'(k, Z/1"(n)). Forl different from the characteristic & the Beilinson-
Lichtenbaum conjecture states that there should be an isomorphism

H (k, Z/1"(n) = H' (Ket, 1M, (1)

for i < n. Suslin and Voevodsky [28] show that, assuming resolution of
singularities, the Bloch-Kato conjecture

KM /1" — H"(Ket, ")

for all n < mimplies (1) for alli < n < m. A partial result along these
lines was obtained by the second author in [19] and forms the basis of our
arguments. In a forthcoming paper [10], we use the methods of this paper
to remove the resolution of singularities hypothesis in the theorem of Suslin
and Voevodsky. On the other hand, Voevodsky [31] proved the Bloch-Kato
conjecture fot = 2 and all fields of characteristic different from 2, thereby
proving the Beilinson-Lichtenbaum conjecture in this case.

If k has characteristip, then a conjecture of Beilinson states that Milnor
K-theory and QuillerK -theory should agree rationally:

Ky (Ko — Kn(K)g. ()

By results of Kahn [17], this follows from Bass’s conjecture, and by results
of the first author this follows from Tate’s conjecture on algebraic cycles [8].
The main result of this paper is

Theorem 1.1. Letk be a field of characteristiqp. Then the motivic co-
homology groupd' (k, Z/p" (n)) vanish for alli # n.

By the spectral sequence of Bloch and Lichtenbaum, this implies ggmod
version of the conjecture (2), namely, that the natural map

KM(K) — Kn(k)

is an isomorphism up to uniquely-divisible groups. Furthermore, (k)
is p-torsion free and there is an isomorphism

KMK)/p" — Kn(k, Z/p).
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We derive various applications of this result. For example, we show that
Gersten’s conjecture with mog-coefficients holds for smooth varieties
over discrete valuation rings with residue characterigtic

As another application, we determine the motivic cohomology lend
theory sheaves for the Zariskitopology on a smooth schetweer a perfect
field of characteristig. Via local to global spectral sequences, this implies
that there is a spectral sequence from motivic conomolody-tbeory

H (X Z/ P (-0) = Kos (X, Z/p),

andK,(X,Z/p") = 0forn > dim X.

Finally we show that Bloch’s cycle complexgy —, x)[—2n], localized
at p, satisfy most of the axioms for Beilinson and Lichtenbaum, as extended
by Milne [23]. Further applications to topological cyclic homology will
appear in [9].

The proof of the theorem is another variation on the theme that the
Bloch-Kato conjecture implies the conjecture of Lichtenbaum and Quillen,
and is motivated by the ideas in [19]. In the case at hand, the conjecture of
Bloch-Kato should be reinterpreted as the theorem of Bloch-Kato [5]

dlog
e —

Ka'(k)/ P HO(ket, v1),

wherev! = W, Qi is the logarithmic de Rham Witt sheaf of Milne and
lllusie [15] (we writev" for vY).

We give an outline of the proof:

In Paragraph 2, we recall the definition of the logarithmic de Rham-
Witt groups and define its relative version as the kernel of the restriction
map. Relative motivic cohomology groups are defined as the cone of the
restriction map on cycle complexes. We prove two results relating mo-
tivic cohomology to MilnorK-theory in Paragraph 3. For example, for
a semi-localizationR of a regular finitely generatekl-algebra,k a field
of characteristicp, we haveH"(R, Z/p(n)) = v"(R). In particular, there
is a map from relative motivic cohomology to the relative logarithmic de
Rham-Witt groups.

Let [, be the semi-localization of the algebraien-cube
Spe[ty, ... , tn] with respect to the 2 points where all coordinates are
either O or 1. Lefl,, be the setof idealdj —¢), 1 <i <m, e € {0, 1}, and
Sh = T — {(tm)}. In Paragraph 4, we show, assuming the main theorem
forn — 1, that

H"@m. Sm. Z/p() = 1" (O, Sn)
H' (O, Sn. Z/p(n)) =0 fori #n
H' (Cm, Tm, Z/p(n)) =0 fori > n.
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In particular, the long exact relativization sequence for the sets of idgals
and S, gives an exact sequence

0 — H" ™K Z/p(n) —> H" O, T, Z/ p(n)) —>
H"(Om, Sn, Z/p(n)) = H"(Om_1, Tm_1, Z/p(n)) —> 0.
Thus, it suffices to show that the mab"((m, Tm, Z/p(N)) —>

H"(Om, Sn, Z/p(n)) is injective. Comparing with the analogous sequence
for the relative logarithmic de Rham Witt sheaves, the snake lemma shows
that this in turn follows from the surjectivity of

H™ (O, T, Z/p()) —> vy, T)

for a different value om. . .
To prove this statement, |é],,, be the boundary ofln,,1, i.e. the

closed subscheme defined by the ideglti (ti — 1), and view[,, as the

facety,1 = 00f 30]1. Since Bloch’s higher Chow groups give reasonable
motivic cohomology groups only for smooth schemes, we define motivic

cohomology ofd(]m,1 to be the cohomology of the complex formed by
cycles on the faces of ., which agree on the intersections. We define

HY(X, Y1, ..., Ym, Z/p(n)) " =
ker(H”(x, Z/p(n) —> ®;H"(Y;, Z/p(n))).

Paragraph 5 is devoted to the proof of the existence of the following
commutative diagram. Heeis a functorial splitting of the canonical map
(we omit the coefficient&/p(n)).

Hn(ﬁm’ Tm) L Hn(ﬂma Tm)ker i> Vn(ﬂma Tm)

| | d

H" (00 ms1, Sni1) —— H"@0mi1, Snen) " <—— v"(00mi1. Snr)

S| d d
H"00my) ——  H'00m)*  «——  v"(00me1)

The proof that the map is surjective (Paragraph 6) relies on the under-
standing of the structure of torsion sectiaf$dol], Tn) € v"(00y), i.e.

the sections in"(3C],,) which vanish on each of the facés — ¢).
We finish the proof of the main theorem in Paragraph 7, where we show

that for each section < v”(8ﬁlm+1), there is a semi-local smooth scheme

Uy over k containing aﬁml as a closed subscheme, such thdifts to
V"(Uy) = H"(Uy). But H"(Uy) maps to all groups in the lower row of the
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above diagram. Since the right vertical composition is surjective, the same
holds for the middle composition, and this implies the surjectivityef
Finally, in Paragraph 8 we derive consequences of the main theorem.

Acknowledgementlt is a pleasure to thank Bruno Kahn for his helpful comments.

2. Preliminaries

For a commutative ringr, let Qr be its absolute Kahler differentials and
QK = ARQr. ThenQ}, forms a complex with differentiald, and we denote

by ZQR& anderF‘(l the cycles and boundaries, respectively. For two rings
RandS, we have

Qrgs = (R® Qs) ® (S® QR).
Consequently,
Qhes= P w2 3)
i+j=n

andQgg s is the total complex associated to the double comfligx® Q.
Foraprincipal ideal f) of R, the second exact sequence for differentials
gives us an exact sequence

fQr+ Rdf — Qr — Qr/ 1) — O,
and hence we get
Q1) = Qp/ FQR+dfQR ™ (4)
For anF ,-algebraR, the inverse Cartier operat@* is the map
an &5 Qg/dsz” 1
agday A ... Ada, — abal .. aPtday A ... Aday,.

Note that the Cartier operatdris defined only for smootiR, and gives an

isomorphismz Q" /dQn SN QY in this case. We define the logarithmic
de Rham Witt group"(R) of R as the kernel of the Artin-Schreier map

V(R) _ker(sz” < Qn/da 1)

If Ris essentially smooth over a perfect field of characterigtithen by
lllusie [15] v" is the subsheaf d&" generated locally for thetale topology
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bydloga; A ... Adloga,, andv"(R) its global sections. Moreover, fdR
semi-local, there is an exact sequence [14]

0— "R — P v'kx) — P V" Hkx) — ... (5)
xeRO xeRD
If 11,..., 1y are ideals ofR, we define the relative logarithmic de

Rham-Witt groups as the kernel of the restriction maps
m
VR g, ) = ker(v”(R) — @v“(R/l,-)).
i=1

The Milnor K-groups of a fieldF are defined as the quotient of the
tensor algebra on the group of uniks by the Steinberg relations

KM(F)=T*F*/(a® (1—a) |ae F —{0,1}).
For a fieldF with nontrivial discrete valuation, uniformizer and residue
field k, the tame symbol homomorphism
KM(F) 2 KM, (K

is defined by{m, Uy, ... ,uUn} = {0y, ...,0,} and{ug, Uy, ... ,uUp} — 0
foru; e Funitsinthe valuation ring. FdR an essentially smooth semi-local
ring over a fieldk, we define

o
KN (R = ker (@D Ky'koo) > @D it (k).
xeRO yeRD
There exists a universally exact Gersten resolution for Mikketheory [7,
Example 7.3(5)], hence we have
KN (R/p=ker( P KNk)/p > P KN1k)/p).  (©)
xeRO yeRM
The fundamental theorem of Bloch-Gabber-Kato [5] relates MilKer
theory and logarithmic de Rham Witt sheaves of fields:
KY(F)/p —— v(F). (7)

The QuillenK-groups of a ringR are the homotopy groups of the classi-
fying space of the Q-construction, similarly f&r-groups with coefficients.
There is a long exact sequence

s Kn(R) 2 Kn(R) —> Kn(RZ/P) —> Kn_g(R) -5

The product structure dk-theory induces a canonical map from Milnor
K-theory of fields to QuillerK-theory.
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For Ran essentially smooth semi-local ring over afield, there is a Gersten
sequence [25, theorem 5.11]

0— Ka(RZ/p) — P Knk(X),Z/p) —

xe RO

D Knak0,Z/p) — ..., (8)

xeRD

and a spectral sequence [25, prop. 5.5, 5.11]
ES' = H*(Xzan (K/P) 1) = K s 1(X, Z/p).

Viathe Gersten sequences, the map from Milnor to Quiegroups of
fields induces a magM(R) — K, (R) for any regular ring of essentially
finite type over a field. This is clear for a smooth ring over a perfect field,
and in general one uses a colimit argument as in the proof of Proposition 3.1
below.

We recall the definition of the cubical version of motivic cohomology
groups. Lek be afield, and let

|:|q - SDEd([tl, ey tq].

We have the q faces of codimension L] € [, defined by(ti — ¢) for
i =1...,gande € {0,1}. We call an arbitrary intersection of these,
including O itself, afaceof (. Let 8", be the divisor consisting of all
facesJf except .

For a regulak-variety X, the cubical version of Bloch’s cycle complex
is defined as follows [20]: Les be a finite set of closed subsetsXfwith
X € 4, and assume for simplicity that the intersection of two set$ is
again contained ir§. If Y € X is a subscheme aX, then by abuse of
notation we denote the set of closed sub$&ts $|S C Y} again by4$
when we talk about cycles on

The groupz"(X, ) is the group of codimensiomcyclesZ on X x [
such that

e ZintersectsS x D properly onX x O, for Se 8 andD a face of],
e Z-(Xx 3ty =0

ISn_tersection with the faclég definesamag, : 2"(X, @)s — 2"(X,q—1)s.
ince

dg—100dq(2) =05, (OF-2) =03 (O3, - 2) =0,

we get a complexz"(X, %), d), which we will also denote by"(X)s,

d d
DX s — . (X, 0).
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By associativity of the intersection product, we have for sm&th 4

(Sx 0" 0g) set1, (Sx D) - 2) = (Sx *Tg) xxry Z
= (Sx 07 0g) oy (X x 07 0q) xuy 2) =0,

hence intersecting witB x [y determines a map of complexes
i§:Z'(X, %) s —> Z'(S *)s. 9)
If X is affine, then the inclusion
Z"(X, %) g — Z"(X, %) (10)

is a quasi-isomorphism: By [21, Ch.2, Theorem 3.5.14] this holds for the
simplicial version of cycle complexes, and by [20, Theorem 4.7] the sim-
plicial version and the cubical version agree.

SupposeX = SpecRis affine, with closed subschem¥s ... , Y. For
eachJ C {1,...,q} includingJ = @, letY; = ﬂjeJ Y;. We assume that
each subschem¥; of X is regular, and les be the set of all;. Since the
complexes we are going to construct are quasi-isomorphic if we increase
the numbe of closed subschemes by (10), we may increase this number
if necessary.

Therelative cycle complex"(X, Yy, ..., Yn, %) is defined as the total
complex of the double complex, withC {1, ..., m},

0— "X, 05 > @ V0,05 5 @ 'Y, 05 2 ...
[J]=1 |J|=2

The complex®, 5=s2"(Y;, *) 5 lies in degrees, and each complex is viewed
as a cohomological complex concentrated in negative degrees. In other
words,®,5=s2" (Y3, t) lies in degreds, —t). The mapsl; are the alternating
sum of the restriction maps (9).
If m+ 1 < q, then one easily sees that the map of complexes

"X, Yo, ooy Yme %) s —> 27X, Y1, ..o, Y, %) s,
identifies the first term with
cone(z”(X, Yi, ..., Ym, %) g —>
2" Vet Yo O Yiets - s Yoo N Yisa, *)5)[—1].
We define relative motivic cohomology groupsXto be

H2 (X, Ya, ooy Yo, () = Hi (2 (X, Y, - o, Y, %))
H2 O Y, oo Y, Z/T () = Hi (2K, Ya, .o, Yo, )5 @ Z/ ).
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By (10), thisis independent of the choiceffThere is a long exact sequence
s HUOKG Y, e Yo Z)) 2B HIOX, Yoy - Yo Z(R)) —>
H' (X, Ya, ooy Y, Z/ () —> HPHOG Ve Yin, Z() —

Since the cubical and simplicial version of the cycle complexes agree, there
is a hypercohomology spectral sequence [3]

E>' = HS(X, #'(Z(n))) = HS'(X, Z(n)),

and similarly withZ/ p"-coefficients. FoIR essentially smooth ovérand
semi-local there is a Gersten resolution [1]

0— H'(RZ/p(n) — P H' k0, Z/pn)) —

xeRO

@ H"Y(kx), Z/p(n — 1)) — .... (11)

xeR®D

3. Motivic cohomology andK -theory
For a fieldk, H'(k, Z(n)) = 0 fori > n, and there is an isomorphism
K () —> H"(k, Z(n)), (12)

in particular,H"(k, Z/p' (n)) = KM(k)/p".
In the cubical version, the map of (12) is given by [29]:

uz Un
u—1""""Tus—1

{Ug, ..., Up} — ( ) e (@™,

In the simplical version, the map is given by Nesterenko-Suslin [24, theo-
rem 4.9]:

—Us —Un

1
1—Zui""’1—2ui’1—2ui

{uy, ... ,up} — ( > G(AE)(n).
(13)

Proposition 3.1. Let R be a semi-localization of a regular finite type
k-algebra fork a field of characteristiqp. Then there are isomorphisms

HO(R Z/p(M) «—— KM(R)/p —25 w(R).
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Proof. We use Quillen’s method to reduce to the c&sessentially smooth
over a perfect field: There exists a subfiklof k which is finitely generated
overF, and a semi-localizatioRR of a regulaik’-algebra of finite type such
that R is a localization ofR ®y k. By letting k; run through the finitely
generated subfields d&f containingk’, we can assume thdtis finitely
generated ovef, since all functors in the proposition commute with direct
limits. But if Ris a localization of a regulat-algebra of finite type, ank
is finitely generated ovefr,, thenR s a localization of a finite type regular
F,-algebra, so we can assute= [F,.

Consider the following diagram, where the vertical maps are the symbol
maps and the horizontal maps are the residue maps:

P H &), Z/p(n) —— P H" kX)), Z/p(n — 1))

xeRO xeR®

I I

P KMkx)/p  —— P K 1 (k0)/p

xeRO xe RD
d Iogl d Iogi
Pk — P vk
xeRO xe RW

The upper square is commutative by the following lemma, and the lower
diagram is commutative up to sign by [14]. The vertical maps are isomor-
phisms by (7) and (12). This implies that the induced map on the kernel
of the horizontal maps is an isomorphism as well. But the kernel of the
upper horizontal map i5H"(R, Z/p(n)) by (11), of the middle horizontal
mapKM(R)/pby (6), and of the lower horizontal maf(R) by (5). Q.E.D.

Lemma 3.2. Let Rbe a discrete valuation ring over the fidavith quotient
field F and residue field. Then the following diagram commutes

KMEF) —— KM 1(5)

l l

H(F, Z/p(n)) —— H""1(f, Z/p(n — 1)).

Proof. By multi-linearity of symbols, we only have to check commu-

tativity of the diagram for symbols of the forrfu,, ... ,us_1, 7} and
{ug, Up, ..., uy} with u; # 1 units of R. The first symbol maps to the
point

uq Un—1 g
uy—1""" " U1 -1 m—-1
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in 2"(F, n). This point extends to a curve #(R, n), and the boundary map
for motivic cohomology is calculated by intersecting it with faces to get an
element o2"(R, n — 1) = z"~%(f, n— 1). But this curve only meets the face
t, = 0 of Oy g, in the point

( o >ez”l(f,n—1)

ul_l,' ’Unfl_l

(recall that Spegis the subscheme of SpBogiven by = 0). Similarly,
a symbol of the second type is mapped to the point

ul Un
ul_l"“’Un_l ’

which does not meet any of the face§ §fr. Hence itsimage ia" (R, n—1)
is zero. Q.E.D.

If Risthe semi-localization of a smodkkalgebra and,, ... , |, ideals
of Rsuch thatR/l; is essentially smooth, then Proposition 3.1 implies that
there is a canonical map

H"R 11, ...1m Z/p(n)) — V(R 11, ..., Im). (14)

In fact, defining

HYR, 11, ... I, Z/ p(n)e =
ker (H"(R Z/p) — ) H'(R/1;. Z/p()).  (15)

]

there is a map

Hn(Ra Il’ L) Ima Z/p(n)) —_— Hn(Ra Il’ L) Ima Z/p(n))ker
% R ).

Bloch and Lichtenbaum [6] prove that there is a spectral sequence relat-
ing motivic cohomology and algebrali€-theory of fields:

HS (K, Z(—1) = K_s (K.
We will use the following proposition in the proof of Theorem 8.1.

Proposition 3.3. The composition of the isomorphism of Nesterenko-Suslin
with the edge homomorphism of the Bloch-Lichtenbaum spectral sequence,
KM (k) o, H"(k, Z(n)) — K, (k), agrees with the natural map from
Milnor K-theory to Quillen K-theory.
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Proof. We use the simplicial definition of motivic cohomology and first
recall how the edge morphisey : H"(k, Z(n)) — K, (K) is constructed,
see [6] for details:
Let dA] denote the set of facdg = 0|i =0, ..., n} of A{ anddgA}
be the set of faceft; = 0|i =0, ... ,n— 1}. By the homotopy property,
Kp(AL, dAD) = 0 for all p > 0. Identifying A}~ with the facet, = 0 of
¢ gives the relativization sequences

th=0 _ _
Kpi1(Af, 0AF) == Kpa (AR 9A7) —
Kp(AR, IAY) —> Kp(AR, 0AR).

This in turn gives isomorphisms
Kopa (AR 9A0 Y —2— Kp(AD dAD),

and hence the identification
Kn(k) = Ko(Ag, AR). (16)

We note that the terms in the relativization sequence have a natural
right-K, (k)-module structure via the structure morphism, compatible with
the maps in the sequence.

Let Z be a closed subscheme af which is disjoint fromaAy. The
canonical identificationK,(Z) = Ky(Z,9,...,9) gives the functorial
push-forward homomorphism

iZ: Kp(Z) — Kp(AR, dAD).

In particular, a zero dimensional subschemen A} which has support
disjoint fromd A} canonically determines an eleméfitl) € Ko(Ag, dA}).
The map sendingto iZ(1) factors through

en: H'(K, Z(n)) — Ko(AR, 0A}D),

and the composition of, with the identification (16) is the edge homo-
morphism of the spectral sequence. We have to show that the following
diagram commutes

KMk ——— K (K)
enl aiz
H"(k, Z(n)) —2— Ko(AR, 0AD)

We first consider the cagse= 1.
For a commutative ringRand ideall , let # r | be the category of finitely
generatedr-modulesM of finite projective dimension, with

Torf(M, R/1) =0
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for all p > 0. Let #r, be the category of finitely generat&f| modules
of finite projective dimension. By Quillen’s resolution theoreRB Q|
is a model for theK-theory spaceK(R) of R, and2BQ# g, is a model
for K(R/I). The functor

M~ M®grR/I
is exact on#r |, SO we may use the homotopy fiber of the induced map
QBQ%RJ —> QBQ%R”

as a model for the relativ -theory spac& (R, |).
Let (M, M’, g) be a triple withM, M’ € #g,, and

g: M/IM = M'/IM’

an isomorphism. The tripleM, M’, g) gives rise to an elemefi, M’, g] €
Ko(R, I') as follows: The map determines a pathg] from M/IM to
M’/IM" in QBQ#R/, and[M, M’, g] is the pair consisting of the point
M — M’ of QBQ# R, together with the path fronM/IM — M’/IM’ to
0 in QBQ# R, gotten by translating [g] by-M’/IM’. With the obvious
notion of exact sequences of triplélsl, M’, g), it is not hard to see that
the functor sendingM, M’, g) to [M, M’, g] is additive. In addition, ifg
is an automorphism ofR/1)", then the image ofj under the boundary
homomorphism
3: Ku(R/1) > Ko(R 1)

is the clas§R", R", g].

We apply these considerationsKg(A}, dA}), setting

R=K[to, t1]/(to +t1 —1); | =tots.

Let 1 # u € k* be a unit, giving the poinz = (=, rlu) of AL. The
inclusion ofzinto A} gives the map

iZ: Ko(k(2)) = Ko(AL dAD).

Explicitly, we haveiZz(N) = [N, 0, 0], whereN is a finite dimensional
k(z)-vector space viewed as &module via the mafR — k(2).

We identify K1 (k) with the componenK1({(1, 0)}) of Kl(aAﬁ), so the
image of a uniu € K1(k) = k* under the boundary isomorphism

3 : Ki(k) — Ko(AL, dAY)
is given by the triplg R, R, (1, u)),
(L, u) € k((0, 1) x k((1,0)* = k(aAl)X.

1—u u
o = (to+ >GR
u 1—u

Let
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Note thatx(0, 1) = 1, (1, 0) = u~, and R/« is the R-modulek(z). The
short exact sequence of triples
0— (R Rid) ¥ (R R (1,ul)) — (0, R/a, 0) —> 0

and the fact that the first term represents B(O(Aﬁ, 8Aﬁ) then shows that
the boundary of1, u™) is the clasg0, k(2), 0].

Since[0, N, 0] = —[N, 0, 0], for eachR-moduleN with N/IN = 0, we
see that

(D) = d(u),

completing the case = 1.

We prove the general case by inductionmoifakeuy, . .. , u, in k* with
Zi”:j ui#1forallj=1,...,n. Let

z= ( — —n ! ) €A}
-0 L= w13 ke

The lineL, € A" defined by the equations
— —Ui .
contains the poird, and intersect8A" only in the face$, = Oandt,_, = 0.

We calculate the class of(1) € Ko(Ag, dAR) by factoring the embed-
ding throughL ,:

tiq i=1...,n-1

Ko(k)

|
K1(K) —— Ko(Lu, {p, q))
iﬂl il:“l

Kn(K) —— KA 0AT™) —— Ko(AR, 0AD).

Here p andg are the points of intersection &f, with the facet,_; = 0 and
t, = 0. One easily checks that

B —Us —Up_1 1—u,
q= 1—Zui""’1—2ui’1—2ui '

th— t
(t05""tn) > ( n-l ) . )
tn—1 + tn tn—:l. + tn

defines an affine-linear isomorphism of,,t,_; = 0,t, = 0) with
(AL, (0, 1), (1, 0)), and sends the poimtto

—Un/1—>" U /1=y [ —Un 1
(1—un/1—2i Ui’ 1—up/1-3, ui> - (1—un’ 1—un)'

The map
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Using the case& = 1, we see that the imagé(l) in Ky(k) in the above
diagram isu,. We have to calculatg!(u,) € KAt 0AF ™) = Kn(K).
Since this map is a map of right, (k)-modules, we havi¢ (u,) = i{(1)Uup,
wherei (1) is the image of 1 undéf : Ko(k) — Ko(Al ™, dAR1). One
checks that the image of the symk{q{‘lTn, e fﬂ;ln} under the map (13)
is the pointg, hence by induction hypothesis the imageéstl) in K,_1 (k)

H uq Un—1
is {m, e lEUn}. Consequently, we have

. . . u Un—
Iﬂb=ﬂﬂq0=lﬂbuun={l_zM-n,123HUJ

in Kn(k). By the Steinberg relation, the last term agrees wiih ... ,
Un_l, Un}. Q.E.D.

4. The semi-localm-cube

Let (J,, be the semi-localization dfl,, with respect to the™ points where
all coordinates are 0 or 1. We define the set of ideals

Th={ti—9o|i=1...,m €€{0 1}
We order the ideal$; of Ty, by
l— (ts—1) for s<m
* " ltsm) for s>m,

and letT?> be the subset of, consisting of the firss ideals. Let
Sn=Ta" " =T — {(tw)}-

For an idealls, let (J3, be the closed subschemeldf, defined byls, and
El?nt the closed subscheme definedlby- I;. Forr > s, let T3 /1, be the set

of ideals in the ring of functions df]pn ~ 1 given by the image of the
ideals inT.;, after deleting those ideals which become the unit ideal, i.e.

T2, forr<mors<r—-m
TS2 forr>mands>r—m.

Tri/lr :{

Throughout this paragraph, létbe the set of all faces @f,, i.e. the set of

closed subsets af, given by the ideals of,, and all their intersections.
Forl<s<mlet

iS . (tls cee tm—l) = (tl’ .. atS—ls Os tSs cee tm—l)
jS : (tla L] tmfl) = (tl’ e atsfla 15 tSa ] tmfl)
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be the inclusion of the facels = 0 andts = 1 into [J,,. We have the
identities
. {is+1it s>t id {is+ljt s>t
tls = . . s ths = . . 5
isit_1 S<t isjt.1 S<t
slt—1 o sht—-1 (17)
i, _{Js+1]t s>t
Jtls=y. . .
Jslt-1 sS<t
Similarly, we define projection maps for£ s < mand 1< s < m,
respectively,

pS: (tls'-- stm) e (tls--- ,tS—l,tS-‘rl"" stm)
qS : (tls e stm) = (t]_, ey tS—l’ 1 - (tS - 1)(t5+1 - 1)5 tS+2’ cee tm)

The following identities hold

jtips t>s it-1ps t>s
Psjt = 1id t=s; psit = 1 id t=s (18)
jtps—1 t<s itPs—1 t<sS
jtu10s t>s+1 it-10s t>s+1
Osjt = 1 JsPs t=ss+1; Osit = id t=ss+1. (19)
jids—1 t<s it0s—1 t<s

We have the subcomple® (i, TS, )k of ([, T3, %) 5 defined by

2(Chn, T 0" = ker (2Cn, 05 — P 2'Ch, 0)5).

t<s

Proposition 4.1. The canonical map
2", T, 5T = 2°C, T, )5
is a quasi-isomorphism fa& < 2m andn > 0, and the inclusion
Zn(ﬁm’ T:]’ *)Ijger g Zn(ljma T:‘]ila *)Eﬁer
is functorially split fors<2m.
Proof. By contravariant functoriality, there are maps
i2, )¢ 2O, 905 —> 2" O, %)
P50 2"t 05 —> 2" (O, %)

Let
ja for s<m p; for s<m
ls = .. s Ps= » .
i2 ., fors>m i, for s>m
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We can assume that the proposition holdsfe_, and proceed by in-
duction ons. Fors < 2m, consider the following commutative diagram of
complexes:

~ incl A _ ls ~ —
2" (O, T 0" 2'(Um, T L 05T —— 2'O5, T Y/ 1s, 0

l l l

O, T8, 05 —— 22Om, TS L %) —— 22008, TS Y1, %) s

The vertical maps are the natural maps, and by inductiomamds we

can assume that the middle and right vertical map is a quasi-isomorphism.
If we can show that the map is split surjective fors < 2m and surjective

for s = 2mandn > 0, then the second statement of the proposition follows,
and both rows of the diagram define distinguished triangles in the derived
category of complexes. Since by induction the two right vertical maps are
quasi-isomorphisms, the left vertical map will be a quasi-isomorphism as

well. _ _
Consider the following diagram

0 0

l l

- - — ls = —
'O, TS, 0K —— 2", TS L ke —— 2105, TS Y Is, 0"

l l L @

Zn(ﬁm, |$9 *)/3 — Zn(ﬁ]m, *)5 L) Zn(|jr$‘n9 *)/3
nt<sltl l_[t<sl[l
Bies 2" T 98 Bies 2" T, 9)s

Let « be an element of2"((5, TSY/Is, %), i.e. an element of
z”(ﬁfn, %) g mapping to zero undef fort < s. If s < 2m, leta = ps(a) €

2", %) 5. We have to show that lies in the kernel of; for t < s. This
follows from (18) fort < s < m:

wa = jpia = pi_1jfa=0.
Fors > t > mthis follows from (19):
wo = i?—mq:—ma = q:—m—li?—ma =0
and fort <m <s,

Osji =0 t>s—-m+1
W¥ = j{Ogm@ = | Pomlia =0 t=s-ms-m+1  (21)
0 poifa=0 t<s—m.
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It remains to show fon > 0 the surjectivity of the restriction map
Zn(ljma S’na q)[}er i) Zn(ljrznm’ Tmfla q)l/f'{er' (22)

The groupz”(ﬁm,l, 0)s is zero, asacycle dn,,,_; which intersects a vertex

properly must necessarily avoid the vertex, afg_; is the semi-local
scheme of the set of vertices(if,_1. Thus

2O, Ton1, 0% € 2"((O_1, 0)5 = 0,

proving surjectivity in this case. Now suppoge> 0. Identify (g x Oy
with Ogym by

((Xl"" ,Xq)s(tls'-~ ,tm))_> (Xls--~ ,XQstms--~ ,tl)

and make a similar identification @iy x Cy_q with g, m—1. This identi-
fies(y x Cy andy x Oy with subschemes dfly, m andCgm_1, and
identifies the mapy, of (22) with the magg ; for Ugm. Let igqr1 anddy
be the restriction ofy;1 andqg, respectively. Then the pull-back aloqg
gives a splitting to (22) becausg ;q; = id. Itis amap frorrz”(il?nm, g)sto
(. Q) s, because the restriction qg(x) to all but the last face dfly is
trivial if the same holds fox. Similarly, itis a map fronz”(ﬁzmm, Tm-1, q)';ef
to 2"(C, S, q)';er, because the restriction gf(x) to all but the last face

of Uy, is trivial if this holds forx. Note however that the mapy of (22) is
not split surjective as a map of complexes, becajjsdoes not commute

with the differentiali_; of the complexes. Q.E.D.
We are now ready to calculate some relative motivic cohomology groups:
Proposition 4.2. a) There is an isomorphism

H™(Cm, Sw, Z/pN)) —> 1", Si).-

b) Leti # n and assume that'~1(k, Z/p(n — 1)) = 0 for all fields of
characteristicp. Then

H'(Cm, Sn, Z/p(n)) = 0.

Proof. We first show by induction om that fors < 2m, there is an exact
sequence

0—> H' O, TS, Z/p(n)) —>
H @m. Z/ () % @ HIEL,. Z/p()).

t<s
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Indeed, by Proposition 4.1, there is an exact sequence

0 — H' (O TS, Z/p(n)) —
H' (Om, T 2/ p(n) — HY(CE, TS /1s, Z/ p(n)) —> 0,

and by induction om, the last term injects intdai‘(ﬁ?n, 7./ p(n)).

Takingi = nands = 2m — 1, this proves (a) in view of Proposi-
tion 3.1. Note thay factors through—l‘(ﬂm, (ti—1,...,th—21),Z/pn)),
so for (b) it suffices to show that this latter group vanishes. The long exact
relativization sequence

— HOn i —1,... ,tn—1),Z/p(n)) —
H'(Om. Z/p(n)) — H'(k, Z/p(n)) —>
is split by the structure map and gives
H (O, Z/p() = H (O, (ti—1, ... , tn—1), Z/p(n))@H' (k, Z/p(n)).

Thus we have to show that the maib(k, Z/p(n)) — H (Om, Z/p(n)) is
an isomorphism, or by homotopy invariance, that the restriction map

H'(A™, Z/p(n)) — H'(Om, Z/p(n))

is an isomorphism. For this, we know by the same proof as in [27, theo-
rem 2.4], that the hypercohomology spectral sequence

HS(A™, 7' (Z/p(n))) = H(A™, Z/p(n))

is concentrated onthelime= 0: H' (A™, Z/p(n)) = HO(A™, #'(Z/p(Nn))).
Similarly, the Gersten conjecture for semi-local regular rings gives

H' (O, Z/ p(n)) = HY(Om, #'(Z/ p(n))).

Comparing the Gersten resolution for the sh&tZ/ p(n)) on A™ and(p,
we get the exact sequence

0 —> HY%A™, #'(Z/p(n))) — H°Op, #'(Z/p(n)))
— P  HK®.Z/pn - 1)

xe(AM —[Jm) @

By assumption, the last term vanishes, giving the isomorphism we need.
Q.E.D.



478 T. Geisser, M. Levine

Corollary 4.3. We have
H" ' (One1. To1. Z/p) = H™(K, Z/ p(n))
H (O, Tm, Z/p() =0 for i >n.

In particular, there is an exact sequence

0 —> H™™(K, Z/pn)) —> H" T, T, Z/ p(n)) 2
H"@m, Sn. Z/p() —> H"Om_1, Tm-1, Z/p(n)) —> O.
Proof. By definition of T, and S;,, there is a long exact relativization
sequence
<. — H (O, T, Z/ p()) —> H (O, S, Z/ p(n)) =
H' Om-1, Tm-1, Z/p(N)) —> H™ O, T, Z/pN)) —> ... . (23)

We see from this sequence for varying together with Proposition 4.2(b),
that

H"™ (Om_1, Tmo1, Z/p() = H" 202, T2, Z/p(n)) =
L= H”*m(k, 7/ p(n)),

and that, foi > n,

H' (O, T, Z/p() = H 2 (Oiya, T, Z/p(n)) =
o ZH™ Y Oty Tmpznsasis Z/p(n)).

But by Proposition 4.1, the latter group is the cohomology in degree zero
of the complexz™ (D 2nt1-i» Tmaznii_i» %5, which is zero. Q.E.D.

Corollary 4.4.
H (O, Sny Z(N)) =0 for i > n
H' (O, Tm, Z(N)) =0 for i > n.

In particular, the mapH"(Cm, Sm, Z/1(N)) — H"Om_1, Tm1, Z/1(N))
is surjective.

Proof. The only place where we usé& p-coefficients in this section is the
hypothesis in Proposition 4.2(b). Hence the same proof as in Proposition 4.2
together with the (trivial) fact thatl' (F, Z(n)) = 0 fori > n and any field

F proves the first statement. The second statement follows as in the proof
of Corollary 4.3. Similarly, the same holds with mbdoefficients, and we

get the last statement with the long relativization sequence. Q.E.D.
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5. The boundary of the semi-locaim-cube

Let 9], be the boundary of 1., i.e. the closed subscheme defined by
]—[i ti(tt —1). Let

b:ol0m — Uy
be the inclusion. Again, we let be the set of all faces dfl,, order the

ideals of Ty, as in the previous paragraph, and denote the subse, of
consisting of the firss ideals byT>. We remind the reader that for ideals

ls, Iy € T, 8003, = [(p,,_1 denotes the closed subscheme definedskand

9018t = [,,_, denotes the closed subscheme definetsby ;.
Bloch’s higher Chow groups form a Borel-Moore homology theory,
hence our definition of motivic cohomology via higher Chow groups is

reasonable only for smooth schemes. In order to deal i), we give
the following ad hoc construction of a cycle complex:

2300, )5 = ker< P 200 — P ey, *)5).
1<s<2m l<u<v<2m
If i is the inclusion ofg(J%v into L3, then the mam"(3LTS,, %)s —>
z”(aﬁw, x)gisi*fors=u < v, —i*foru < v = s, and zero otherwise.
In other words, we consider cycles on the faces which agree on their inter-
sections. This definition is motivated by the blow-up long exact sequence
for motivic cohomology, see [4].

More generally, we define the following relative complex, wheris
the projection to the corresponding summand:

2300, TS, %)5 = ker(z”(aﬁm, )5 5 2L, *)5)

t<s

=ker<@z”(8ﬂtm,*)5—> D z”(amr“n»v,*)g). (24)

t>s 1<u<v<2m

In particular, the second description shows that we have
2"(00m, Sn, #)s = 2O, T
We define the relative motivic cohomology groups
HZ (00 m, T, Z/ () = Hi(Z*@0m, Ty, )5 ® Z/ ).

To simplify notation, we drop the coefficierifs p(n) for the rest of this
section and define the groups

HY @O = ker( @D H'@T — @ H'@OL),

1<s<2m 1<u<v<2m
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with the same sign convention as above, and more generally

H" (000, T = ker (H"(@0m)* > P H" (0,
t<s

=ker(@H“(amﬁn)—> D H“(amgf)). (25)

t>s l<u<v=<2m

Again, these are the cohomology classes on faces which agree on the inter-
sections of two faces. Note that there are restriction maps

b* : 'O, T, 9 — 200, T3, %) s,

because cycles coming from,, agree on the intersection of the faces

of 3CJm. On the other hand, the cohomology of the kernel of a map between
two complexes maps to the kernel of the induced map on cohomology,
hence by Proposition 4.1 the mbpinduces restriction maps

b* : H"(O, TS) — H"(000m, TS) — H"(800, TSk

If we let i, be the map induced by the inclusiéfll, — d(Jy, then by
Proposition 3.1 and (25) we have

(O, TS) = ker<u”(ailm) L Ayl ) o,
t<s
ker(@v”(a@m) N @v”(aﬁr“n»”)) = H (300, TS . (26)

t>s u<v

Consider the following commutative diagram:

HY00m, T3) ——  H"(00m, TR «—— 0" (00, T3)

l l l

Hn(8|jm, Tr%—l) s Hn(8|jm, Tri—l)ker - vn(aljm’ Tr’?‘l_l) ]

Proposition 5.1. The vertical maps in the above diagram are compatibly
split for s < 2m. In particular, there is a commutative diagram:

H"(000m, Sn) —— H"(000m, S " «—— v"(000m, Sw)

sT ST ST

| | |
HNO0m) ——  HYOOmk  «—— 00800y .
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Proof. We will show in each case that there are mepsgZ, p; andg; sat-
isfying the equations (18) and (19); the proof of Proposition 4.1 gives the
desired splitting. Fop", we have the four maps by contravariant functori-
ality, and there is a short exact sequence

0 — V" (000, TS) — V(300 m, TS™H =5 w08, TSY/19).

Hereusis induced byj¢ fors < mand byi{_ fors > m. Asindiagram (20),
one checks that the mapis split by ps, whereps = p§ for s < m and
= q fors>m.

Forz" andH"(—)*®" we have exact sequences

0 —> 2800, T>, %)s —>

2000, TS, 55 —> Z°O00S, TS Y/ Ig, %) 5,

m> 'm
0 —> H"(0m, T —

H"(90m, T D " —> H"@5,, To /19"

Here s is the projection to the corresponding summand in (24), and (25),
and one sees from the second description in (24) and (25) that the image
of s is contained in the relative cohomology group indicated. It suffices
to show that the map; is split surjective. We define mapg® andq; by

factoring throughm:

2, #)5 2F 2 Cle 405 > 2230, %)

P ) 2> HY (00

H"(Om) ==
Note that the mapg; andg; have image in the kernel defining the relative
cycle complex and cohomology groups, respectively. Furthermore, together
with the mapss they satisfy the equations (18) and (19), hence the proof in
diagram (20) extends to this situation.

Compatibility for the map between cohomology groups is obvious, be-
cause the map id psts on complexes induces the map-igsts on cohomo-
logy.

For the compatibility for the map betweefi and H"(—)*¢" with the
splitting, we have to check that the splitting is compatible with the map
of (26). Since the splitting is given by — X — pstsX, it suffices to show
that

(upstsX) = psts(X)r € @O,

t>s
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But this follows from the following commutative diagram. The upper com-
position ispstsX, since the mapsg for v" factors through™(C):

A0 — V() —2 (O —— (@00

ol | | ol

D" Cney) 2 ) —2 O —2s @ 0" Cly)

Q.E.D.

6. Torsion in V"
In this section we are going to prove the following theorem

Theorem 6.1. Let  be a section 0b"(3(, Trm). Then we can write as
a sum of elements of the fofy A ... A dfy, with[]; fi = 0onaly,.

Consider], as the facén., = 0 of 3.1, and let
Pm+1 : E)ﬁm+l — ﬂm
be the projection. For the proof of Theorem 1.1, we need the following:
Corollary 6.2. The restriction map
V" (000m41, Snra) — V" O, Ton)
is surjective.
Proof.Letw € v"((Jm, Tm) and consider the following short exact sequence:
0 — V"0, 00m) — V" (O, Tr) —> 0" (00 m, T)-

By Theorem 6.1, each elementwj‘f(aﬁm, Tn) is a sum of elements of the
formdfy A ... Adf, with [T, fi = 0 ondlJy. Let f; be lifts of the functions
f; to (. We pull these functions back 8,1 via pmy1, and letf; be the

function i, (1) - (1 — tmy1) ON 800y 1. Letg = ﬁ then
d df;, df’ 1
9,9% A % ———df{ A...Adf]
g f; fo 1—fp--- 1}

is a section 0" (90 ms1, Snyr) With restrictiondfy A ... A df, to 900y,
and with trivial restriction to the other faces. Thus we can assumevtisat
contained in™(Cpy, 000).
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Cover dln.1 by the two open sets) = 90m1 — {tmy1s = O} and
V = 00m1 — {tm1 = 1}. We lift w via pmi1 to v (V). Sincew|,s =0,
this lift agrees with the zero section of(U) on U N V. Thus we can
glue these sections, to get a sectionvBfdlln.1) which vanishes on

300 mi1 — {tmer = O). Q.E.D.

We proceed with the proof of Theorem 6.1. We call the differentials on
91, which vanish on each fadersion differentials
n _ n
Q. o =ker(@)y — D Q).

lIm, tor
1<s<2m

Lemma 6.3. Each section oQgﬂ o Can be written as a sum of terms of

m,Lor

the form fodfy ... df,, with []; fi = 0.

Proof. For each vertex of d(,, let T, be the product of the functiors
ti — 1, 1<i < m, which are non-zero at, T, the product of the functions

which vanish ab. Note thatT, T, = 0 on ol It suffices to show that, for

eachv, each sectiom of Q”D can be written as a sum of sections of
ms

the form fodfy A ... A df,, with T’| fo[]; fi. Indeed, sincd,(v) = £1 and
Ty (v) = 0forv # v/, the functionu = ) T, is a unit ondJm, and

w= Z%Tva)

is in the desired form.

To prove the local statement, we may assume- (O,...,0). We
lift @ to a section® of Q”D such thatw maps to zero |rQn for each
1 <s < m Now Q”D is a free@_-module with basigit, A ... A df,
1<ii<...<ih<m, andthe kernel of the restriction mﬁ% — Q”Gs

istsQ! +diQl 1 Thus, if we write
&= Z adi, AL AdE
I=(i1<...<ip)

eitherts|a;, orsis in |, for each index . Since this holds for each we
haveT,|at;, - - - t;, as desired. Q.E.D.
Proposition 6.4. We have

n n—-1
(E)Dm, Tn) = dQ3Dm N QaDm o
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Proof. We first recall that
C(fodfy A...AdF,) = fop( fr-o f)Pidfy AL .. A dfy,

By Lemma 6.3, this implies tha@ ! is zero onszgﬁ o The proposition

now follows in view of the following commutative diagram, where<l
s < 2m, and the fact that the upper right horizontal map is the canonical
surjection.

0 0 0

| l |

A id—c—1 1
0 —— V'OUmy, Tm) —— Q" — Q" doe"t N Q"
(00m, Tm) 900 m, tor aDm,tor/ a0m 900 m, tor

l l l

~ id_c—1
0 —— VO —0 o0 QN /dent
alm o0m alm
A id—c~1 1
0 —— @ao"(l) —— 69592@% - @SQ;‘G%/ngm?ﬂ
Q.E.D.

By Lemma 6.3 and Proposition 6.4, Theorem 6.1 is equivalent to the

statement:
"t =dolnoh. .
d aldm,tor d lm dldm,tor

Obviously,

denz!  cde™lneh.  czoe" |
lIm, tor lm dlm,tor lIm, tor

hence it suffices to show that the complex

Lo— QN n+l
dldm,tor dl0m,tor

is exact. We begin with the following special case:

Proposition 6.5. Let Ry, = Fp[ty, ..., tm]/(t1---ty). Then for anylF -
algebra A, the complex

QEm@A,tor = ker(QT?m®A - @ QT?rn/ti@A)

is exact.
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Proof.First note thaf2f;, ¢ » isisomorphic to the total complex of the double

compler* ® Q% by (3). Since), is anF-module, tensoring witle2),
overF,is exact Henc@”,;m®A wor 1S the total complex of the double complex
QR tor ® @%. On the other hand, the total complex is exact if the rows of
the double complex are exact, so it suffices to prove the propositidR.for

We proceed by induction om and assume the result for— 1 and all
[Fp,-algebrasA. We have

Q= €D Redi, A ady/( D [Todt)okt

i1<...<in [

Assigning degree one tg anddt,, and degree zero tpanddt; fori < m, we

can give each element&f; adegree, sinc; [, tidt is homogeneous.
This is compatible with differentials, hence decompo@é& into a direct
sum of subcomplexes.

Suppose is in ZQ .. Thendw = 0 and we can assume thathas
nonzero degreein ty,. Write

w= a)ltin_ldtm + wztin.

The mamgm — Q” . induced byt — 1 sendsw to w,, hencew; is in
ZQ',;m Ltor- BY |nduct|on ,wz = dr for somer € Qf * ! Thentt!, is in

n
QRmtorf

1,tor-

w—dth) =w— wtl —itt'tdty, = (w1 — 0t tdty,

and we can assume = 0.

LetS= Fp[tm, t—1]and consider the localization m&s, — Ry, 1®S.
FromQg = S& Sdt, we get

QR sestor = SO QR 1or © SO erl?:nil,tOthfn-

Thus
0 = do = d(wit'tdty) = t-1dw,dty,
in Q% osir implies thate; is in Q' o, and dwy = 0. By induc-

tion, wy = dry for somery in Q%2 .. Thenrlt' Ldt, is in QF %, and
d(rattdty) = wititdty, = w. Q.E.D.
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Lemma 6.6. The comple>Q>(*aﬂ tor is exact for the localizatiortd[ ),

of 3, at the pointv = (0, ... , 0).

Proof. Applying the proposition toA = k, we see that the compleXg .,

is exact forSy = Klts, ..., tml/(t1- - - tm). Since (00m), = SpecSn).,

it suffices to show that exactness is preserved by localization. Recall that
d(xPw) = xPdw for all differentials, because we are in characterigtitet

2 € Qlg,,.tor With d¢ = 0.Then

_ HqosPl 1 -1
0= d“’sp = s—pd(a)sp ) € Q?sm)v,tor-

This means that there istac (Sy), such thatd(wsP~!) = 0 and hence
dwtPsP~t = tPdwsPtistrivial in Q¢ ... By the propositionetPsP~! = dr

in Q3 ., for somer, and

des =

tPsP tPsP

Q.E.D.

To finish the proof of Theorem 6.1, we show that the commeg%(] o

is exact if it is exact for the localization @f ], at each of the vertices.

Letw € Qgﬁ or with dw = 0. By the lemma, for eachthe image ofw in
ms
Q" can be written aslr, for 7, = & € Q"1 , 0, € Q"1 and
(80m)o, tor S (80m)., tor 800m

s, a function omdJ, which does not vanish at

We first show that we can choosg ¢ Q;El o We can assume that

v = (0,...,0). Sincer, vanishes inQ’(‘éEi) for eachi > m, there are

functionsu,; on 91, which do not vanish at, such thau, iz, is zero in
anlrln We now replace, ands, by their product witH [; u, i (ti — 1), a unit

atv. Thent, does not change, but, is contained irﬂggl o

Finally, choose functiong, on 8Jm such that) c,s, = 1. Then
Y PP =(Yes)’ =1, and
dy, cPsP o, =3, cPsPdZ =3 cPsPo = w.

v UV v TuvTu v TuvTu

Q.E.D.
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7. The theorem

In this section we finish the proof of Theorem 1.1. Using coefficient se-
guences, one easily sees that it suffices to consider thercasd. By
Corollary 4.3, the groupd"~"(k, Z/ p(n)) is the kernel of3y, in the follow-

ing commutative diagram:

0

N

H™M(k, Z/p(n) 0

Ed ~

oam A

HY Oy T, Z/pM) —= 0O, )

Bm

v ~

H"(Cm, Sw, Z/p(n)) V" (O, Sn)

v ~

H" -1, To1, Z/Pp(N) —— 0" (1, Ti1)

+

0

The injectivity of B, is equivalent to the injectivity oé,, and the snake
lemma in a diagram for a differemh shows thatr, is injective if and only
if amy1 is surjective. Thus Theorem 1.1 follows from

Theorem 7.1. For anym, the map
am = H" (O, T, Z/ p)) —> V" (O, Tn)
is a surjection.

We first show that we can lift sections o‘l‘(ailmH, Sny1) to sections
of smooth schemes:

Proposition 7.2. Letx € v"(8(Jm1). Then there exists a smooth semi-local
schemeJ, containingdly,, 1 as a closed subscheme, such thées in the
image of the restriction map'(Uy) —> v"(000m11).

Proof. We prove more generally the following statement: kdde a field,
X C A,'(“ be an open subset of an affine space, ¥rile subscheme of
defined by some polynomidl. Then for every sectiony € v"(Y), there is
anétale neighborhood of Y in X such thatvy is the restriction of a section
of V(U).



488 T. Geisser, M. Levine

Letxy, ... , Xy be the standard coordinatesAgY. For indicesl = (1 <
i1 <...<ip < N),letdx =dx;,; A... Adx, andx' = x, ---X;,. Lift
wy 10 a sectionw € Qf, and writew = ), & dxrI . The condition fomw|y to
be a section 0f"(Y) is (1 — C Hwly € dQI 2, ie.

> @ —af(xHPhdx' =dx + fp+df -t
|

for somen — 1 formsy, r and am-form n on X. Asd( fr) = df - ¢ + fdz,
we may absorb the termif - ¢ into dy and fn, and assume = 0. Write
dx = Y, bidx', giving the equation

Z(a| —al(x")P L —b)dx = fn.
|

In Q% ®0, Oy, the right hand side vanishes. Sineé ®., Oy is free over
Oy with generatorsix', we get

a —alx")Pt—p =0 (27)
onY for eachl. Now define the closed subschemeAgf
A = Speg, Ox[ti 1/t — xHP 't —by).
Since the coefficient df is 1, A, is flat over X. Since
dty — (x)HPHP — b)) =dt € Qu/x,

we haveQ,, ,x = 0, SoA; is unramified, hencétale overX.

Letg : U — X be the fiber product of thé&, for all | over X. The
relation (27) determines a secti@ay : Y — U by sendingt, to a,
identifying Y with the closed subscheme Of defined byt, — a; = 0 for
all I, henceU is anétale neighborhood of in X.

Sinceq : U — X is étale, the pull-backs of théx' give a basis of2])
over@y.Lety; = g*(x), theng*(dx') = dy' andg*(dy) = Y, g*(b,)dy'.
Letwy = >, tidy' € ), then

(1—C™Hwy) =) (1 —tP(yHP Hdy'.
|

Since we are olJ, we havet; —tP(y')P~* = g*b;, hence(l— C™Y)(wy) =
g*db = d(g*b). Thuswy defines a section af* overU. AsY is given by
t, = a;, wy extends the given forM_, ajdx'. Q.E.D.
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To finish the proof of Theorem 7.1, consider now the following diagram,
where we omit the coefficiens/ p(n):

H”(ljm’ Tm) — Hn(mm, Tm)ker i> Vn(|jms Tm)

A~

H" (000 ms1, Sns1) —— H"(000ms1, Snen)*® «—— "0 mi1, Sned)

A~ A~ N

S S S
H'00me) —— HY@00m) " «—— 0"(000m)
BH'Uy) ——  eH' Uy  ——  @(Uy.

The upper and lower squares are commutative by definition of the co-
homology groups and construction of the maps, and the middle squares
are commutative by Proposition 5.1. The composition in the right vertical
column is surjective by Corollary 6.2 and Proposition 7.2, hence the compo-
sition in the middle column is surjective. But then the nagfis surjective,
concluding the proof of the theorem.

8. Consequences

Theorem 8.1. For any fieldk of characteristicp, the groupsk M (k) and
Kn(K) are p-torsion free. The natural map

Kp'(0/p — Kn(k Z/pP)
is an isomorphism, and the natural map
Ky (K) — Kn(k)
is an isomorphism up to uniquefydivisible groups.

Proof. Since H"1(k, Z/p(n)) = 0, the long exact coefficient sequence
shows thatk M (k) is p-torsion free, reproving Izhboldin’s theorem [16].
Appyling the Bloch-Lichtenbaum spectral sequence [6] with coefficients
[26, Appendix B],

H ' (k, Z/p(—t) = K_s_t(k, Z/p),

we getKM(k)/p = H"(k, Z/p(n)) = Kn(k, Z/p), induced by the natural
map from Milnor K-theory to QuillenK-theory by Proposition 3.3. In
particular, the coefficient sequence firtheory shows thaK,_;(Kk) is
p-torsion free and thakM (k) /p = K, (K)/ p.
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Since the composition of the natural map with the Chern class map
from Quillen K-theory to MilnorK -theory is multiplication byn — 1)! on
KM(Kk), and sincek M (k) is p-torsion free, we get, working modulo prime
to p-torsion, a short exact sequence

0— K,’:A(k) — Kp(k) — Q — 0.
This gives us
0— pQ — Kp'(k/p — Kn(k)/p — Q/p —> 0.
Since the middle map is an isomorphis@js uniquelyp-divisible. Q.E.D.

The following consequence of our result has been pointed out to us by
B. Kahn:

Theorem 8.2. LetRbe a semi-local ring, essentially smooth over a discrete
valuation ring. Then Gersten’s conjecture RRholds with finite coefficients,
i.e. for anym there is an exact sequence

0 — Kn(R Z/m) — P Knk(0),Z/m) —
xeR©O)

P Kn-1keo, Z/m) — ...

xeRD
Proof. The casan prime to the residue characterisiicof the base DVR
was handled by Gillet [12], so we can restrict ourselves to thermasep'.
By [2], or [11, Corollary 6], it suffices to show this in the case when
is a discrete valuation ring. The statement is a special case of thepmod
Gersten conjecture for regular local rings containing a field [25] and [13],
if R has equal characteristjz In general, lef- be the quotient field the
residue field oR andt a uniformizer. We have a localization sequence

s Kn1(RZ/p) — Knsa(F, Z/p) -2
Kn(k, Z/P) — Kn(RZ/p) —> ....

Let {X1, ..., X} € KM(k) be a lifting of some element iK,(k, Z/p") =

KMk)/p'. Then one easily sees tHatxy, ... , X,} mod p' lifts this elem-
ent to K,’}"H(F)/pr, hence toK,1(F, Z/p"). The resulting short exact se-
guence proves Gersten’s conjecture. Q.E.D.

Note by the same argument, there is a Gersten resolution with rational
coefficients, hence with integral coefficients, if Beilinson’s conjecture (2)
holds.

To get consequences for tietheory of smooth varieties over perfect
fields of characteristip, we have to sheafify our result.

For a schemeX, we let (X /p"), denote the Zariski sheaf associated
to the presheat — K, (U, Z/p"), and#' (Z/p’ (n)) theith cohomology
sheaf of the motivic complex.
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Theorem 8.3. Let X be a smooth variety over a perfect field of character-
istic p. Then

FH(Z/p'(n)) =0 fori#n
HWZ/ P () = vy
(K/P)Hn =0

Proof. The sheavesy, #'(Z/p"(n)) and (X /p"), admit Gersten reso-
lutions by (5), (11) and (8). Henc#'(Z/p" (n)) = 0 fori # n follows
from the corresponding result for fields, and Proposition 3.1 implies that
H"(Z/p (n)) = 7. The result forK-theory follows from Proposition 3.1
and Theorem 8.1. Q.E.D.

Theorem 8.4. Let X be a smooth variety of dimensidrover a perfect field
of characteristicp. Then

H®(Xzar, 1f) = HS(X, Z/p (1),
and there is a spectral sequence from motivic cohomolodg-tbeory
HS'(X, Z/ P (—1) = K s (X, Z/p").
In particular, we haveK,(X, Z/p") = 0 for n > dim X.

Proof. The hypercohomology spectral sequence for motivic cohomology
collapses to a line, proving the first equality. The second statement is the
first equality plugged into the Brown-Gersten spectral sequenceX for
theory, and the third statement follows becau8e= 0 for n > dim X.
Q.E.D.

Our result also implies that Bloch’s cycle complexes satisfy most of the
Beilinson-Lichtenbaum [22] axioms for motivic complexes, as extended by
Milne [23]. Let X be a smooth variety over a perfect field of characterigtic
and consider the complex of preshea¥s) = z"(—, *)[—2n] on the small
étale site ofX. It is in fact a complex of sheaves for tié¢ale topology,
in particular for the Zariski topology. L&L,(n) = Z(N) ® Zp, and
€ : Xet —> Xzarthe change of topology map. We claim tia, (n) satisfies
all the axioms of Beilinson-Lichtenbaum, except possibly acyclicity below
degree 0 (i.e. the Sa@HBeilinson vanishing conjecture). This is clear for all
axioms, except the following two:

Theorem 8.5. There are exact triangles in the derived category of sheaves
on Xzgr and Xegy, respectively:

dl
Z(N) zar X_p> Z(N) zar _Og T<n RE*Vn[_n]
dlog

Z(Met —> Z(N)er —3 v"[—n].
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Proof. The cohomology sheave' (Z(n)z,,) are trivial fori > n by Gersten
resolution and the (trivial) fact that this holds for fields. Consequently, the
map of complexes-nZ(N)zar —> Z(N)zar IS @ quasi-isomorphism. On the
other handy"[—n] is (trivially) isomorphic tor-,Re v"[—n]. We define

the mapd log to be the following composition of maps of Zariski sheaves

Z(n) &t Z(n) — H"(enZ(n)) = HO(Z(n)) %

V" = 7, Re,V"[—n].

By Theorem 8.3, the sheavé# (Z(n)) are uniquelyp-divisible fori # n,
and there is an exact sequence

0 — H"(Z(N)za) —> H"(Z(N)za) —> V" —> 0.

This proves the theorem for the Zariski topology. The same argument works
for any étale covering ofX, hence the statement for tlétale topology.
Q.E.D.

Theorem 8.6. (Hilbert's theorem 90) LeX be a smooth variety over a per-
fect field of characteristig, then

Rn+1€* Z( p) (Mgt = 0.

Proof. Since#' (Z(n)ey = 0 fori > n, and since motivic cohomology with
Q-coefficients is the same as thiale version, we know th& e, Z p, (N)at
is p-power torsion. Consider the following map induced b§n)zo —>
Re.Z(N)et,

L — H(ZMN)zar®Z/P) —> pH"(Zpy(N)za) — O

l l

. —— Re(ZMa®Z/p) —— R e Zp(e — 0.

The upper right hand group is trivial, so it suffices to show that the left
vertical map is an isomorphism. But by the previous theorem, both terms
agree withv". Q.E.D.
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