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0. Introduction

In this paper we combine ideas of Soulé [23] and Deninger [5, 6] to prove a p-adic
analogue of Beilinson’s conjectures for motives associated to Hecke characters of
imaginary quadratic fields.

Let E be an elliptic curve defined over an imaginary quadratic field K with
complex multiplication by the ring of integers of K. In [23], Soulé proved the
following theorem:

Let p be a prime which splits in K and l ≥ 0 such that p − 1 divides neither l,
l+1 nor l+2. Then there exists a Zp-submodule Vl ⊆ K2l+2(E,Zp) and a regulator
map rl : K2l+2(E,Zp) → Z2

p, such that the index of rl(Vl) in Z2
p equals nl, where nl

is the p-adic valuation of the value at s = −l of a p-adic L-series analog to L(E, s).
On the other hand let φ be a Hecke character of an imaginary quadratic field

K of positive weight w. Then Deninger constructed a motive M in MQ(K), the
category of Chow motives over K with coefficients in Q, such that the L-series ofM
coincides with the L-series of φ. The motive M arises naturally as a factor of the
Grothendieck restrictionRF/K(h1(E))⊗w for a CM-elliptic curve E of Shimura type
over a finite extension F ofK. Then he proved parts of the Beilinson conjectures for
M , i.e. he related the leading coefficient of L(M,−l) to a map from Hw+1

A (M,Q(l+

w + 1)) = K2l+w+1(M)
(l+w+1)
Q to Deligne cohomology.

Here we combine the ideas of both papers to prove a generalization of Soulé’s
theorem for motives MΩ attached to Hecke characters of infinity type (a, b) and
weight w = a + b > 0 in the category MZp(K) of Chow motives over K with
coefficients in Zp. More precisely, we first prove a Grothendieck-Riemann-Roch
theorem for K-groups with coefficients Ka(X,Z/pn) and p big enough relative to
dimX. Then we show that the functors Ka(−,Z/pn)(i) factor through MZp , and
finally we prove the following theorem:

Theorem 0.1. Let l ≥ 0 and p > (3[F : K] + 1)w + 2l + 1 be a prime split in the
imaginary quadratic field K, a+ l > 0 and b+ l > 0. Then there exists a submodule
V ⊆ K2l+w+1(MΩ,Zp)(l+w+1) such that the length as an OΩ-module of the cokernel
of the regulator R|V restricted to V equals the valuation of the p-adic L-function

G(φΩκ
l, u−a−l1 − 1, u−b−l2 − 1).

The p-adic L-series here is a p-adic analogue of L(φ,−l).
As a corollary we reprove Soulé’s theorem, generalized to elliptic curves of

Shimura type over any field F/K and with the precise description of the Adams
eigenspaces which are involved.
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Theorem 0.2. Let E be an elliptic curve over F with complex multiplication by
K and CM-character φ of Shimura type. If l > 0 and p > 3[F : K] + 2l + 2, then
there exists a submodule V ⊆ K2l+2(h1(E),Zp)(l+2) ⊆ K2l+2(E,Zp) such that the
index of the regulator map R|V restricted to V equals the the p-adic valuation of∏

λ

G(φλκ
l, u−1−l1 − 1, u−l2 − 1)G(φ̄λκ

l, u−l1 − 1, u−1−l2 − 1).

The product runs over all Cp-valued characters arising from φ inducing p on K.

The product of the p-adic L-series is a p-adic analogue of

L(E,−l) =
∏
ϵ

L(φϵ,−l) · L(φ̄ϵ,−l)

where ϵ runs over the grossencharacters arising from the elliptic curve.

We now give a more detailed description of the content of this paper.
First we recall some facts about algebraic and étale K-theory and prove some

theorems ofK-theory which are well known after tensoring with Q, by just inverting
a bounded number of primes (for example the existence of an Adams eigenspace
decomposition or the Grothendieck-Riemann-Roch theorem).

This suffices to show that the functors Ka(X,Z/pn)(i) factor through the cate-
gory of Chow motives MZp

(K), at least if p is big enough. This implies that the

functors K ét
a (X,Z/pn)(i) and Ha

ét(X,Z/pn(i)) also factor through MZp
(K).

Next we recall some properties of Hecke characters and of the extension F (Ep∞)/K,
where F (Ep∞) is the field generated by the p-power torsion of a CM-elliptic curve.

We construct motives M in MZp(K) for Hecke characters of the imaginary qua-
dratic field K of positive weight. This is done following Deninger [6]: take an
elliptic curve over a field F/K with complex multiplication by K, consider the
w-fold tensor product of the Grothendieck restriction RF/Kh1(E) and decompose
it by idempotents of its endomorphism algebra. Then every Hecke character of
positive weight w arises in this fashion.

The quotient U/C of local units modulo elliptic units plays a vital role in the
proof of the main theorem, and we have to modify some results of de Shalit [19] to
the two variable situation.

We follow ideas of Soulé [23] in constructing special elements in the p-adic K-
groups K2l+w+1(M,Z/pn)(w+l+1).

We then define the p-adic regulator map for p-adic K-theory, again following
Soulé. We make the crucial observation that in the local situation (i.e. after
tensoring our motive with Kp for a prime p dividing the split prime p) the map
constructing elements composed with the regulator map is an isomorphism (up to
some special cases).

Finally the main theorem is proven and specialized to elliptic curves (i.e. w = 1).
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and B.Mazur and the Harvard Department of Mathematics for their hospitality
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0.2. Conventions. All schemes are supposed to be of finite type over a field k, in
particular we mean ”smooth over k” whenever we talk about smooth schemes.

For a scheme X over k we denote by X̄ = X ×k k̄ the base extension to the
algebraic closure k̄ of k.

For an abelian group A we denote by nA the n-torsion elements of A.
If the scheme X is regular and separated, we identify the K and K ′-groups of

X.
The groups Ha(X,F) always denote étale cohomology groups.

1. K-groups

1.1. Higher K-groups. For a scheme X let BQP be the classifying space to the
Quillen category QP of the category P of locally free OX -modules. Similarly,
let BQM be the same construction applied to the category M of coherent OX -
modules. Then one defines the algebraic K-groups to be

Ka(X) = πa+1(BQP(X)), Ka(X,Z/n) = πa+1(BQP(X),Z/n);

K ′a(X) = πa+1(BQM(X)), K ′a(X,Z/n) = πa+1(BQM(X),Z/n);
Here the homotopy groups with coefficients are given by maps Ma

n → BQP(X)
up to homotopy, whereMa

n is the Moore space mod n [4]. For a ≥ 2 the cofibration

Ma
n −→ Sa

·n−→ Sa gives rise to the universal coefficient sequence

0 → Ka−1(X)/n→ Ka−1(X,Z/n) → nKa−2(X) → 0.

We define K-groups with Zp-coefficients to be

Ka(X,Zp) := lim
←
Ka(X,Z/pn).

This does not agree with the usual definition Ka(X)∧p as the homotopy groups of
the p-completed K-spectrum [3, I 4], but there is an exact sequence [3]

0 → lim
←

1
pnKa(X) → Ka(X)∧p → lim

←
Ka(X,Z/pn) → 0.

Many properties of K-groups are given by properties of the spaces BQP and
fibration sequences of these as given in [17]. In particular K-groups are contravari-
antly functorial and via the identification Ka(X) = K ′a(X) covariantly functorial
for proper maps of regular quasiprojective schemes.

A different construction of K-groups is Quillen’s +-construction,

Ka(A) = πa(BGL(A)
+), Ka(A,Z/n) = πa(BGL(A)

+,Z/n).

On these groups one can define a λ-algebra structure (see [14]). The universal co-
efficient sequence is (by naturality of λk) a sequence of λ-morphisms. There are
various ways to extend the +-construction from rings to schemes, see for exam-
ple [22] where the above construction is sheafified for regular, noetherian schemes
of finite dimension. This gives us the structure of a K0-λ-algebra on Ka(X) and
Ka(X,Z/n) with locally nilpotent γ-filtration. Since Moore spaces exist only for
a ≥ 2, one cannot define a λ-ring structure on K1(X,Z/n) via the +-construction.
However, by a construction of Grayson [12], we know that there exist Adams op-
erators on the Q-construction which agree with the ones defined via the λ-ring
structure above.

In [15] Loday constructs a cup product

∪ : Ka(A)×Kb(A) → Ka+b(A).
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For K-groups with coefficients we use the pairing BQ∨BQ→ BQ2 of Waldhausen
[26, par. 9] and the map Ma+b

n → Ma
n ∧M b

n of Browder [4] to construct a cup
product. For a ≥ 2 this agrees with Loday’s product induced by the pairing of
BGL+(A), see the discussion in [20, II 2.1].

The following lemma from linear algebra allows us to prove that K-theory with
coefficients is the direct sum of its Adams eigenspaces under certain hypothesis:

Lemma 1.1. Let M be an abelian group with descending filtration F · such that
F aM =M and F b+1M = 0 for some natural numbers a and b. Let k ∈ Z such that
k and 1− ki act invertibly on M for i = 1, . . . , b− a and let ψk be an operator on
M commuting with the filtration such that ψk acts like kq on the q-th graded piece.
Define

M (q) = {x ∈M |ψk(x) = kqx}.
Then the M (q) split the filtration, i.e.

F qM =
⊕
q≤i≤b

M (i).

Furthermore if ψj is an operator commuting with ψk and acting like jq on the q-th
graded piece, then ψj acts like jq on M (q). If j and 1− ji act also invertibly on M ,
then M (q) = {x ∈M |ψj(x) = jqx}.

Proof: Clearly M (j) ∩ M (l) = 0 for j ̸= l, and one sees with induction on the
number of summands that the sums occurring are direct.

Let x ∈ M (q) and suppose x ∈ F jM for some a ≤ j < q. Then kqx = ψk(x) =
kjx mod F j+1M , so (kq − kj)x ∈ F j+1M and x ∈ F j+1M . By induction we get
M (q) ⊆ F qM and thus ⊕q≤i≤bM (i) ⊆ F qM .

To show the opposite inclusion we use descending induction on q:
Assume F q+1M = ⊕q+1≤i≤bM

(i) (this is true for q = b) and let x ∈ F qM . Then

ψk(x) = kqx+ x′ with x′ ∈ F q+1M , x′ = xq+1 + · · ·+ xb where xj ∈M (j). Define

λj =
1

kj−kq , then −kqλj = 1− kjλj and we obtain for x̂ = x−
∑b
j=q+1 λjxj :

ψk(x̂) = ψk(x−
b∑

j=q+1

λjxj) = kqx+

b∑
j=q+1

(1−kjλj)xj = kqx−
b∑

j=q+1

kqλjxj = kqx̂.

Thus x = x̂+
∑b
j=q+1 λjxj ∈ ⊕q≤j≤bM (j).

Because ψk ◦ ψj = ψj ◦ ψk we have ψj(M (q)) ⊆M (q). For x ∈M (q) we have by
assumption ψj(x) = jqx + x′ ∈ M (q) where x′ ∈ F q+1M . So ψj(x) − jqx = x′ ∈
M (q) ∩F q+1M = 0 and we get ψj(x) = jqx, thus proving M (q) ⊆ {x ∈M |ψj(x) =
jqx}. If j satisfies the condition on invertibility, then by symmetry the sets M (q)

defined with k and j are equal. 2

Remark: 1) If M is a Z/p-vector space, we have M (q) = M (q+p−1), so we clearly
need some condition on k which implies p− 1 > b− a. On the other hand, if M is
a Z(p)-module and p− 1 > b− a, we can take k to be a primitive root of unity mod
p.

2) In the special case of Adams operators on a nilpotent γ-algebra M , we say
that M has an Adams eigenspace decomposition, if M = ⊕M (q), where M (q) is the
kq-eigenspace of ψk for some k as in the lemma. For j ̸= k, the operator ψj acts
like jq on M (q), but the jq-eigenspace of ψj may be bigger than M (q).
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3) As a corollary of the proof we see that if ψk(x) − knx ∈ Fn+1, then x ∈
Fn. This follows because we can modify x by an element of Fn+1 to x̂ such that
ψk(x̂) = knx̂, thus x̂ ∈ Fn and then x ∈ Fn.

1.2. Etale K-theory. We list some properties of étale K-groups K ét
a (X,Z/pn)

and its connections to K-theory with coefficients, for more details see Dwyer and
Friedlander [7].

For a noetherian scheme X of finite cohomological dimension, there exists a
canonical map

ρ : Ka(X,Z/pn) → K ét
a (X,Z/pn).

According to Soulé [21, 2.3] the étale K-groups form a λ-ring and ρ is a morphism
of λ-rings.

There is a fourth quadrant spectral sequence

Estr (X) ⇒ K ét
−s−t(X,Z/pn)

where

Est2 (X) =

{
Hs(X,Z/pn(−t/2)) t even;

0 t odd.

The cup product structure on ⊕K·(X,Z/pn) is compatible with ρ, where the
product structure on ⊕K ét

· (X,Z/pn) is the abutment of the cup product in étale
cohomology.

Proposition 1.2. (Soulé [21, theorem 1]) Let p be odd, X a noetherian scheme
whose cohomological étale p-dimension d is finite. Assume p ≥ d/2 + 1. Then the
spectral sequence of Dwyer and Friedlander degenerates, E2 = E∞, and the induced
filtration on K ét

a (X,Z/pn) admits a natural splitting.

Proposition 1.3. We have for p ≥ d+3
2 :

K ét
a (X,Z/pn) =

⊕
a
2≤i≤

a+d
2

K ét
a (X,Z/pn)(i)

and there is an isomorphism

K ét
a (X,Z/pn)(i) ∼= E2i−a,−2i

∞
∼= H2i−a(X,Z/pn(i)).

Proof: Let F kétK
ét
a (X,Z/pn) be the filtration by étale dimension attached to the

spectral sequence of Dwyer and Friedlander.
By Soulé [21, prop.2] we know that ψk acts like ki on Es,−2ir and thus also on

the s-th graded piece F sét/F
s+1
ét K ét

2i−s(X,Z/pn).
Define a new filtration F i := F 2i−a

ét K ét
a (X,Z/pn). Then ψk acts like ki on

F i/F i+1, we have F
a
2 = K ét

a (X,Z/pn) and F i = 0 for 2i > d+ a. Applying lemma
1.1, we see that if we chose a primitive root of unity mod p for k, the first equation
follows.

The second equation follows from

K ét
a (X,Z/pn)(i) ∼= F i/F i+1 = F 2i−a

ét /F
2(i+1)−a
ét K ét

a (X,Z/pn) ∼= H2i−a(X,Z/pn(i)).
2

According to Soulé [21, theorem 5] this isomorphism composed with ρ is, up to
an automorphism, the same as the Chern class map for p ≥ i.

We will also need the following
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Proposition 1.4. (Thomason [25, theorem 4.11]) Let X be a regular scheme over
a number field or a local field. Then the map ρ becomes an isomorphism if we
localize K-theory at the inverse of the Bott element [25, A.7],

ρ : Ka(X,Z/pn)[β−1] ∼= K ét
a (X,Z/pn).

This allows us to transport structure from K-theory to étale K-theory, for ex-
ample we get covariance for proper maps of quasiprojective, regular varieties. On
the other hand, the induced contravariance and product structure agree with the
contravariance and product structure defined by [7], because ρ respects these struc-
tures.

1.3. The length of the γ-filtration. We want to show that K-groups with coeffi-
cients can be decomposed into the direct sum of Adams eigenspaces. For K-groups
this is well known after tensoring with Q, and Soulé has given a bound for the de-
nominators needed. The same proof, which is a version of 1.1 that uses all Adams
operators ψk at the same time, works for any λ-ring with nilpotent γ-filtration, in
particular for Ka with coefficients if a ≥ 2.

Theorem 1.5. a) Let X be a regular noetherian scheme of dimension d. Then we
have the following decompositions:

Ka(X)⊗ Z[ 1
(a+d−1)! ] =

a+d⊕
q=2

Ka(X)⊗ Z[ 1
(a+d−1)! ]

(q) for a ≥ 2;

K1(X)⊗ Z[ 1
(d+1)! ] =

d+2⊕
q=1

K1(X)⊗ Z[ 1
(d+1)! ]

(q);

K0(X)⊗ Z[ 1
(d−1)! ] =

d⊕
q=0

K0(X)⊗ Z[ 1
(d−1)! ]

(q).

b) For a ≥ 2 and p > a+ d we have:

Ka(X,Z/pn) =
a+d⊕
q=1

Ka(X,Z/pn)(q)

Proof: Part (a) is [22, prop 5], using [22, theorem 4 iv]. The proof depends on the
following result:

For k ≥ a+ d+ 1 we have γk = 0 on Ka(X) and for k ≥ d+ 3 we have γk = 0
on K1(X).

The same statement remains true for K-groups with coefficients (with the same
proof, see [22, théorème 1]) and we use 1.1 to prove (b), taking any primitive
root of unity mod p for k. Note that in this case we only know Ka(X,Z/pn) =
F 1
γKa(X,Z/pn), and thus we have to invert a+ d as well. 2

Corollary 1.6. For a ≥ 2 and p > a+ d, the universal coefficient sequence decom-
poses into sequences of Adams eigenspaces

0 −→ Ka(X)(i)/pn −→ Ka(X,Z/pn)(i) −→ pnKa−1(X)(i) −→ 0.

Proof: Since the sequence is a sequence of λ-rings, the Adams operators ψi com-
mute with the maps of the sequence. Thus the i-eigenspace is mapped to the
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i-eigenspace. Now since all groups in the exact sequence decompose into a direct
sum of eigenspaces, the eigenspace functor is exact. 2

2. The Grothendieck-Riemann-Roch theorem

2.1. Chern and Todd characters. In this section we define the Chern character
and the Todd character with bounded denominators and prove some properties of
them.

Let X have dimension d, and let Nm be m-th Newton polynomial. It has coeffi-
cients in Z, so we can define the following morphism of rings [8, I.4.1]

ch : K0(X) →
d∏

m=0

grmγ K0(X)⊗ Z[ 1d! ]

x 7→ ϵ(x) +

d∑
m=1

1

m!
Nm(c1(x), . . . , cm(x)).

Here ϵ is the augmentation K0(X) → Z and

cm(x) = γm(x− ϵ(x)) mod Fm+1
γ K0(X).

Similarly we get for a ≥ 2 and p > d+ a the map

ch : Ka(X,Z/pn) →
a+d∏
m=1

grmγ Ka(X,Z/pn)

x 7→
a+d∑
m=1

1

m!
Nm(c1(x), . . . , cm(x)) =

a+d∑
m=1

(−1)m−1

(m− 1)!
cm(x).

The last equality holds true because Ka(X,Z/pn) has trivial multiplication.
Let Hm be the m-th Hirzebruch polynomial. It is determined by the property

that for k ≥ m and the elementary symmetric functions σi(x1, . . . , xk) we have

Hm

(
σ1(x1, . . . , xk), . . . , σm(x1, . . . , xk)

)
= coefficient of tm in

k∏
i=1

exit
xit

exit − 1

If a prime p divides the denominator of Hm, then p is less than or equal to m+ 1
[13, Lemma 1.7.3], so we get a homomorphism of groups [8, par. I.4]

td : K0(X) → 1 +

d∏
m=1

grmγ K0(X)⊗ Z[ 1
(d+1)! ]

x 7→ 1 +

d∑
m=1

Hm(c1(x), . . . , cm(x)).

Proposition 2.1. a) The map

ch : K0(X)⊗ Z[ 1
(d+1)! ] =

d⊕
j=0

K0(X)⊗ Z[ 1
(d+1)! ]

(j) →
d⊕
j=0

grjγK0(X)⊗ Z[ 1
(d+1)! ]

is an isomorphism of graded rings and coincides on the j-th Adams eigenspace with
the natural map K0(X)⊗ Z[ 1

(d+1)! ]
(j) ∼−→ grjγK0(X)⊗ Z[ 1

(d+1)! ].
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b) For a ≥ 2 and p > a+ d the map

ch : Ka(X,Z/pn) =
a+d⊕
j=1

Ka(X,Z/pn)(j) →
a+d⊕
j=1

grjγKa(X,Z/pn)

is an isomorphism of graded rings and coincides on the j-th Adams eigenspace with
the natural map Ka(X,Z/pn)(j)

∼−→ grjγKa(X,Z/pn).

Proof: a) Since ch is a homomorphism of λ-rings, we get for all m, j the following
diagram

K0(X)⊗ Z[ 1
(d+1)! ]

(m) ch−−−−→ grjγK0(X)⊗ Z[ 1
(d+1)! ]yψk=km

yψk=kj

K0(X)⊗ Z[ 1
(d+1)! ]

(m) ch−−−−→ grjγK0(X)⊗ Z[ 1
(d+1)! ]

Thus (kj − km)ch(x) = 0 for all k, so the greatest common divisor of the numbers
(kj−km) annihilates ch(x). By Soulé [21, 3.3.1] we know that this greatest common
divisor is only divisible by primes less than or equal to d+1, which we have inverted.
So ch(x) = 0 for m ̸= j, and we see that ch respects the grading.

Now for x ∈ Fmγ K0(X)⊗Z[ 1
(d+1)! ] we have cm(x) = γm(x) = (−1)m−1(m−1)! x

mod Fm+1
γ K0(X) ⊗ Z[ 1

(d+1)! ]. Observing that Nm(0, . . . , 0, cm) = (−1)m−1mcm,

this proves the last claim and then the first claim follows.
b) Using 1.5, the same proof works forKa(X,Z/pn), if we use ψk for k a primitive

root of unity mod p. 2

2.2. The Adams-Riemann-Roch theorem. Let i : X → Z be a closed embed-
ding of smooth schemes of constant codimension c defined by the coherent ideal
I of OZ . We define N = I/I2 to be the conormal sheaf of i. It is a locally free
OX -module of rank c. Furthermore let θj(N ) be the Bott cannibalistic class of N .

Proposition 2.2. (Adams-Riemann-Roch)
For a closed immersion i : X → Z of smooth schemes with conormal sheaf N

the following diagram commutes for a ≥ 2:

Ka(X,Z/pn)
θk(N )ψk

−−−−−−→ Ka(X,Z/pn)

i∗

y yi∗
Ka(Z,Z/pn)

ψk

−−−−→ Ka(Z,Z/pn)

In other words, we have for every x ∈ Ka(X,Z/pn):

ψk(i∗(x)) = i∗(θ
k(N )ψk(x)).

Proof: The proposition follows exactly as [24, cor. 1.3]. The proof there works for
any K0-algebra with ring morphisms ψk which are compatible with the operations
of K0 and pull backs, which is the case in our situation. For more details see [9]. 2

Define

u = ch−1(td(N∨)) ∈ K0(X)⊗ Z[ 1
(d+1)! ].
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By the properties of the maps ch and td it is a unit with augmentation 1. We
will use properties of u to prove the Grothendieck-Riemann-Roch theorem. Let us
examine the behavior of u with respect to Adams operators.

Lemma 2.3. The following equation holds in K0(X)⊗ Z[ 1
(d+1)! ]:

θk(N )ψk(u) = kcu.

Proof: If we apply ch to the equation, we see that it suffices to prove

ch(θk(N )) · ϕk(td(N∨)) = kctd(N∨)

where ϕk is the map which is multiplication by km on grmγ K0(X)⊗ Z[ 1
(d+1)! ]. Let

p : D(N ) → X be the flag scheme of N over X. The induced map gr·γK0(X) →
gr·γK0(D(N )) is injective and the class of p∗N decomposes into a sum of classes of
invertible modules. Observe also that since p∗ is a morphism of graded algebras,
its image lies in ⊕di=0gr

i
γK0(D(N )), so the following diagram commutes:

K0(X)
p∗−−−−→ K0(D(N ))ych ych⊕d

i=0 gr
i
γK0(X)⊗ Z[ 1

(d+1)! ]
p∗−−−−→

⊕d
i=0 gr

i
γK0(D(N ))⊗ Z[ 1

(d+1)! ]

As the same diagram for td commutes as well, it is enough to prove the lemma for
an invertible sheaf N . Let a = c1(N ) be the first Chern class of N , then we have
the following formal identities:

ch(θk(N )) = ch(1 + [N ] + · · ·+ [N ]k−1) = 1 + ea + · · ·+ e(k−1)a

td(N∨) = −a
e−a − 1

e−a =
−a

1− ea

ϕk(td(N∨)) = −ka
1− eka

and hence we get formally:

ch(θk(N ))ϕk(td(N∨)) = (1+ ea+ · · ·+ e(k−1)a)
−ka

1− eka
= −ka 1

1− ea
= k · td(N∨)

2

Corollary 2.4. The map x 7→ i∗(ux) maps Ka(X,Z/pn)(j) to Ka(Z,Z/pn)(j+c).

Proof: By the Adams-Riemann-Roch theorem we have

ψk(i∗(ux)) = i∗(θ
k(N )ψk(u)ψk(x)) = i∗(k

cu · kjx) = kj+ci∗(ux).

2

2.3. The Grothendieck-Riemann-Roch theorem. We prove the Grothendieck-
Riemann-Roch theorem for K-groups with coefficients. We follow [24], but keep
track of denominators. It will turn out that it suffices to invert enough primes
so that the Chern character and the Todd character are defined on K0. The key
observation is that the proof in [24] makes calculations in K0 and then only uses
the fact that the higher K-groups are modules under K0.
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For a smooth scheme X the tangent sheaf T = (Ω1
X/k)

∨ is a locally free OX -

module of finite rank. One defines the Todd class of X to be

Td(X) = td([TX ]) ∈
dX⊕
j=0

grjγK0(X)⊗ Z[ 1
(dX+1)! ].

Theorem 2.5. (Grothendieck-Riemann-Roch)
a) Let X,Y be smooth projective schemes over k of dimension dX and dY , re-

spectively, and let f : X → Y be a morphism of pure codimension c. Let a ≥ 2,
d = max{dX , dY } and p > d + a. Then the homomorphism f∗ : Ka(X,Z/pn) →
Ka(Y,Z/pn) has degree c, i.e.

f∗ : F
m
γ Ka(X,Z/pn) ⊆ Fm+c

γ Ka(Y,Z/pn)

and hence f induces a map

f∗ : gr
m
γ Ka(X,Z/pn) → grm+c

γ Ka(Y,Z/pn).

b) The following diagram commutes for large p:

Ka(X,Z/pn)
Td(X)·ch−−−−−−→ gr·γKa(X,Z/pn)yf∗ yf∗

Ka(Y,Z/pn)
Td(Y )·ch−−−−−−→ gr·γKa(Y,Z/pn).

Remark: 1) The proof of (a) works for Ka(X)⊗Z[ 1
(a+d−1)! ] respectively K1(X)⊗

Z[ 1
(d+1)! ] respectively K0(X) ⊗ Z[ 1

(d+1)! ], because we can prove the theorem for

Ka(X)⊗ Z(p), all p ≥ a+ d.
2) In (b) it suffices to take p > a + d′, where d′ is the dimension of a space PrY

such that f factors through PrY
3) A gap in the proof of the theorem in [9] was pointed out by J.Nekovar.

Proof: Note that the Adams eigenspace decomposition of Ka(X,Z/pn) and of
Ka(Y,Z/pn) are defined because p > d+ a.

As in [24] we factor f into X
i−→ PrY

p−→ Y such that i is a closed embedding.
a) Via the five lemma it is easy to conclude from the corresponding statement

for K-theory that we have a canonical isomorphism

Ka(Y,Z/pn)⊗K0(Pr)
∼−→ Ka(PrY ,Z/pn)

(y, ξ) 7→ p∗(y) · q∗(ξ)

where p and q are the projections of PrY to Y and Pr respectively.
If we let x = 1 − [OPr (−1)], then the elements xj ∈ F jγK0(Pr) form a basis of

K0(Pr) for j = 0, . . . , r, and we get

r⊕
j=0

Ka(Y,Z/pn) · xj
∼−→ Ka(PrY ,Z/pn).

If we denote the structure morphism Pr → Spec k by s, then the projection
formula and base change show that

p∗(p
∗y · q∗ξ) = p∗(q

∗ξ) · y = s∗ξ · y,

where s∗ξ ∈ Z = K0(k) acts on Ka(Y,Z/pn) via the structure morphism.
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Consider the embedding i : X → PrY and let x ∈ Fmγ Ka(X,Z/pn). Write

x = ux′ with x′ = u−1x ∈ Fmγ Ka(X,Z/pn). Decompose x′ =
∑
j≥m x

′
j with x′j ∈

Ka(X,Z/pn)(j). By 2.4 we get i∗(x) = i∗(ux
′) =

∑
j≥m i∗(ux

′
j) where i∗(ux

′
j) ∈

Ka(PrY ,Z/pn)(j+c+r).
To prove the theorem it will suffice to show that for z = i∗(ux

′
j) ∈ Ka(PrY ,Z/pn)(j+c+r)

we have p∗(z) ∈ F j+cγ Ka(Y,Z/pn).
We write z =

∑r
i=0 x

iyi with yi ∈ Ka(Y,Z/pn), then by the discussion above
p∗(z) =

∑
αiyi with αi = s∗(x

i) ∈ Z.
We will show by induction on i that yi ∈ F j+c+r−iγ Ka(Y,Z/pn). As xi ∈

F iγK0(Pr), we have

ψk(xi) = kixi +
∑
i<l

βilx
l,

and from

kj+c+rz = ψk(z) =
∑

ψk(xi)ψk(yi)

we get by comparing the coefficient of xi:

kj+r+cyi = kiψk(yi) +
∑
l<i

βliψ
k(yl).

By induction hypothesis we know that yl and hence ψk(yl) is contained in
F j+c+r−lγ Ka(Y,Z/pn) for l < i. Thus

ki(ψk(yi)− kj+r+c−iyi) ∈ F j+c+r−i+1
γ Ka(Y,Z/pn)

and the same is true without the factor ki, because we can assume k invertible. The
remark after lemma 1.1 tells us that we can conclude from ψk(yi) − kj+c+r−iyi ∈
F j+c+r−i+1
γ Ka(Y,Z/pn) that yi ∈ Fm+c+r−i

γ Ka(Y,Z/pn). Noting that i ≤ r, the
theorem follows.

b) We prove b) for i and p separately in two lemmas:

Lemma 2.6. The following diagram commutes for p > a+ dimPrY :

Ka(PrY ,Z/pn)
Td(Pr

Y )·ch−−−−−−→ gr·γKa(PrY ,Z/pn)yp∗ yp∗
Ka(Y,Z/pn)

Td(Y )·ch−−−−−−→ gr·γKa(Y,Z/pn).

Proof: The classical Hirzebruch-Riemann-Roch theorem states that the following
diagram is commutative

K0(Pr)
Td(Pr)·ch−−−−−−→ gr·γK0(Pr)⊗ Z[ 1

(r+1)! ]ys∗ ys∗
Z −−−−→ Z[ 1

(r+1)! ].

This can be proved as in [2, prop.10] with formal calculations, so it suffices to tensor
with Z[ 1

(r+1)! ] in order for the Todd map to be defined.
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Now using Td(PrY ) = p∗(Td(Y )) · q∗(Td(Pr)), the projection formula and the
base change property, we see that for y ∈ Ka(Y,Z/pn) and x ∈ K0(Pr) we have:

p∗
(
Td(PrY ) · ch(p∗(y)q∗(x))

)
= p∗

(
p∗(Td(Y )ch(y)) · q∗(Td(Pr)ch(x))

)
= Td(Y )ch(y)s∗

(
Td(Pr)ch(x)

)
= Td(Y )ch(y)s∗(x)

= Td(Y )ch
(
p∗(p

∗(y)q∗(x))
)
.

2

Lemma 2.7. For a closed embedding i : X → Z of smooth schemes over k and p
sufficiently large, the following diagram commutes:

Ka(X,Z/pn)
Td(X)·ch−−−−−−→ gr·γKa(X,Z/pn)yi∗ yi∗

Ka(Z,Z/pn)
Td(Z)·ch−−−−−−→ gr·γKa(Z,Z/pn).

Proof: Let us first prove the commutativity of the diagram

Ka(X,Z/pn)
td(N∨)−1·ch−−−−−−−−→ gr·γKa(X,Z/pn)yi∗ yi∗

Ka(Z,Z/pn)
ch−−−−→ gr·γKa(Z,Z/pn).

For this write any given x ∈ Ka(X,Z/pn) as above as x = ux′. We have to show
ch(i∗(ux

′)) = i∗(td(N∨)−1ch(ux′)). But
td(N∨)−1ch(ux′) = td(N∨)−1ch(u)ch(x′) = td(N∨)−1td(N∨)ch(x′) = ch(x′)

so it suffices to show ch(i∗(ux
′)) = i∗(ch(x

′)).
Assume without loss of generality that x′ ∈ Ka(X,Z/pn)(m) for some m. Then

the assertion is equivalent to the following congruence:

ch(i∗(ux
′)) ≡ i∗(ux

′) ≡ i∗(x
′) ≡ i∗(ch(x

′)) mod Fm+d+1
γ Ka(Z,Z/pn).

The first congruence follows because i∗(ux
′) ∈ Ka(Z,Z/pn)(d+m) and 2.1. The

second congruence follows because u is a unit with augmentation 1 and the third
congruence is i∗ applied to 2.1 again.

Now the claim of the proposition falls out: For the closed immersion i : X → Z
we have the exact sequence

0 −→ N −→ i∗Ω1
Z/k −→ Ω1

X/k −→ 0

and therefore i∗(Td(Z)) = Td(X)td(N∨). Then for x ∈ Ka(X,Z/pn) we get

ch(i∗(x)) = i∗
(
td(N∨)−1ch(x)

)
= i∗

(
i∗(Td(Z)−1)Td(X)ch(x)

)
= Td(Z)−1i∗

(
Td(X)ch(x)

)
and hence

Td(Z)ch(i∗(x)) = i∗(Td(X)ch(x)).

This concludes the proof of the Grothendieck-Riemann-Roch theorem. 2
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2.4. K0 and Chow groups. In this section we are going to prove the following
theorem

Theorem 2.8. Let X be a smooth quasiprojective variety of dimension d. Then we
have a cycle map which is covariant, contravariant and compatible with products

CHp(X)⊗ Z[ 1
(d−1)! ]

∼−→ K0(X)(p) ⊗ Z[ 1
(d−1)! ].

Proof: Consider the Brown-Gersten-Quillen spectral sequence. According to Soulé
[22, th. 4 iv], it degenerates with split filtration at the E2-level after inverting
(d− 1)!. We thus get

K0(X)⊗ Z[ 1
(d−1)! ] =

d⊕
p=0

Ep,−p2 (X)⊗ Z[ 1
(d−1)! ] =

d⊕
p=0

CHp(X)⊗ Z[ 1
(d−1)! ].

This isomorphism is contravariant and compatible with products (because the spec-
tral sequence is), and covariant by [10, theorem 7.22].

Observe now that ψk acts on Ep,−p2 like kp [22, p.524], so the theorem follows
from 1.4. 2

Remark: 1) The Brown-Gersten-Quillen spectral sequence comes from and induces
the filtration by support on K-groups,

F itopK0(X) = im K0(Mi) → K0(M),

where Mi is the full subcategory of M with objects F such that codimX(suppF) ≥
i. On the other hand there is a cycle map

CHp(X)
cl−→ grptopK0(X) , Z 7→ i∗(OZ)

for i : Z → X is the natural inclusion. Soulé in essentially proves that ψk induces
an action kp on grptopK0(X) = Ep,−p∞ , showing that grptopK0(X) = K0(X)(p) if the
Adams-eigenspace decomposition of K0(X) exists.

2) Note that for a cycle Z in CHp(X) the corresponding element in K0(X) is
given by i∗(OZ). This is clear for smooth cycles by the preceding discussion, and
can be reduced to this case by the localization sequence.

3. Chow motives and K-theory with coefficients

Let Λ be a unitary commutative ring. The categoryMΛ(k) of Chow motives over
the field k with coefficients in Λ is obtained from the category of smooth projective
varieties over k as follows, see [16]:

(1) We first define the intermediate category CΛ(k): The objects of this category
are h(X), for X smooth projective over k. We define

HomCΛ(k)(h(X), h(Y )) = CHdim X(X × Y )⊗ Λ

if X is equidimensional.
Composition is defined by intersection: For a ∈ Hom(h(X), h(Y )) and

b ∈ Hom(h(Y ), h(Z)) we have

b ◦ a = p13∗(p
∗
12a · p∗23b)

where pij are the three projections of X × Y × Z to two of the factors.
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We have a contravariant functor from the category V(k) of smooth
projective varieties over k to CΛ(k), by sending X to h(X) and a map
f : X → Y to its graph in CHdimY (Y ×X).

(2) The next step is to add images of projectors in CΛ(k), i.e. we take the
Karoubien hull of this category. The objects of the new category are pairs
(X, p) withX an object in CΛ(k) and p an idempotent in HomCΛ(k)(h(X), h(X)).
The morphisms are given by

Hom
(
(X, p), (Y, q)

)
= {q ◦ f ◦ p|f ∈ HomCΛ(k)(h(X), h(Y ))}.

(3) The idempotents e0 = {pt}×P1 and e2 = P1×{pt} of Hom(h(P1), h(P1)) are
orthogonal with e0 + e2 = id. It is easy to see [16, par.6] that (h(P1), e0) ∼=
h(Spec k). If we let L = (h(P1), e2), then we have h(P1) = h(Spec k) ⊕ L.
Our last step is formal inversion of L. The objects of the new category are
M(r) =M ⊗L⊗r with M an object in the category above and r ∈ Z. The
morphisms are given by

Hom
(
M(r), N(s)

)
= lim
→

Hom
(
M(r + n), N(s+ n)

)
.

Observe that the terms in this limit are defined and stable for n big enough
[16, par.8]. We call the resulting category MΛ(k).

Remark: Let X be a variety of dimension d with a k-rational point. Via the
idempotents X×{pt} and {pt}×X in CHdimX(X×X) it is possible to split off the
parts h0(X) and h2d(X) from h(X). Then h0(X) = h(Spec k) and h2d(X) = L⊗d.
For a curve C this gives us the splitting

h(C) = h(Spec k)⊕ h1(C)⊕ L.

Let Md
Λ(k) be the full subcategory of MΛ(k) generated by smooth projective

varieties of dimension less than or equal to d by the steps above, i.e. we define the
category CdΛ(k) to be the full subcategory of CΛ(k) with objects h(X) for X smooth
projective of dimension at most d over k, take the Karoubien hull and formally
invert L.

Furthermore let MΛ(k,O) be the category of Chow motives over k with coeffi-
cients in Λ and with multiplication by a ring O, i.e. the objects are pairs consisting
of an object of MΛ(k) and an embedding of O into HomMΛ(k)(X,X), and the
morphisms are compatible with this action.

Theorem 3.1. The functor Ka(−,Z/pn)(i) factors through Md
Zp
(k) for a ≥ 2 and

p > 3d+ a.

Proof: According to 1.5 there is an Adams eigenspace decomposition ofKa(X,Z/pn),
Ka(X × Y,Z/pn) and Ka(X × Y × Z,Z/pn) for p > 3d+ a ≥ dX + dY + dZ + a.

a) Ka(−,Z/pn)(i) factors through CdΛ(k):
We need to show that every element α ∈ CHdimX(X × Y )⊗ Zp induces a map

α∗ : Ka(X,Z/pn)(i) → Ka(Y,Z/pn)(i)

in a functorial way, and for maps f : Y → X between varieties we have f∗ = [Γf ]∗.
This follows if we have the following ingredients:

(1) A functor which is contravariant and admits a product.
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(2) A map

CHi(X × Y )⊗ Zp
cl−→ K0(X × Y )(i) ⊗ Zp

which is covariant and contravariant functorial and compatible with prod-
ucts (this is the case by 2.8).

(3) A push-forward map for smooth projective varieties shifting degree and
satisfying the projection and base change formula (K-groups have push-
forward with projection formula and base change, and the shift of degrees
follows from 2.5).

For a given α ∈ CHdimX(X × Y )⊗ Zp we define α∗ to be the composition

Ka(X,Z/pn)(i)
p∗X−−→ Ka(X×Y,Z/pn)(i) ∪cl(α)−−−−→ Ka(X×Y,Z/pn)(i+dX) pY ∗−−→ Ka(Y,Z/pn)(i).

The property [Γf ]∗ = f∗ for maps f : Y → X between varieties is checked
as follows: let γ be the graph map Y → X × Y , y 7→ (y, f(y)). For the closed
embedding γ we have by the projection formula γ∗γ

∗(z) = z ∪ γ∗(1) = z ∪ cl(Γf ).
But then

[Γf ]∗(x) = pY ∗(p
∗
Xx ∪ cl(Γf )) = pY ∗γ∗γ

∗(p∗Xx) = γ∗p∗X(x) = f∗(x).

For the compatibility with composition, we have to check that for α ∈ CHdimX(X×
Y )⊗Zp and β ∈ CHdimY (Y ×Z)⊗Zp the maps β∗◦α∗ and (β◦α)∗ agree. Consider
the following diagram of schemes and maps:

�
�

��+
Q
Q

QQs

Q
Q

QQs
�

�
��+

?

??

@
@
@

@@R

�
�

�
��	

X × Y × Z

X × Z

Y × Z

Z

X × Y

X

+

Y

Denote the projection from A to B by pAB , then for x ∈ Ka(X,Z/pn)(i) we have

α∗(x) = pXYY ∗(p
XY
X
∗
x ∪ cl(α)) and

β∗(α∗(x)) = pY ZZ ∗(p
Y Z
Y

∗
(α∗(x)) ∪ cl(β))

= pY ZZ ∗
(
pY ZY

∗[
pXYY ∗(p

XY
X

∗
x ∪ cl(α))

]
∪ cl(β)

)
= pY ZZ ∗

(
pXY ZY Z ∗

[
pXY ZXY

∗
(pXYX

∗
x ∪ cl(α))

]
∪ cl(β)

)
(base change)

= pY ZZ ∗
(
pXY ZY Z ∗

[
(pXY ZXZ

∗
pXZX

∗
x) ∪ pXY ZXY

∗
cl(α)

]
∪ cl(β)

)
= pY ZZ ∗

(
pXY ZY Z ∗

[
(pXY ZXZ

∗
pXZX

∗
x) ∪ pXY ZXY

∗
cl(α) ∪ pXY ZY Z

∗
cl(β)

])
(proj. formula)

= pXZZ ∗
(
pXY ZXZ ∗

[
(pXY ZXZ

∗
pXZX

∗
x) ∪ pXY ZXY

∗
cl(α) ∪ pXY ZY Z

∗
cl(β)

])
= pXZZ ∗

(
pXZX

∗
x ∪ pXY ZXZ ∗

[
pXY ZXY

∗
cl(α) ∪ pXY ZY Z

∗
cl(β)

])
(projection formula)

= pXZZ ∗(p
XZ
X

∗
x ∪ cl(β ◦ α)) (compatibility of cl with f∗, f

∗,∪)
= (β ◦ α)∗(x)
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This shows that Ka(−,Z/pn)(i) factors through CdΛ(k).
b) Ka(−,Z/pn)(i) factors through Md

Λ(k):

We have to check that we have Ka(X,Z/pn)(j−1) = Ka(X ⊗ L,Z/pn)(j) for the
Lefschetz motive L.

Now K0(P1) = Z · 1 ⊕ Z · x, where 1 lies in degree 0 and x in degree 1, and we
have an isomorphism

Ka(X,Z/pn)⊗K0(P1)
∼−→ Ka(X × P1,Z/pn)

(x, y) 7→ p∗x ∪ q∗y

This implies that Ka(X × P1,Z/pn) has an Adams eigenspace decomposition with
the same denominators as Ka(X,Z/pn) and we have

Ka(X,Z/pn)(i) ⊕ xKa(X,Z/pn)(i−1) = Ka(X ⊗ P1,Z/pn)(i)

= Ka(X,Z/pn)(i) ⊕Ka(X ⊗ L,Z/pn)(i)

Observing that the isomorphism leaves Ka(X,Z/pn)(i) fixed, we get the desired
equality. 2

Proposition 3.2. a) The functor K ét
a (−,Z/pn)(i) factors through Md

Zp
(k) for p >

3d+ a, and the morphism of functors

ρ : Ka(−,Z/pn)(i) −→ K ét
a (−,Z/pn)(i)

induces a morphism of functors on Md
Zp
(k).

b) The functors H2i−a(−,Z/pn(i)) and H2i−a(− ×k k̄,Z/pn(i)) factor through
MZp

(k), and the morphism of functors

τ : K ét
a (−,Z/pn)(i) ∼−→ H2i−a(−,Z/pn(i))

induces a morphism of functors on Md
Zp
(k) for p > 3d+ a.

Proof: a) By the isomorphism 1.4

ρ : Ka(−,Z/pn)[β−1](i)
∼−→ K ét

a (−,Z/pn)(i)

we define cycle class, push-forwards, pull-backs and products on étale K-theory,
and then compatibility is obvious.

b) We use proposition 1.3 and 1.4 to transport the structures from K-theory
to étale cohomology. In fact, both the map ρ and the Dwyer-Friedlander spectral
sequence are compatible with pull-backs and products. And for proper maps X →
Y of codimension d, the push-forward in K-theory induces by 2.5 a map

H2i−a(X,Z/pn(i)) = Ka(X,Z/pn)[β−1](i) →

Ka(Y,Z/pn)[β−1](i+c) = H2(i+c)−a(Y,Z/pn(i+ c)).

Again compatibility is obvious by construction. 2

Remark: For étale cohomology one could check the properties needed to prove the
factorization directly (Bloch-Ogus axioms [1]), but this way we avoid checking com-
patibilities. Of course, pull-backs and products agree with the normal pull-backs
and products for étale cohomology (as ρ and the spectral sequence are contravariant
functorial and respect the product), and the push-forward should agree with the
usual Gysin morphism in étale cohomology.
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Since the morphism of functors ”reduction of coefficients” commutes with the
cycle map, cup products and push-forwards, it induces a morphism of functors on
Md

Zp
(k), and we can define

Ka(M,Zp)(i) := lim
←
Ka(M,Z/pn)(i)

ρ

y ρ

y
K ét
a (M,Zp)(i) := lim

←
K ét
a (M,Z/pn)(i)y y

H2i−a(M,Zp(i)) := H2i−a(M,Z/pn(i))

4. Hecke characters of imaginary quadratic fields

4.1. Hecke characters. Let K be a number field, f be an ideal of K and X =∑
nσσ ∈ Z[Hom(K, Q̄)] be a linear combination of embeddings.
A Hecke character of K with values in a number field T of infinity type X and

conductor dividing f is a group homomorphism φ : If → T ∗ from the ideal classes
of K prime to f to T ∗ such that for any principal ideal (α) with α ≡ 1 mod f, α
totally positive, one has (see [18])

φ((α)) = αX =
∏

σ:K→Q̄

σ(α)nσ .

Let Wf ⊆ IK be the standard open subgroup of the idèles of K∏
p̸|f

O∗p ×
∏
p|f

Wf(p)×
∏
λ real

R∗+ ×
∏

λ complex

C∗,

where O∗p are the units of Kp and Wf(p) are the units congruent to 1 mod f.
In the adelic description a Hecke character (CM-character) is a continuous group

homomorphism χ : IK → T ∗ of the idèles of K to T ∗ such that

χ(Wf) = 1 for some Wf

χ |K∗ = X : K∗ → T ∗

By extending X to a character XA : IK → IT one defines the group homomor-
phism χA := χ ·X−1A : IK/K

∗ → IT of the idèles of K to the idèles of T . For an
infinite place τ of T we get a grossencharacter τ ◦ χA of type A0 in the sense of
Weil.

On the other hand we get for the finite places:

Lemma 4.1. Let χP : IK
χA−→ IT −→ T ∗P be the P-component of a Hecke character

for a finite place P of T . Then χP factors through the Galois group Gal(Kab/K)
and has image in O∗TP

.

Proof: Since TP is totally disconnected, the connected component of the idèle
classes C0

K is mapped to 1 and by class field theory CK/C
0
K

∼= Gal(Kab/K). On
the other hand Gal(Kab/K) is compact, so it has image in the maximal compact
subgroup O∗TP

of T ∗P. 2
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Remark: 1) Consider the characters χλ given by

χλ : IK
χA−→ IT −→ T ∗P

λ−→ C∗p
for a place P dividing p of T and an embedding λ of TP into C∗p. There are∑

P|p[TP : Qp] = [T : Q] characters of this type. We call them p-adic grossen-

characters associated to χ, because they are the p-adic analogue of the [T : Q]
grossencharacters arising from χ.

2) In case χ is a Hecke character of conductor f of an imaginary quadratic
field K and p a prime split in K, one sees as in [19, II 1.1] that the character
χP : Gal(Kab/K) → OTP

factors through the Galois group of the ray class field
K(fp∞).

4.2. Complex multiplication. Let E be an elliptic curve over a number field F
with complex multiplication by the ring of integers OK of an imaginary quadratic
field K, see [19, II 1.3]. Suppose that E is of Shimura type, i.e. the extension
F (Etors)/K is abelian, where Etors denotes the group of all torsion points of E.

Let ψ : IF → K∗ be the CM-character of E, i.e.

ψA : IF /F
∗ → Gal(F ab/F ) → IK → OK ⊗ Zp

gives the action of GF on the Tate module TpE for all p. The character ψ can be
extended to a character φ′ : IK → T ′

∗
with values in a number field T ′ such that

ψ = φ′ ◦NF
K , see [19, II 1.4].

Let A = RF/KE be the Weil restriction of E. It has complex multiplication by
a finite OK-algebra O′T , [11]. The K-algebra T = O′T ⊗ Q is then a commutative
semisimple K-algebra of degree d = [F : K] and thus a product of fields. If e runs
through the idempotents of T , we have

T =
∏
e

Te and A ∼
∏
e

Ae,

where Te = e · T is a CM field containing K, ∼ means isogenous, and Ae is an
abelian variety with complex multiplication by Te. Let φ be the CM-character
of A, it is T -valued and the components φe are the CM-characters of the abelian
varieties Ae.

It is easy to see that the characters φe are the characters satisfying the condition
ψ = φ′ ◦ NF

K . If φ̄ is the complex conjugate character and κ is the cyclotomic
character, then φ̄ · φ = κ.

Note that A = RF/KE = RFK
E∨ = A∨ and that A∨ also has complex multipli-

cation by φ.

4.3. The extension F (Ep∞)/K. Choose for the rest of this paper a prime number
p having the following properties:

• p splits in K into pp̄
• p does not divide d = [F : K]
• p is prime to the conductors of F/K and of E
• p ≥ 5

Let f be the lowest common multiple of the conductors of F/K and of φ. We
have [19, prop.1.6, 1.7]:

Proposition 4.2. 1) Let g be any ideal divisible by f, then the ray class field K(g)
equals F (Eg).
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2) For any ideal m prime to f, Gal(F (Em)/F ) ∼= (OK/m)∗.

Let Fn = F (Epn), F∞ =
∪
Fn and G = Gal(F∞/K). We want to describe the

structure of G. By the proposition we see that

Gal(F∞/F ) = O∗K,p = O∗p ⊕O∗p̄ = ∆1 × Γ1 ×∆2 × Γ2,

where OK,p is the completion of OK at p,

∆1 = Gal(F (Ep)/F ) ∼= Z/(p− 1)

Γ1 = Gal(F (Ep∞)/F (Ep)) ∼= Zp
and similarly for ∆2 and Γ2.

For G we get the decomposition

G = H × Γ1 × Γ2

where H = Gal(F (Ep)/K) ⊇ ∆1 ×∆2.
The decomposition patterns of primes of F are given by the following [19,

prop.1.9]:

Proposition 4.3. 1) All the primes above p are totally ramified in F (Ep∞)/F .
2) All primes not above p and not dividing f are unramified and finitely decom-

posed in F (Ep∞)/F .

Corollary 4.4. The decomposition group of p in G is of finite index and contains
the group Γ1 × Γ′2 where Γ′2 is of finite index in Γ2.

Proof: By the proposition the inertia group of p in Gal(F (Ep∞)/F ) is isomor-
phic to Γ1 and p is unramified and finitely decomposed in Gal(F (Ep̄∞)/F ). So in
Gal(F (Ep∞)/F ) the prime p has inertia group isomorphic to Zp and residue class
extension isomorphic to Zp. 2

Let us now prove some properties of the Hecke characters ψ and φ.

Lemma 4.5. The character ψp : IF → K∗p factors through Gal(F∞/F ) and the
character φP : IK → T ∗P factors through G.

Proof: The character ψp : IF → IK → O∗Kp

∼= Zp∗ gives the action of Gal(F ab/F )

on the p-power torsion points of E and thus factors through the extensionGal(F (Ep∞)/F ).
On the other hand, for any place P of T above p, the character φP : IK → IT → T ∗P
gives the action of Gal(Kab/K) on the P-power torsion points of one of the abelian
varieties Ae and consequently factors through Gal(K(AP∞)/K). By the universal
property of the Weil restriction the P-torsion points of Ae are defined over F (Ep∞),
so φP factors through Gal(F (Ep∞)/K). 2

By the defining property of ψ, the p-component of ψ,

κ1 = ψp = φP|Gal(F∞/F ) : Gal(F∞/F ) → O∗Kp
∼= Zp∗

gives the action on TpE. Similarly the character

κ2 = ψp̄ = φP̄|Gal(F∞/F ) : Gal(F∞/F ) → O∗Kp̄
∼= Zp∗

gives the action on Tp̄E for all places P̄ over p̄.
Observe that κ1 and κ2 are trivial on Gal(F (Ep̄∞)/F ) and Gal(F (Ep∞)/F ),

respectively.
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Consider the cyclotomic character κ : Gal(F (ζp∞)/F ) → Zp∗ giving the action
on the p-power roots of unity. Via the projectionGal(F (Ep∞)/F ) → Gal(F (ζp∞)/F )
we can consider κ as a character of Gal(F∞/F ).

Lemma 4.6. The characters κ and κ1 agree as characters on Gal(F (Ep∞)/F ).
Similarly the characters κ and κ2 agree as characters on Gal(F (Ep̄∞)/F ).

Proof: Because of the Galois invariance of the Weil pairing,

κ = det(κ1 × κ2) : Gal(F∞/F ) −→ Zp∗ × Zp∗
×−→ Zp∗.

But we just observed that κ2 is trivial on Gal(F (Ep∞)/F ), so the lemma follows.
2

5. Motives for Hecke characters of imaginary quadratic fields

In this section we construct for any Hecke character of an imaginary quadratic
field K a motive in MZp

(K) such that the Galois group of K acts like the Hecke
character on a certain cohomology group of the motive. We follow the exposition
in [6, section 1], with some additional considerations because we are in the p-adic
situation.

Recall that the Weil restriction A of E has complex multiplication by an OK-
algebra O′T , and that T = O′T ⊗Q decomposes into a direct sum of fields T = ⊕eTe.
To obtain a similar decomposition of O′T ⊗ Zp we need the following lemma of [5,
lemma 4.6.1]:

Lemma 5.1. The morphism π : SpecO′T → SpecOK is étale outside the set S
of prime divisors of d = [F : K] in OK . Let (O′T )S be the localization of O′T ,
then (O′T )S = (OT )S, where OT =

∏
eOTe is the maximal OK-order of T . In

particular for every idempotent e we get: e ∈ (O′T )S, e · (O′T )S = (OTe
)S and

O′T ⊗ Zp = OT ⊗ Zp for p ̸ |d.

For p ̸ |d we thus have a decomposition

O′T ⊗ Zp =
⊕
e

⊕
P|p

OTe,P.

Let M = RF/K(h1(E)) be the Grothendieck restriction of h1(E) induced by the
functor which considers a variety over F as a variety over K. It has multiplication
by O′T ⊗ Zp and is thus an object in MZp

(K,O′T ⊗ Zp).
The following proposition clarifies the connection between M and A:

Lemma 5.2. Let F/K be a Galois extension with Galois group G of degree d prime
to p. Then

CHi(X)⊗ Zp ∼=
(
CHi(X ×K F )⊗ Zp

)G
.

Proof: For p : X ×K F → X we have p∗ : [Z] 7→ [Z ×K F ] and p∗ : [Y ] 7→ [k(Y ) :
k(p(Y ))][p(Y )]. Thus p∗p

∗[Z] = d[Z] and p∗p∗[Z] =
∑

[Zσ]. 2

Proposition 5.3. a) For p ̸ |[F : K] we have the following decomposition in
MZp

(K):

h(A) =

2n⊕
k=0

hk(A),
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where hk(A) has the property

Hm(hk(A),Z/pn(i)) = 0 for k ̸= m.

b) There exists an isomorphism M ∼= h1(A) of motives in MZp
(K).

Proof: The base extensions from F to K of A and the Grothendieck restriction of
E can be calculated to be

A×K F =
∏
σ∈G

Eσ RF/KE ×K F =
∪
σ∈G

Eσ.

a) If we extend the base field to F , then we have

h(A×K F ) =
∏
σ

2⊕
i=0

hi(E
σ) =

2d⊕
k=0

( ⊕
∑
iσ=k

∏
σ

hiσ (E
σ)
)
=:

2d⊕
k=0

hk(A),

where σ runs through Gal(F/K). Since the Galois group permutes the Eσ, we see
that the hk(A) are fixed by the Galois group. By the lemma we conclude that the
decomposition descends to A/K.

b) The Grothendieck restriction is left adjoint to the base extension functor, so

HomF (E,
∏
σ∈G

Eσ) = HomK(RF/KE,A).

Let f be the map corresponding to the canonical map E
id−→ E,E

0−→ Eσ, and
define f1 to be the composition

M −→ h(RF/KE)
f−→ h(A) −→ h1(A).

We claim that f1 is an isomorphism. We have

M ×K F =
⊕
σ

h1(E
σ)

h1(A)×K F = h1(
∏
σ

Eσ) =
⊕

∑
iσ=1

∏
σ

hiσ (E
σ) =

⊕
σ

h1(E
σ).

These two motives are isomorphic, the isomorphism being induced by f1. Thus
there exists an inverse map g in the category MZp

(F ) of Chow motives over F .

Since f1 and the identity are Galois invariant, we conclude that g is Galois invariant
as well. So by the lemma we are done. 2

Let Ow = O′T ⊗ · · · ⊗ O′T (w times), Tw = Ow ⊗Q, and set Mw =M ⊗ · · · ⊗M
(w times), viewed as an object in MZp

(K,Ow ⊗ Zp). Furthermore we define Λ =
Hom(T,C) and Λp = Hom(OT ⊗ Zp,Cp).

Lemma 5.4. a) We have Tw = ⊕ΘTΘ, where Θ runs through the Aut(C)-orbits of
Λ⊗w = Hom(Tw,C).

b) We have

Ow ⊗ Zp =
⊕
Θ

⊕
P|p

OΘ,P =
⊕
Ω

OΩ,

where Θ is as above, P runs through the primes of TΘ dividing p and Ω runs through
the Aut(Cp)-orbits of Λ⊗wp = Hom(Ow ⊗ Zp,Cp).
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Proof: a) We can distinguish the field components of Tw by embeddings into C,
and two embeddings of the same field differ by an automorphism of C.

b) The first equation follows from (a) and the second equation is proven exactly
as in (a). Observe that we get a finer decomposition because we only take orbits
under the decomposition group of a prime ν of Q̄ above p. 2

Let eΘ be the idempotent corresponding to the field component TΘ of Tw and
define the CM character

φΘ : IK → T ∗Θ

by φΘ = eΘ · (φ ⊗ · · · ⊗ φ) (w times). The infinity type of φΘ can be determined
as follows [6, 1.3.2]:

Fix an embedding K ↪→ Q̄ ⊆ C. The embedding K ⊂ T induces an embedding

K → K ⊗K · · · ⊗K → Tw → TΘ.

For ϑ ∈ Θ ∩HomK(TΘ,C), ϑ = (λ1, · · · , λw) ∈ Λw we set

aϑ = #{i|λi ∈ HomK(T,C)} , bϑ = w − aϑ.

Then we have φΘ((x)) = xaϑ x̄bϑ for x ∈ K∗ with x ≡ 1 mod f, i.e. (aϑ, bϑ)
is the infinity type of φΘ. This is independent of ϑ ∈ Θ ∩ HomK(TΘ,C). For
ϑ̄ ∈ Θ ∩ HomKσ (TΘ,C) the homomorphisms inducing the conjugate embedding of
K, we get (aϑ̄, bϑ̄) = (bϑ, aϑ). We now have [6, prop. 1.3.1]

Proposition 5.5. Every Hecke character of K of positive weight w has the form
φΘ for suitable E/F and Θ.

2

Let us now consider the p-adic situation.
Writing eΩ for the idempotent of Ow ⊗ Zp corresponding to OΩ, we obtain a

motive MΩ = (Mw, eΩ) in MZp
(K,OΩ) for the completion OΩ of one of the OΘ at

a place P above p.
From the character φΘ,P : IK → T ∗Θ,P we get the character

φΩ = φΘ,P : Gal(Kab/K) → O∗Ω.

Notice that the P-component of φΘ agrees with the eΩ-component of the w-fold
tensor product of φ, i.e. the following diagram commutes:

φΘ,P :IK
φΘ−−−−→ (TΘ ⊗Qp)∗

proj.−−−−→ T ∗Θ,Px x x
eΩ · φ⊗wp :IK −−−−→ (Tw ⊗Qp)∗

proj.−−−−→ T ∗Ω
where φp denotes the p-component of φ. This shows that φΩ factors through G,
since φp does.

Now let ω be in the orbit Ω. We want to calculate the map φΩ on Gal(F∞/F ).
This is analogous to the determination of the infinity type of φΘ above. If ω =
(λ1, . . . , λw) ∈ Λwp , we define

aΩ = #{i|λi ∈ HomOKp
(OT ⊗ Zp,Cp)}

bΩ = #{i|λi ∈ HomOKp̄
(OT ⊗ Zp,Cp)},
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i.e. aΩ counts the λi inducing p on OK ⊆ OT and bΩ counts the λi inducing p̄.
Then from the identity eΩ · φ⊗wA,p = φΩ, and the fact that φP and φP̄ agree on

Gal(F∞/F ) with κ1 respectively κ2, one easily sees that φΩ agrees on Gal(F∞/F )

with κaΩ1 κbΩ2 .
Notice also that if Ω belongs to Θ and P, then (aΩ, bΩ) = (aΘ, bΘ) if P divides

p and (aΩ, bΩ) = (bΘ, aΘ) if P divides p̄.

Let for the rest of the paper

Mn = Hw(M̄Ω,Z/pn(w))
and

M = Hw(M̄Ω,Zp(w)).
We will tacitly use the following inclusion

Mn ⊆ Hw(M̄⊗w,Z/pn(w)) = Hw(h1(A)
⊗w
,Z/pn(w)) = H1(h1(A),Z/pn(1))⊗w.

The next proposition explains why we call MΩ the motive associated to the
Hecke character φΩ:

Proposition 5.6. The étale cohomology group M = Hw(M̄Ω,Zp(w)) is a free
OΩ-module of rank 1, and the absolute Galois group GK of K acts on it via the
character φΩ : GK → O∗Ω.

Proof: Consider the action of GK on H1(M̄,Zp(1)) = Hom(TpA,Zp(1)). By the
Weil pairing this is isomorphic to TpA

∨ = TpA (a free OT ⊗Zp-module of rank one)
as Galois modules.

By definition of φ, the operation of GK on the Tate module TpA is given by
φp : GK → (OT ⊗ Zp)∗. But then the operation of GK on

M = eΩ ·Hw(M̄⊗w,Zp(w)) = eΩ ·H1(M̄,Zp(1))⊗w

is given by eΩ · φ⊗wp = φΩ.
The first claim follows because eΩ ·TpA⊗ · · · ⊗TpA is a free eΩ · Ow ⊗Zp = OΩ-

module of rank one. 2

6. Tools from Iwasawa theory

We need to recall some facts of Iwasawa theory of imaginary quadratic fields from
de Shalit [19]. However in our case we have to consider the two variable theory. So
we will state the theorems in the two variable setting, as indicated in [19, III 1.14,
II 4.17].

Let f be as before the lowest common multiple of the conductors of F/K and φ,
and let fn be fp̄n. This gives us the following tower of ray class fields:

K −→ F −→ K(f)
Z/pn−1×∆2−−−−−−−−→ K(fn)

Γ1×∆1−−−−→ K(fnp
∞)

Let G(fn) = Gal(K(fnp
∞)/K) be the Galois group of this extension and H ′ =

Gal(K(fp)/K) be its prime to p-part. ThenH ′ contains ∆1×∆2 with Gal(K(f)/K)
as quotient. Furthermore we have

G(fn) = H ′ × Γ1 × Z/pn−1.
Let Ufn be the inverse limit with respect to m of the local principal units in

K(fnp
m)⊗KKp =

∏
ν|pK(fnp

m)ν (note that this product remains finite as n,m→
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∞) and U(f) = lim
←

Ufn . Let Cfn be the elliptic units as in [19, III 1.4] and C(f) =
lim
←

Cfn . Finally denote by

Λn = Λ(G(fn),D) ∼= D[[G(fn)]]
the Iwasawa algebra of G(fn) and by Λ∞ = lim

←
Λn = Λ(G(fp̄∞),D). Here we use D,

the ring of integers of the maximal unramified extension of Kp, to make sure that
all characters of finite groups of order prime to p have values in D.

Fix a place ν of K(fp∞) above p. Let H ′ν be the decomposition group of ν in H ′.
As in [19, III 1.3] we get for any character χ of H ′ different from the cyclotomic
character on H ′ν (

U(f) ⊗̂D
)χ

= lim
←

(
Ufn ⊗̂D

)χ
= lim
←

Λχn = Λχ∞.

Let µ(fn) be the measure defined in [19, II 4.12] and ν(f) = lim
←
µ(fn). Then we

have for χ a character of H ′ different from the cyclotomic character:(
C(f) ⊗̂D

)χ
= lim
←

(
Cfn ⊗̂D

)χ
= lim
←

(
µ(fn)Λn

)χ
=

(
ν(f) · Λ∞

)χ
.

So we get as in [19, III 1.5] that(
U(f)/C(f) ⊗̂D

)χ
=

(
Λ∞/ν(f) · Λ∞

)χ
= D[[Γ1 × Γ2]]/ν(f)

χ

for ν(f)χ the χ-component of the measure ν(f) ∈ Λ. We thus have

Proposition 6.1. With the notation as before we have for χ ̸= κ on H ′ν :(
U(f)/C(f) ⊗̂D

)χ
= D[[Γ1 × Γ2]]/ν(f)

χ.

In the more general situation F (Epn) ⊆ K(fpn) we have a surjection of G(fp̄∞) =
Gal(K(fp∞))/K) onto G = Gal(F (Ep∞)/K), which gives the following diagram

F (Ep∞) −−−−→ K(fp∞)xΓ1×Γ2

xΓ1×Γ2

F (Ep) −−−−→ K(fp)xH xH′

K K.
We view any character of H as a character of H ′ via the canonical map H ′ → H.
Let U be the inverse limit of the local principal units in the tower F (Epn) and

C = NC(f) ⊆ U . Then one sees easily that (U(f) ⊗̂D)χ ∼= (U ⊗̂D)χ and that
(C(f) ⊗̂D)χ ∼= (C ⊗̂D)χ. So we get

Proposition 6.2. With the notation as before we have for χ ̸= κ on Hν

(U/C ⊗̂D)χ ∼= (U(f)/C(f) ⊗̂D)χ ∼= D[[Γ1 × Γ2]]/ν(f)
χ.

Corollary 6.3. Let χ = φΩκ
l and p− 1 ̸ |a+ l + 1. Then we have

(U ⊗̂D)χ
−1 ∼= D[[Γ1 × Γ2]]

(U/C ⊗̂D)χ
−1 ∼= D[[Γ1 × Γ2]]/ν(f)

χ−1

.

In particular (
(U ⊗̂D)⊗D (M(l) ⊗̂OΩ

D)
)
G
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is a free D-module of rank 1.

Proof: For the the first two isomorphisms it suffices to show that under the con-
ditions of the corollary χ−1 is different from κ on Hν . But ∆1 = Gal(F (Ep)/F ) ∼=
Gal(F (Ep)/F (Ep̄)) is a subgroup of Hν since p is totally ramified in ∆1. We know

that φΩ|∆1
= κa|∆1

, so we get φ−1Ω · κ−l|∆1
= κ−a−l|∆1

, and this is different from
κ as long as #∆1 = p− 1 ̸ |a+ l + 1.

For the last claim we know that(
(U ⊗̂D)⊗D (M(l) ⊗̂OΩ

D)
)
G
∼=

(
(U ⊗̂D)χ

−1

⊗D (M(l) ⊗̂OΩ
D)

)
Γ1×Γ2

∼=
(
(D[[Γ1 × Γ2]]⊗D (M(l) ⊗̂OΩ D)

)
Γ1×Γ2

∼= M(l) ⊗̂OΩ D.

2

The measures µ(fn) = µ(fp̄n) have the additional property that they interpolate
Hecke L-series of imaginary quadratic fields:

Theorem 6.4. [19, theorem 4.14] Let f be an integral ideal of K prime to p, and
ν(f) = lim

←
µ(fn) as above. Then there exist periods ⟨Ω,Ωp⟩ ∈ (C∗ × C∗p)/Q̄∗ and

a Gauss sum G(ϵ) defined in [19, theorem 4.14] such that the following formula in
Q̄ holds for any grossencharacter ϵ of conductor dividing fp∞, and of infinity type
(k, j), 0 ≤ −j ≤ k:

Ωj−kp

∫
G
ϵ(σ)dµ(σ) = Ωj−k

(√dK
2π

)j
G(ϵ)

(
1− ϵ(p)

p

)
L∞,fp̄(ϵ

−1, 0).

Here L∞,fp̄ is the complex L-series with the Euler factors at ∞ but without the
Euler factors at primes dividing fp̄.

Let us recall the connections between measures and power series. Let γi be a
generator of Γi, κi be the character of Γi giving the action on the torsion points of
the elliptic curve and ui be the image of γi in Zp. We then have isomorphisms

Λ(Γ1 × Γ2,D) ∼= D[[Γ1,Γ2]] ∼= D[[T1, T2]]

mapping a measure µ to the power series

G(T1, T2) =

∫
Γ1×Γ2

(1 + T1)
α(1 + T2)

βdµ(α, β).

In particular we get

G(ua1 − 1, ub2 − 1) =

∫
(ua1)

α(ub2)
βdµ(α, β) =

∫
κa1κ

b
2dµ

Now let µ be a measure in Λ(G,D) and χ be a character of H. If we denote the
power series associated to the χ-component of µ by G(χ−1, T1, T2), we get∫

G
κa1κ

b
2χµ =

∫
Γ1×Γ2

κa1κ
b
2dµ

χ = G(χ−1, ua1 − 1, ub2 − 1),

i.e. if we write an arbitrary character ϵ of G as κa1κ
b
2χ, then the power series

G(χ−1, T1, T2) calculates the integral of ϵ.
By the interpolation theorem we see that G(χ, ua1 − 1, ub2 − 1) is a p-adic inter-

polation of L(χκ−a1 κ−b2 , 0) = L(χκb−a1 ,−b), at least for 0 ≤ −b ≤ a.
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7. Special elements in K-groups with coefficients

We follow Soulé [23] for a construction of elements in Ka(X,Zp).
In order that all Adams eigenspaces and K-groups for the motives involved be

defined, we assume from now on that for w ≥ 1 the weight of our Hecke character
of K, d the degree of the extension F/K and a fixed integer l ≥ 0, we have

p > 3dw + 2l + w + 1.

Then we can define K2l+w+1(X,Z/pn)(i) for X in Mdw
Λ (k).

Let pn : Xn → Xn−1 be a sequence of Galois coverings of finite dimensional
regular schemes with X0 = X. Denote the reduction of coefficients from Z/pn →
Z/pn−1 by ϵn. Consider a sequence α = (αn) of elements αn ∈ Ka(Xn,Z/pn).

We say the sequence α has property N if it is an element of lim
←
Ka(Xn,Z/pn),

i.e. for all n we have

ϵn ◦ pn∗(αn) = αn−1 in Ka(Xn−1,Z/pn−1).

We say the sequence α has property R if for all n

p∗n(αn−1) = ϵn(αn) in Ka(Xn,Z/pn−1).

If the sequence α = (αn) has property N and the sequence β = (βn) has property
R, then the sequence α∪ β = (αn ∪ βn) has property N, as one sees easily with the
projection formula.

Let qn be the projection Xn → X. Then given a sequence α = (αn) having
property N, the sequence N(α) = (qn∗(αn)) is an element in Km(X,Zp). As we
just saw we can first form the cup product with sequence(s) with property R before
taking the norm to X.

Recall that Fn is the field generated by the pn-torsion points of the elliptic curve
E over F . Let An be the abelian variety A ×K Fn ∼=

∏
σ∈G(E

σ ×F Fn). By the
universal property of the Weil restriction, the pn-torsion points of A are defined
over Fn, in fact pnAn =

∏
σ∈G pn(E

σ ×F Fn).
We construct the following elements in the K-groups with coefficients in Z/pn:
(1) From the universal coefficient sequence of K-theory we get K1(Fn,Z/pn) =

F ∗n/p
n.Any sequence (un) ∈ lim

←
F ∗n/p

n thus gives us a sequence inK1(Fn,Z/pn)
with property N.

(2) We similarly get

0 −→ K2(Fn)
(1)/pn −→ K2(Fn,Z/pn)(1) −→ pnK1(Fn)

(1) −→ 0.

Here the left term vanishes because K2(Fn)
(1) = 0 and the right term is iso-

morphic to the group of pn-th roots of unity µpn . So we getK2(Fn,Z/pn)(1) ∼=
µpn . An element of the Tate module (βn) ∈ Zp(1) = lim

←
µpn then gives us

a sequence in K2(Fn,Z/pn)(1) having property R.
(3) According to Grayson [12], there are Adams operators on ψk which are com-

patible with the universal coefficient sequence. Choose k to be a primitive
root of unity mod p. Let A(i) and A(i) be the largest subgroup and quotient

of A such that ψk acts like ki, respectively. Note thatKa(X)(i) = Ka(X)(i).
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We get an exact sequence

0 −→ K1(An)
(1)/pn

α1

−→ K1(An,Z/pn)(1) −→ pnK0(An)
(1) δ−→

K1(An)(1)/p
n α1−→ K1(An,Z/pn)(1) −→ pnK0(An)(1) −→ 0.

Via the identification

K1(An)
(1)/pn = K1(An)(1)/p

n = F ∗n/p
n = K1(Fn)

(1)/pn = K1(Fn,Z/pn)(1),

we can think of α as being induced by the structure morphism An → Fn.
But this map is split by the point 0, so the sequence breaks up into two
split short exact sequences, and we get a map

η : pn PicAn ∼= pnK0(An)
(1) −→ K1(An,Z/pn)(1).

It is easy to see that an element (vn) of lim
← pn PicAn = H1(Ā,Zp(1))

gives us a sequence (αn) with property R.

We now take the exterior products of these elements:

ϕn : F ∗n/p
n ⊗H1(Ā,Z/pn(1))⊗w ⊗ Z/pn(l) −→

K1(Fn,Z/pn)(1) ⊗K1(An,Z/pn)(1)⊗w ⊗K2(Fn,Z/pn)(1)⊗l
∪−→

K2l+w+1(A
w
n ,Z/pn)(l+w+1) proj−−−→ K2l+w+1(h1(An)

⊗w,Z/pn)(l+w+1)

Note that by the definition of Fn, the Hochschild-Serre spectral sequence, propo-
sition 5.3 and the Kuenneth formula we have the following equalities:

F ∗n/p
n ⊗H1(Ā,Z/pn(1))⊗w ⊗ Z/pn(l)

=H1(Fn,Z/pn(1))⊗H0(Fn,H
1(Ā,Z/pn(1))⊗w ⊗H0(Fn,Z/pn(l))

=H1
(
Fn,H

1(Ā,Z/pn(1))⊗w(l + 1)
)

=H1
(
Fn,H

w(h1(An)
⊗w
,Z/pn(w))(l + 1)

)
=Hw+1(h1(An)

⊗w,Z/pn(l + w + 1))

8. The regulator map

We will construct a regulator map from K2l+w+1(MΩ,Zp)(l+w+1) to a certain
Galois cohomology group and show that in the local situation the maps ϕn are
splittings of this regulator map (modulo some special cases).

Define the following maps using the map ρ from K-theory to étale K-theory and
the degeneration of the Dwyer-Friedlander spectral sequence:

ξn :K2l+w+1(h1(An)
⊗w,Z/pn)(l+w+1) −→ Hw+1(h1(An)

⊗w,Z/pn(l + w + 1))

ξ′n :K2l+w+1(h1(A)
⊗w,Z/pn)(l+w+1) −→ Hw+1(h1(A)

⊗w,Z/pn(l + w + 1)).

Lemma 8.1. The map ϕn is a splitting of ξn, i.e. ξn ◦ ϕn is the identity map of
H1

(
Fn,H

1(Ā,Z/pn(1))⊗w(l + 1)
)
.

Proof: First note that all maps are compatible with Tate twists, i.e. tensoring
with Z/pn(1) ∼= H0(Fn,Z/pn(1)) ∼= K2(Fn,Z/pn)(1), so we may assume l = 0.

The rational point 0 of An gives us a splitting of the sequence

0 −→ F ∗n/p
n −→ H1(An,Z/pn(1)) −→ pn PicAn −→ 0.
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We will denote this splitting by s. Our splitting pnPic An −→ K1(An,Z/pn) was
constructed via the point 0 of An, so we get the commutative diagram

pnPic An
∼−−−−→ H1(Ā,Z/pn(1))yη xproj

K1(An,Z/pn)(1)
ρ−−−−→ H1(An,Z/pn(1))

with s = ρ ◦ η. Taking the w-fold tensor product of this and tensoring with
H1(Fn,Z/pn(1)) = K1(Fn,Z/pn), we see that the left hand column of the following
commutative diagram is an isomorphism

H1(Fn,Z/pn(1))⊗ (pn PicAn)
⊗wyη

K1(Fn,Z/pn)(1) ⊗K1(An,Z/pn)(1)⊗w
∪−−−−→ Kw+1(A

w
n ,Z/pn)(w+1)yρ yρ

H1(Fn,Z/pn(1))⊗H1(An,Z/pn(1))⊗w
∪−−−−→ Hw+1(Awn ,Z/pn(w + 1))yproj yproj

H1(Fn,Z/pn(1))⊗H1(h1(An),Z/pn(1))⊗w
∪−−−−→ Hw+1(h1(An)

⊗w,Z/pn(w + 1))y=

y=

H1(Fn,Z/pn(1))⊗ pn PicAn
∼−−−−→ H1

(
Fn,H

1(Ā,Z/pn(1))⊗w(1)
)

Observing that the right hand column is the map ξn ◦ ϕn we get the lemma. 2

As ρ is compatible with decomposition into Chow motives, we get induced sur-
jections

K2l+w+1(MΩ ×K Fn,Z/pn)(l+w+1) ξn,Ω−−−→ H1(Fn,Mn(l + 1))

which are split by ϕn,Ω ⊆ ϕn. We thus get a map

H1(Fn,Mn(l+1))
ϕn,Ω−−−→ K2l+w+1(MΩ×KFn,Z/pn)(l+w+1) π∗−→ K2l+w+1(MΩ,Z/pn)(l+w+1).

As the Galois group G = Gal(F∞/K) acts trivially on K2l+w+1(MΩ,Zp)(l+w+1),
the inverse limit of these maps factors through the coinvariants of G, and we get

ϕΩ :
(
lim
←
H1(Fn,Mn(l + 1))

)
G −→ K2l+w+1(MΩ,Zp)(l+w+1).

On the other hand, the inverse limit of the maps ξ′n gives us a map

rΩ : K2l+w+1(MΩ,Zp)(l+w+1) −→ H1
(
K,M(l + 1))

)
.

Let Gν = Gal(F∞,ν/Kp), then we get in the local situation:

ϕΩ,ν :
(
lim
←
H1(Fn,ν ,Mn(l + 1))

)
Gν

−→ K2l+w+1(MΩ ×K Kp,Zp)(l+w+1),

rΩ,p : K2l+w+1(MΩ ×K Kp,Zp)(l+w+1) → H1(Kp,M(l + 1)).

We obtain the following description of the composition of ϕp with the regulator
map rp as in [23, lemma 4.3]:



p-ADIC K-THEORY OF HECKE CHARACTERS 29

Lemma 8.2. The kernel (respectively cokernel) of the composition(
lim
←
H1(Fn,ν ,Mn(l + 1))

)
Gν

ϕΩ,p−−−→ K2l+w+1(MΩ ×K Kp,Zp)(l+w+1)

rΩ,p−−→ H1(Kp,M(l + 1))

is contained in the Pontrjagin-dual of H2(Gν , eΩ · A⊗wp∞ (−l − w)) and H1(Gν , eΩ ·
A⊗wp∞ (−l − w)) respectively.

Proof: Let Fn,ν be as above the field obtained by adjoining the pn-torsion points
of E to Kp. We get a commutative diagram

H1
(
Fn,ν ,Mn(l + 1)

)yϕn,Ω

K2l+w+1(MΩ ×K Fn,ν ,Z/pn)
N−−−−→ K2l+w+1(MΩ ×K Kp,Z/pn)(l+w+1)yξn,Ω

yξ′n,Ω

H1
(
Fn,ν ,Mn(l + 1)

) cores−−−−→ H1
(
Kp,Mn(l + 1)

)
By this diagram and the last lemma, we see that the map rp ◦ ϕp is the inverse

limit of the composition of the isomorphism ξn,Ω ◦ ϕn,Ω with the corestriction map

cor : H1(Fn,ν ,Mn(l + 1)) → H1(Kp,Mn(l + 1)).

As in the proof of lemma 5.6 we have

Hom
(
H1(M̄,Z/pn(1)),Z/pn(1)

)
= Apn

and thus

Hom
(
H1(M̄,Z/pn(1))⊗w,Z/pn(1)

)
= A⊗wpn (−w + 1)

as Galois modules. So we conclude that for

Mn = eΩ ·Hw(M̄w
n ,Z/pn(w)) = eΩ · ⊗H1(M̄n,Z/pn(1))

the dual is given by

Hom(Mn,Qp/Zp(1)) = eΩ ·A⊗wpn (−w + 1)

and thus our map is by local duality dual to the restriction map

lim
→
H1(Kp, eΩ ·A⊗wpn (−l − w)) → lim

→
H1(Fn,ν , eΩ ·A⊗wpn (−l − w))

which is the same as

H1(Kp, eΩ ·A⊗wp∞ (−l − w)) → H1(F∞,ν , eΩ ·A⊗wp∞ (−l − w)).

But this fits into the Hochschild-Serre spectral sequence of the Galois extension
F∞,ν/Kp:

0 → H1(Gν , eΩ ·A⊗wp∞ (−l − w)) → H1(Kp, eΩ ·A⊗wp∞ (−l − w))

→ H1(F∞,ν , eΩ ·A⊗wp∞ (−l − w))Gν → H2(Gν , eΩ ·A⊗wp∞ (−l − w)),

and the lemma follows. 2

Lemma 8.3. The group H2(Gν , eΩ ·A⊗wp∞ (−l−w)) is zero. The group H1(Gν , eΩ ·
A⊗wp∞ (−l − w)) is finite and zero unless l + a = 0 or l + b = 0.
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Proof: We have Gν ∼= Hν × Γ1,ν × Γ2,ν where p ̸ |#Hν and Γ1,ν
∼= Γ2,ν

∼= Zp. On
the other hand we know that N := eΩ ·A⊗wp∞ (−l− 1) ∼= TΩ/OTΩ

(as groups). From

the Hochschild-Serre spectral sequence we see that Hi(Gν ,N) = H0(Hν ,H
i(Γ1,ν ×

Γ2,ν ,N)). Since Zp is procyclic,

H0(Γ,N) = NΓ; H1(Γ,N) = NΓ; H2(Γ,N) = 0 for i ≥ 2.

The spectral sequence for Γ1,ν × Γ2,ν gives us

H1(Γ1,ν × Γ2,ν ,N) = N
Γ2,ν

Γ1,ν
⊕N

Γ1,ν

Γ2,ν

H2(Γ1,ν × Γ2,ν ,N) = NΓ1,ν×Γ2,ν

Lift the operation of Γ1,ν and Γ2,ν on TΩ/OTΩ to an operation on TΩ via
γx = χ(γ) · x, where χ : Γi,ν → O∗Ω gives the operation of Γi,ν on N. If Γi,ν
acts nontrivially on N, then χ(γ) ̸= 1 for a generator γ of Γi,ν , so γ − 1 acts non-
trivially(and thus bijectively) on TΩ. But then it acts surjectively on TΩ/OTΩ

∼= N
and it follows NΓi,ν

= 0.

Observe now that Γ1 acts on N like φΩ · κ−l−w = κ−b−l1 while Γ2 acts like

φΩ · κ−l−w = κ−a−l2 ,where κ is the cyclotomic character, and κ1, κ2 are as in
section 4. This is nontrivial for a+ l ̸= 0 and b+ l ̸= 0 respectively.

Since we assumed w > 0, either a > 0 or b > 0 and we conclude H2 = 0. If Γ1

and Γ2 act nontrivially (i.e. l + a > 0 and l + b > 0), then H1 = 0 as well. 2

Recall from section 6 that U and Uν is the inverse limit of the local principal
units of Fn,p =

∏
ν|p Fn,ν and Fn,ν respectively, for a fixed place ν dividing p. Then

U is a compact Zp[[G]]-module and we have U = IndGνG Uν as G-modules.

Lemma 8.4. The composition

(U ⊗M⊗ Zp(l))G
ϕp−→ K2l+w+1(MΩ ×K Kp,Zp)(l+w+1) rp−→ H1(Kp,M(l + 1))

is a monomorphism and an isomorphism unless a+ l = 0 or b+ l = 0.

Proof: This is a reformulation of lemmas 8.2 and 8.3, see [23]. 2

9. The main theorem

Recall from section 5 that we associated to the Hecke character φ of weight w
of the imaginary quadratic field K a motive MΩ with multiplication by OΩ. The
motive MΩ was a submotive of h1(A)

⊗w, A an abelian variety of dimension d, and
M = Hw(M̄Ω,Zp(w)) was a free OΩ-module of rank 1 on which the Galois group
of K acts like φΩ : GK → O∗Ω.

Let R be the regulator map obtained by localization

K2l+w+1(MΩ,Zp)(l+w+1) −→ K2l+w+1(MΩ×KKp,Zp)(l+w+1) rΩ,p−−→ H1(Kp,M(l+1)).

Theorem 9.1. Let p > 3dw + 2l + w + 1, a+ l > 0 and b+ l > 0. There exists a
submodule

V ⊆ K2l+w+1(MΩ,Zp)(l+w+1)

such that the length as an OΩ-module of the cokernel of the regulator R|V restricted
to V equals the p-adic valuation of the p-adic L-function

G(φΩκ
l, u−a−l1 − 1, u−b−l2 − 1).
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Proof:
Let C be the elliptic units of section 6 and V be the image of C under ϕ in

K2l+w+1(MΩ,Zp)(l+w+1). Consider the following commutative diagram:

(C ⊗M⊗ Zp(l))G
α−−−−→ (U ⊗M⊗ Zp(l))Gyϕ yϕp

K2l+w+1(MΩ,Zp)(l+w+1) β−−−−→ K2l+w+1(MΩ ×K Kp,Zp)(l+w+1)yrp
H1(Kp,M(l + 1))

Here the map α is induced by the diagonal embedding of C into U . We proved that
the composition rp ◦ ϕp is an isomorphism of free OΩ-modules of rank 1 as long as
a+ l > 0 and b+ l > 0. So it suffices to calculate the cokernel of α. If we want to
use the results of section 6, we have to tensor over OΩ with D, the ring of integers
of the completion of the maximal unramified extension of TΩ, and complete this.
But since tensoring with D and completion is exact, the length of the cokernel of α
remains unchanged. So we want to calculate the cokernel of the following map(

(C ⊗̂D)⊗D (M(l) ⊗̂OΩ D)
)
G −→

(
(U ⊗̂D)⊗D (M(l) ⊗̂OΩ D)

)
G .

Now recall the decomposition G = H×Γ1×Γ2 and take H-coinvariants first (which
agree withH-invariants, as p ̸ |#H). SinceH acts onM(l) ⊗̂OΩ

D via χ := φΩ ·κl|H ,
the cokernel equals(

(U/C ⊗̂D)χ
−1

⊗D (M(l) ⊗̂OΩ
D)

)
Γ1×Γ2

=
(
D[[Γ1,Γ2]]/µ(f)

χ−1

⊗D (M(l) ⊗̂OΩ
D)

)
Γ1×Γ2

=
(
D[[T1, T1]]/G(χ, T1, T2)⊗D (M(l) ⊗̂OΩ

D)
)
Γ1×Γ2

= D/G(χ, u−a−l1 − 1, u−b−l2 − 1)

Here the first equality follows by corollary 6.3, because the hypothesis implies p−1 >

a + l + 1. The second equality is the transformation from the measure µ(f)χ
−1

to
its associated power series. The last equation follows because Γ1 × Γ2 acts via
φΩ · κl = κa+l1 κb+l2 on the free rank-1 D-module M(l) ⊗̂OΩ

D.
But the length of the last module is vp(G(χ, u

−a−l
1 − 1, u−b−l2 − 1)). 2

Remark: 1) If a+ l = 0 or b+ l = 0, then the length of the cokernel of RV equals
# coker rΩ,p ◦ ϕΩ,p times the valuation of the p-adic L-series in the theorem. This
follows because by 8.2 and 8.3 the composition rΩ,p ◦ ϕΩ,p is injective, so we have

# coker rΩ,p ◦ β ◦ ϕΩ = #cokerα ·#coker rΩ,p ◦ ϕΩ,p = #coker rΩ,p ◦ ϕΩ,p ◦ α.

2) If G vanishes, the cokernel is not torsion.
3) We used the fact that M is an OΩ-module to tensor it with D over OΩ.

If we had tensored over Zp, i.e. calculated the length of the cokernel as a Zp-
module, then we would have obtained an extra multiplicity f = deg(OΩ/Zp). The
formulation here looks more natural. However we will need this multiplicity in a
later application. In any case the cardinality of the cokernel is pvp(G)f .
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Corollary 9.2. a) If p > 3dw + 2l + w + 1, then

rankZp
K2l+w+1(MΩ ×K Kp,Zp)(l+w+1) ≥ f = [TΩ : Qp].

b) If in addition G(χ, T1, T2) does not have a zero at (u−a−l1 − 1, u−b−l2 − 1) then

rankZp
K2l+w+1(MΩ,Zp)(l+w+1) ≥ f = [TΩ : Qp].

Proof: a) Consider the commutative diagram of the previous theorem. Then the
claim follows from the fact that ϕΩ,p is injective and that (U ⊗ M ⊗ Zp(l))G is a
free OΩ-module of rank 1.

b) Follows because α is injective with finite cokernel (so (C ⊗M ⊗ Zp(l))G is a
free OΩ-module of rank 1) and ϕ is injective because α and ϕΩ,p are injective. 2

Remark: It is expected that G does not vanish and that we have equality in the
corollary.

10. The case of an elliptic curve

We want to recover from the results of the previous sections the case of an elliptic
curve E over a field F/K with complex multiplication by OK , i.e. w = 1.

In section 5 we constructed a decomposition RF/Kh1(E) = ⊕ΩMΩ and proved
the main theorem for the motives MΩ. In the case where w = 1 we have (aΩ, bΩ) =
(1, 0) or (0, 1). Furthermore we see⊕

Ω

K2l+2(MΩ,Zp)(l+2) = K2l+2(h1(E),Zp)(l+2) ⊆ K2l+2(E,Zp)

and ⊕
Ω

H1(Kp,MΩ(l + 1)) = H1
(
Kp,H

1(M̄,Zp(1))(l)
)
= H1(Kp, TpA(l)),

which is a free OT ⊗ Zp-module of rank 1 if p− 1 ̸ |l + 1 and p− 1 ̸ |l + 2.
By taking the direct sum of theorem 9.1 for all Ω and observing that a and b

run through the values 0 and 1, we get the following:

Corollary 10.1. Let E be an elliptic curve over F , l > 0, p > 3d+ 2l + 2. Then
there exists a submodule V ⊆ K2l+2(h1(E),Zp)(l+2) ⊆ K2l+2(E,Zp) such that the

index of the regulator map R|V restricted to V equals p
∑
vΩfΩ , where vΩ is the p-adic

valuation of G(φΩκ
l, u−a−l1 − 1, u−b−l2 − 1) and fΩ is the degree of OΩ/Zp.

Let us discuss the decomposition RF/Kh1(E) = ⊕ΩMΩ in more detail:
If A = RF/KE has complex multiplication by T , and T splits into a direct

product T =
∏
Te, then each Ω corresponds to a fixed place P above p of one of

the fields Te and MΩ has multiplication by OTe,P = OΩ. On the other hand, we
have the 2d = [F : Q] p-adic grossencharacters

φλ : IK → IT → (T ⊗Qp)∗
λ−→ C∗p.

If we restrict ourselves to the places above p of T , then we get d characters inducing
κ1 on Gal(F∞/F ) and we similarly get d characters inducing κ2 on Gal(F∞/F )
arising from the complex conjugate Hecke character φ̄, see section 4.

Note that this is in analogy with the complex situation, see [11, par.4]: There we

get d grossencharacters for each of the embeddings T ⊗ R ϵ−→ C inducing the fixed
embedding of K and d characters inducing the complex conjugate embedding.



p-ADIC K-THEORY OF HECKE CHARACTERS 33

In the previous sections we fixed an embedding λ for each factor Te,P, but as
noted after the main theorem, we obtain a multiplicity f = [TΩ : Qp] to correct
this. Observe also that two different φλ coming from the same TΩ differ by an
automorphism σ of Cp. But we have

∫
σ(φλ)dµ = σ

( ∫
φλdµ

)
and vp

(
σ(
∫
φλdµ)

)
=

vp
( ∫

φλdµ
)
. Thus the vΩ agree for different choices of λ and the multiplicity fΩ

corresponds to the different choices of λ for a given Ω.
We see that p

∑
vΩfΩ equals p

∑
vΩ,λ , where vΩ,λ now runs through all p-adic

grossencharacters induced by φ.

Theorem 10.2. Let E be an elliptic curve over F , l > 0, p > 3d + 2l + 2. Then
there exists a submodule

V ⊆ K2l+2(h1(E),Zp)(l+2) ⊆ K2l+2(E,Zp)

such that the index of the regulator map R|V restricted to V equals pv, where v is
the p-adic valuation of∏

λ

G(φλκ
l, u−1−l1 − 1, u−l2 − 1)G(φ̄λκ

l, u−l1 − 1, u−1−l2 − 1).

The product runs over all Cp-valued characters arising from φ inducing p of K.

Remark: 1) The product of the p-adic L-series is a p-adic analog of

L(E,−l) =
∏
ϵ

L(φϵ,−l) · L(φ̄ϵ,−l).

2) As in the previous section we get the following partial result:
If l = 0, then the index of the regulator is greater than or equal to the p-adic

valuation of the L-series.

Corollary 10.3. a) We have for p > 3d+ 2l + 2

rankZp K2l+2(E ×K Kp,Zp)(l+2)

=
∑
P|p

rankZp
K2l+2(E ×F FP ,Zp)(l+2) ≥ 2d = [F : Q]

b) If in addition none of the L-series in the theorem vanishes, we have

rankZp K2l+2(E,Zp)(l+2) ≥ 2d = [F : Q].
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[2] A.Borel, J.P.Serre, Le Théorème de Riemann-Roch, Bull. Soc. Math. France 86 (1958),

97-136

[3] A.K.Bousfield, D.M.Kan, Homotopy limits, completions and localizations, LNM 304 (1972)
[4] W.Browder, Algebraic K-theory with coefficients in Z/p, LNM 657 (1977), 40-84

[5] C.Deninger, Higher regulators and Hecke L-series of imaginary quadratic fields I, Invent.
Math. 96 (1989), 1-69

[6] C.Deninger, Higher regulators and Hecke L-series of imaginary quadratic fields II, Annals

of Mathematics 132 (1990), 131-158
[7] W.Dwyer, E.Friedlander, Algebraic and étale K-theory, Transactions AMS 292, No.1

(1985)

[8] W.Fulton, S.Lang, Riemann-Roch-Algebra, Springer Grundlehren 277 (1985)
[9] T.Geisser, A p-adic analogue of Beilinson’s conjectures for Hecke characters of imaginary

quadratic fields, Schriftenreihe Math. Inst. Univ. Muenster 14 (1995)



34 THOMAS GEISSER

[10] H.Gillet, Riemann-Roch theorems for higher algebraic K-theory, Adv. Math. 40, 203-289
(1981)
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