平成14年12月25日(水) 上智大学9号館349室

セラミックス薄膜における バッファー層の役割

東京工業大学大学院理工学研究科 材料工学専攻 脇谷尚樹

バッファー層について

- Si, GaAs等の半導体の薄膜の分野では バッファー層の導入による結晶構造・ 特性の制御が広く行われてきた
- セラミックス(特に酸化物)薄膜の分野ではバッファー層の考え方はあまり
 用いられて来なかった
 - 組成の複雑性、化学的性質の全く異なる 多様な構成元素、種々のサイズをもつイ オンから構成される・・・等の多様性

バッファー層の役割(概念)

バッファー層の導入による 結晶構造制御

- 薄膜の結晶構造は極薄BL
 の導入により激変
 - Pb(Mg_{1/3}Nb_{2/3})O₃を Pt/Ti/SiO₂/Si基板上 に成膜
 - 直接成膜:パイロクロ ア単相
 - 膜厚数nmのBaTiO₃ BL
 の導入によりペロブス
 カイト単相

Fig. XRD spectra for (a) PMN(200 nm thick) and (b) PMN(200 nm thick)/BT(7.2 nm thick) thin films on Pt/Ti/SiO₂/Si substrate.

バッファー層導入による エピタキシャル成長:機能の発現

- エピタキシャル成長により機能が発現 する例
- 酸化物超伝導体
 - 傾角の大きい粒界で弱結合→Jc低下
- 光導波路
 - エピタキシャルBaTiO₃薄膜では伝導時光 損失が低い(2.9dB/cm)

バッファー層導入による エピタキシャル成長:機能の発現2

BaTiO₃/TiO₂/TiN/Si
 構造によるBaTiO₃の
 エピタキシャル成長の
 例

M. B. Lee et al., JJAP 34 (2000) 397.

64%もの格子体積変化→低結晶性、柱状構造

バッファー層導入による エピタキシャル成長:性能の向上1

• (Ba,Sr)TiO₃ (BST)薄 膜の例

W. Chang et al., Integrated Ferroelectrics, 24 (1999) 257. Shimizu et al., JJAP, 37 (1998) L235.

応力による分極値の増加

バッファー層導入による エピタキシャル成長:性能の向上2a

- PZT/ST界面にBL(LSCO, Pt)を導入することでPZTの応力 を制御可能, LSCO, Ptは電極として用いる.
- さらに、PZT/BL1(電極)/BL2(応力制御層)を目指す

図 傾斜組成バッファーレイヤ導入によるPZT薄膜にかかる応力の制御

原子層制御バッファー層による エピタキシャル成長1

- CeO₂のエピタキシャ ル成長
 - Siとの間の格子のミス マッチは0.35%と小 さいがエピタキシャ ル成長は困難
 - T. Hirai et al., JJAP, 36 (1997)
 4454

原子層制御バッファー層による エピタキシャル成長2

CeO₂(111) pole Si(004) CeO2(002) (a) YSZ(004) 0.5nmという極薄 バッファー層の導 (b) CeO₂(002) Si(004) Intensity / arb. unit 入によりSi(001) 基板上に(001)配 (c) Si(004) 2cO2(002) CeO₂(111) 向したCeOっ薄膜 CeO₂(111) (b) の作製に成功 Si(004) CeO₂(222

20

30

図 Si(001)基板上に成膜した種々の膜厚((a) 127, (b) 1.5, (c) 0.5 および(d) 0 nm)のYSZバッファーレイヤ上に作製した CeO2薄膜の粉末X線回折図形とCeO2(111)極点図

60

70

80

50

2 / CuK

40

高結晶BL導入による 低温結晶化の実現

高温成膜による初期数原子層の高結晶安定核導入

- 通常のシード層形成と は異なる高温でのシー ド層形成 → 高結晶性のBL
- 通常のシードに比べて, 低温で基板上の結晶性 を引き継ぐ
- 将来的には、さらに低 温で高結晶性のBL形成 を目指す

PLD:室温でのエピタキシャル YSZ/Si薄膜

 Si上に比較的高温(800℃)で0.8nmのYSZシー ドBL導入 [室温成膜] YSZシードBL YSZ シードBL(YSZ)はエ Si(001) [800℃成膜] ピタキシャル成長 2500 Intensity/arb.unit Si(004) 高結晶化シード (a) (b)YSZ(002) 2000 YSZ(004) 1500 BL上には室温でも 1000 500 YSZがエピタキシャ $^{0}_{25}^{L}$ 75 35 45 55 65 2θ (CuK α) /degree ル成長

Fig. (a) XRD spectrum and (b) RHEED image of epitaxial YSZ thin film deposited at room temperature on 0.8 nm-thick YSZ seed buffer layer.

まとめにかえて:セラミックス薄膜における バッファー層の効果の一例

BLの役割と効果の一例

薄膜	BL	関係	BLの役割	効果
YSZ//[SiO ₂ /Si]	YSZ	同種	核生成	低温成膜
PZT//[Pt/Si]	STO	異種	核生成	低温成膜
PMN//[Pt/Si]	BTO	異種	核生成	結晶構造制御
STO//[CeO 2]	SrO	異種	原子の積層制御	結晶配向制御
フェライト//[Si]	MgO-Al ₂ O ₃	異種	原子配列制御	結晶配向制御
PZT//[Nb-STO]	PT-PZ(傾斜組成)	異種	格子ミスマッチ 解消	結晶性向上、 配向ゆらぎ抑制
PZT//[Nb-STO]	PT、PZ	異種	異なる熱膨張率	薄膜残留 応力制御

(注)[]は基板、//の部分にBLが入る。