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1. Introduction

Asis well-known, the ring of invariants of a finite reflection group is a polynomial
ring (Chevalley’s theorem: see e.g. [B]). To be more precise, if G is such a group
acting on a finite-dimensional vector space V over a field F (with coordinates

uy, -+, u,), then the ring of invariants in F[u,, - -, u,] is a graded polynomial ring
generated by n homogeneous elements, say py, ** -, p,:
(1.1) Fluy, -+, u, G=F[P1,""Pn]’

provided that the order of G is not divisible by char(F). The set of the weights (or
degrees) of the fundamental invariants p,, - - -, p, is uniquely determined by G.

Geometrically, this can be translated as follows: the group G acts on the affine
space A" (with coordinates u;, - - -, u,) in such a way that the quotient space 4"/G
becomes an affine space again (with coordinates p,, - - -, p,). In other words, X =A4"
is realized as a finite Galois covering of another Y= A4" with Galois group G:

(1.2) n: A" ANG~A".

-Further there is a compatible action of the multiplicative group G,, on the affine
spaces A" both upstairs and downstairs.

The most classical example of the above situation is the case where G=4, is
.the symmetric group on n letters u,, - - -, u,. Then the fundamental theorem on
symmetric functions says that

F[ub '.'sun]y"=F[sl’ T 8,,] )

where ¢, denotes the i-th elementary symmetric function of u,, - - -, u,. (F can be any
field in this case, and indeed it can be replaced by the ring of integers Z.) The action
of G restricted to the (n— 1)-dimensional subspace ) ;. , #;=0 of V identifies &, with
W(A,-,), the Weyl group of the root system of type 4,_, (cf. [B], [CS]), and (1.1)
reduces to

1.3) Fluy, « -, u)¥Un-0=F[e,, - -, 8] .

169
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In general, the Weyl group W(R) of a root system R is a finite reflection group,
for which the weights of the fundamental invariants are well-known: they are the
exponents increased by 1 (cf. [B]). For example, the weights for W(R) are given as
follows when R is of type A, D, E:

Wd,-) {2,3,---,n} (n22)
WD, {2,4,---,2(n—1),n} (n=4)
(l 4) W(E6) {2’ 57 6a 8, 9’ 12}

WE;)  {2,6,8,10, 12, 14, 18}
W(Es)  {2,8,12,14,18,20,24,30} .

Now let us introduce the notion of an excellent family with Galois group G.
For the sake of simplicity, we take F=Q in what follows, but a suitable modification
works in a more general case. Suppose that {X,} is a family of algebraic varieties
(possibly with some extra structure) depending on the parameter

A=(pl9 o ',p,,)GA" .

The generic member X is a variety defined over the field ko= @(1) which is a purely
transcendental extension of Q@ of dimension n. Furthermore, suppose given #(X)), a
suitable group of algebraic cycles on X, such that (i) it spans a finite dimensional
vector space isomorphic to ¥ and (ii) the Galois group Gal(k/k,) acts on it (k is the
algebraic closure of k,). Let p, denote the Galois representation:

(1.5) p: Gal(k/ko)— Aut(@(X,) s Aut(V) .

Let o, be the Galois extension of k, corresponding to Ker(p,), i.e. with Galois
group Gal(X",/ko)=Im(p,). It is equal to the smallest extension of k, such that €(X,)
is generated by X ,-rational cycles. We call )¢, the splitting field of €(X,).

Now recall that G is a finite reflection group acting on ¥ so that it is a subgroup
of Aut(¥).

DEFINITION.  We call {X,} an excellent family with Galois group G if the
following conditions hold:

(1) the image of p, is equal to G.

(2) there is a Gal(k/kq)-equivariant evaluation map

s: 6(X)=k,
(3) there exists a basis {Z,, - - -, Z,} of ¥(X,) such that if we set u;=s(Z;), then
uy, - * -, u, are algebraically independent over Q, and

4
Q[uh T “n]G=Q[ph Tt Pal.

It follows from the definition that the splitting field o, is then equal to
Qlu,, - - -, u,), a purely transcendental extension of @, such that
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Gal(Q(ul’ Tt un)/Q(pls T pn)):G .

We call u,, - - -, u, the splitting variables or variables upstairs (in view of (1.2)).

Example 1. The classical case (1.3) for G=%,=W(4,-,) can be interpreted
as follows. Let X, be the 0-dimensional variety defined by the equation

(1.6) X"+ex" 24 +(—1),=0
overko=Q4), A=(e5, -, &,). Lety; (i=1, - - -, n) be the nroots of (1.6). Then we have
Xl®kbk={ul’ “.9un} (ul+'“+un=0)

and each y; defines a 0-cycle [;] on X,. Take
‘f(ll’x)=‘2l Z-[uJmod Y, [4,]=0
= i=1

and define the evaluation map by s: [¥;]—>u;, extended by linearity; obviously this
is a Galois equivariant map. The Galois group Gal(k/k,) acts as permutations of
[4;], so the image of p, is equal to G=,. In view of (1.3), {X,} forms an excellent
family with Galois group &,,.

Example 2. In the recent work on Mordell-Weil lattices (see especially [S5],
[S6]), it has been shown that certain family of elliptic curves over a rational function
field (or that of rational elliptic surfaces) forms an excellent family with Galois group
WI(E,) (r=6, 7, 8). For example, for the case r=8, consider the elliptic curve E,

3 3
y2=x3+x<izopzo-sit')+('Zopao-sj""'fs) s
over ky(?) where we set k, = Q(4) with

A=(P3, Pss P12s P14> P18> P20» P24> P30) -
Let

C(E,)=E;(k(z))

be the Mordell-Weil group of &(z)-rational points on E,, k being the algebraic cosure
of ko; by the theory of Mordell-Weil lattices (MWL), it has the structure of the root
lattice Eg for generic A. Further there is a natural evaluation map

SPo: Ek()—>G (k)=k,

(the specialization homomorphism at the singular fibre over t=00). Then the
fundamental theorems for type Eg (cf. [S5], §8) show that {E,} forms an excellent
family of elliptic curves with Galois group W(Ejg) (cf. §4 below).

This fact and its variant for Eg and E, are the motivating examples for introducing
the notion of an excellent family of elliptic curves. In view of its potential applications
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to arithmetic, algebra and geometry, ..., as shown for E, in [S5] or [S6], it will be
an important problem to establish the existence of an excellent family of elliptic
curves with Galois group G for a wider class of Weyl groups G.

The purpose of this paper is to construct such a family when G=W(L) is the
Weyl group of (the root system in) a root lattice L, which is a sublattice of Eg of
relatively high rank. More precisely, we consider the Mordell-Weil lattice of a rational
elliptic surface, the structure of which has been classified into 74 types (see [OS]
and the next section). Among them, there are exactly 31 “admissible” types for which
the narrow Mordell-Weil lattice L is a root lattice of positive rank. In this paper,
we treat about half of these admissible types; we construct an excellent family for
each type where the rank of L is greater than 4 and for a few more types. This will
extend the previous work [S5] for L=Eg, E,, Es, D,, A, and the recent one [U]
for Ds. The remaining cases will be treated in a forthcoming paper [S7], where the
configuration of singular fibres can be more complicated as the rank of L gets smaller.
Together with it, the existence of excellent families of elliptic curves (over the rational
function field) will be established for all admissible types (see also [S8]).

The paper is organized as follows. First, in §2, we state the main results and
exhibit an excellent family of elliptic curves for each type in question (Theorem 1).
Then we give a necessary and sufficient condition for the nondegeneracy of MWL
(Theorem 2). In §3, we explain a general idea of proof and then our strategy for
finding (or constructing) a good candidate for such a family; there are two main
ideas: magic of weights and degeneration of Mordell-Weil lattices. In §4, we review
the results for the case L= Eg, E,, E¢ from [S5]. The rest of the paper is devoted
to verifying that the families given in §2 are excellent. Naturally this process requires
a case by case examination, but during the course of it, we obtain further useful
informations. Thus, in each case, the results will include:

(I) classifying data and the defining equation
(II) discriminant and singular fibres
(III) minimal (or short) vectors in the MWL
(IV) the fundamental algebraic equation
(V) explicit formula for the fundamental invariants of the Weyl group
(VI) generators of the Mordell-Weil group
(VII) non-degeneracy condition of MWL

(VIII) a Q@-split example.

Finally it should be remarked that, once an excellent family is given, we have
some standard applications such as (i) construction of Galois extensions (or
representations) of @ with Galois group W{(L) or (ii) deformation of rational double
points, etc. (cf. [S6], [S4]). Apart from these, the defining equations of excellent
families (given in §2 and [S7]) could be regarded as a new kind of normal forms of
elliptic curves for which the generators of the rational points of infinite order have
explicit description, just as the classical Legendre (or Hessian) normal form describes
elliptic curves with torsion points of order 2 (or 3). As such, it is not hard to imagine
that they should have some further interesting applications.
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2. Main results

First we fix the notation used throughout the paper, recalling some facts on
Mordell-Weil lattices (MWL); we refer to [S1], [S2], [OS] for more details.

General notation:
k:

K=k(1):

E/K:

E(K):

(P,Q):

the MWL E(X):

E(K)°:

f:S-»C=P!:

(P):

T=@ ,T.:

an algebraically closed field

the rational function field over k&

an elliptic curve over X

the Mordell-Weil group, i.e. the group of K-rational points of E
with the identity O, which is finitely generated under a mild
assumption _

the height pairing on E(K), defined in [S1, I] or [S2], §8. This
is a symmetric bilinear pairing which is positive-definite modulo
torsion.

We abuse this terminology, the Mordell-Weil lattice E(K), to
mean the structure of Mordell-Weil group given with the height
pairing.

the narrow Mordell-Weil lattice of E/K; this is a certain subgroup
of finite index in E(K), which becomes an even integral lattice
with respect to the height pairing.

the associated elliptic surface (the Kodaira-Néron model) of E/K.
A K-rational point Pe E(K) is identified with a section of f.
the curve on S determined by a section P, esp. (O) is the
zero-section viewed as a curve on S.

the set of ve C such that f~}(v) is a reducible singular fibre of f
(cf. [K], [N], [TD).

irreducible components of f~(v) (ve R), with j=0 corresponding
to the identity component

the lattice generated by @, ; (j>0) with the sign changed; this is
a root lattice of type A, D, E determined by the type of reducible
fibre f~1(v) (cf. [S2], (7.6)).

the trivial lattice

Now we are interested in the case where L= E(K)? is a root lattice of positive
rank. Note that this will be the case only if the elliptic surface S is a rational elliptic
surface. In fact, the minimal norm of E(K)° has, in general, a lower bound 2y, where
¥ is the arithmetic genus of S (see [S2], Th. 8.7). Since the minimal norm of a root
lattice is 2, we must have y=1, which implies that S is a rational elliptic surface.

The structure of the Mordell-Weil lattice of a rational elliptic surface has been
determined in [S2], §10, and classified in [OS]. Namely, given such an E/K=k(?), let
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T = @&T,cE; (trivial lattice)
(2. 1 ) veR .

L = EK) (narrow MWL)

M = EK) (MWL).

By [S2], Th.10.3 (with the notation modified), L is equal to the orthogonal
complement of T in Eq (which depends on the embedding of T in Ejg), and M is the
direct sum of the dual lattice L* of L and the torsion subgroup B(K),,,~T'/T, T
being the primitive closure of 7 in Eg. Further, by the main result of [OS], the
structure of the triple {7, L, M} can be classified into 74 types (No. 1, - - -, No. 74).
Among them, there are exactly 31 “admissible” types for which the narrow
Mordell-Weil lattice L is a root lattice of positive rank: '

L=EB, E-,, EG’ Ds, Ds, As, D4®A1, A4, D4, A3®A1, Az@Az, N Al .

The main aim of this paper is to prove the following theorem, i.e. to construct
explicitly an excellent family of elliptic curves for each admissible type with rk L >4
and for a few more types derived from the case L=A,. In the following statement,
W(L) denotes the Weyl group of a root lattice L, and for the fundamental invariants
Pws *+ of W(L), the subscripts w, - - - will indicate the weights of the invariants.

THeoReM 1 (Existence). For each admissible type {T, L, M} below with L a root
lattice, there exists an excellent family of elliptic curves (over the rational Sfunction
field) with Galois group W(L). More precisely, let E, be the elliptic curve defined below
by a generalized Weierstrass equation with r parameters A=(p,,, - - *) (r=rk L). Then,
JSor 1 generic over Q, (2.1) holds as isomorphy of lattices, where E= E . and K=k(1),
k being the algebraic closure of ko= Q(4), and { E,} defines an excellent family of elliptic
curves with Galois group W(L). In other words, for A generic, we have

(i) the image of the Galois representation
p.: Gal(k/ko)— Aut(E(k(2))°)~ Aut(L)

is exactly W(L).

(i) Let u;=sp(Q;) for a suitable choice of rational points Q,e E(k()) and a place
v of k(1) (sp,: the specialization map). Then u,, - - -, u, are algebraically independent
over Q, and

Q[ul.! Tt ur]W(L)=Q[pw9 o ] .

(i) In particular, the coefficients p,,, - - - of the elliptic curve E, form a set of
Jundamental invariants of the Weyl group W(L), while X ,=Q(u,, - - -, u,) gives the
splitting field of MWL, i.e. the smallest extension of ky such that E,(k(t))=E (¢ (1)).

No. I: T={0}, L=E;, M=E,
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3 3
y2=x3+x(.§:0 on-sit‘>+(4_zopao-sj’j+ fs)

A=(p2, Ps> P12 P14> P18> P20> P24> P30)
No. 2: T=A,,L=E, M=E*

4
y2=x3+x(P12+Pat+t3)+(_ZOP18—4i")
i=

A=(P3s Pe> P> P10s P12> P14s P18)
No. 3: T=A,,L=E;, M=E}

yz=x3+x(i§0ps_3it‘>+(§op12_3,t‘+t“)
A=(p2; Ps; Pe> Ps> Po> P12)
No. & T=A%% L=Ds,, M=D¥
Y =x3 4 x2r+x(pat+pat® +13)+(prot? +pet® +pyt?)
_ A=(P2 Pas Pé> T6> Ps> P10)
No. 5: T=A;, L=Ds, M=D?
2 +psxy=x3+x%pal)+x(pt* +pat’)+(pet* +1°)
A=(p2, Pa> Ps> Pes> Ps)
No. 6: T=A,DA,, L=As, M= A%
Y2+ paxy+psty=x>+x2(pyt)+ x(pat® + 1)+ (pet’)
A=(p3; P35 Pas Ps» Pe)
No. 7: T=A®,L=D,® A,, M=D}® A}
y2=x2 4+ x%(pg+pal) + XUt —p)t—qa)+ 42t *(t—pa)’
A=(P3; Pas 94> Ps> 92)
No. 8 T=A4,, L=A,, M=A%

Y2 4psxy+pytly=x3+xX(p)+x(pst3)+1°, A=(Dp3, P3, Pas Ps)
No. 9: T=D,, L=D,, M=D}%

yi=x3+x(ps—t2)+(ge+9at+92t%), A=(q2, 94> Ps> q6)
NO. 10: T=A3®Al, L=A3®A1,M=A39Af

Y2 4paxy=x3+x2(pt)+x(pat> +13)+q,t*, A=(P1, P3, Ps» q2)
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No. 11: T=A9% L=A$%, M=A%®?

V2 4pxy+paty=x3+x(g,t) + (g3 + %), A=(p2, P3, 92, G3)
No. 15: T=A, L=A,®A,, M=A*@ A*
Y24+ qD3xy+p3t2y=x>+x}(prg, )+ X(p, +q)t3 + 13
A=(ps P3, q2)
NO. 16: T=D5, L=A3, M=A§

Y2 4pst?ly=x3+x2p )+ x(pyt3)+1°, A=(py, Ps, Pa)
No. 26: T=D,, L=A®2, M= A%0?

Y =x3+xX(prgt) =M pa+ )3 +1°, A=(py, q;)
No. 27: T=Eg L=A,, M= A}
Y2 4pst’y=x>+x(pyt?)+1%, A=(py, ps)
No. d3: T=E, L=A,, M= A*
yi=x +x(p¥)+1®, i=p,

REMARK. (i) An excellent family is not unique in general (see §6 where two
such families are given for No. 6). But the existence of an explicit family is sufficient
for usual arithmetic applications such as (a) construction of Galois representations
(or Galois extensions) with Galois group W(L) or (b) construction of elliptic curves
over Q(?) such that E(Q(1)°~L.

(i) Actually Theorem 1 is valid for every admissible type {7, L, M}; the
remaining cases will be proven in the paper [S7] (in preparation). As for the cases
No. 12, No. 17,... of [OS] missing above and in [S7], the narrow Mordell-Weil
lattice L is either a non-root lattice or {0}.

Next we describe the condition for the Mordell-Weil lattice to be non-degenerate
when the parameter A is specialized. It is known that the ramification locus of the
quotient map = (see (1.2)) is defined by §(4)=0 where §(4) denotes the square of the
basic anti-invariant of W(L) ([B] Ch. 5, §5.4, Prop. 5).

THeoREM 2 (Nondegeneracy of MWL). Suppose {E,} is an excellent family of
elliptic curves as above. Let A— 1’ be any specialization and let k' be an algebraically
closed field containing Q(1'). Then the MWL is nondegenerate, i.e.,

Eyk'@)=Eyk()=M,
if and only if
6(A)#0 and JA)#0,

where J(A) is a certain invariant of W(L), called the frame invariant (cf. 3.3(a)), whose
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explicit form will be given later in each case.

Both invariants 8(1) and J(1) can be expressed as simple polynomials (such as
a product of certain linear forms) in terms of the splitting variables u=(u,, -, u,)
via A=n(u), the latter relation being in effect given by the explicit formula of the
fundamental invariants of W(L) (Thoerem 1 (ii) or the step (V) in 3.1).

CoROLLARY 3 (Construction of Q-split examples). Given an admissible type T,
L, M with rk L=r, take any r-tuple u®=(u?)€ Q" satisfying 5(u°) #0 and Ju®) #0, and
let 2° =n(u®) € Q. Then E= E,q is an elliptic curve defined over Q(t) with rank r such that

EQ)°~L, EQ)=M.

Moreover a set of explicit generators {Q;} of E(Q(1)) can be given in terms of the
prescribed values u?.

3. Idea of proof

3.1. Verification. The first three cases (No. 1, No. 2, No.3) have been treated
in [S5], which will serve as a guide post for other cases. Given a good candidate of
an excellent family E= E, over K=k(f) as in Theorem 1, we can verify its excellence
with the help of the theory of Mordell-Weil lattices. This will be done in the following
steps: ’

(I) The data to be achieved is the triple 7, L, M, where T is a sublattice of Eg
which is a direct sum of root lattices of type 4, D or E; L is a root lattice orthogonal
to T and M is equal to the dual lattice L* upto a torsion subgroup.

(I) Determine the reducible fibres of the associated elliptic surface

f:8-P';

for this, we can freely use the results of Kodaira, Néron, Tate ([K], [N], [T]).
Confirm that the trivial lattice so obtained is isomorphic to the given lattice T. In
most cases, the structure of L= T* is unique, but in certain cases where T+ has two
possibilities, L is determined by the 2-torsion part of M (cf. [OS]).

Once the lattice structure of L, M is fixed, we have a complete information on
the minimal norm, the number of minimal vectors and generators of M. In most
cases, this is elementary, or we can refer to [CS], Ch. 4.

(I11) Determine minimal (or short) vectors in E(K)~M. An element Pe E(K)
is called a minimal vector if its norm (P, P) takes minimal positive value, and a short
vector if (PO)=0 (cf. [S2], Lemma 10.2). The following formula for the height
pairing will be constantly used:

3.1 (P, P>=2+2(PO)— Y. contr(P)

veR

(3-2) (P, 2>=1+(P0)+(Q0)—(PQ)— % contr(P, Q)
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See [S2], Th. 8.6 for the notation and the value of contr(P) (p- 229).

(IV)  Get the fundamental algebraic equation which describes minimal (or certain
short) vectors (cf. [S5], [S6]). The relation of roots and coefficients of this equation
should give (V).

(V) Explicit formula for the fundamental invariants of the Weyl group W(L).
This will prove that the elliptic curve E/K defines an excellent family for the case in
question, hence Theorem 1 in this case.

Furthermore we give:

(VI)  Generators of the Mordell-Weil group M = E(K)

(VII)  Nondegeneracy condition of MWL (Theorem 2)

(VIII) A @-split example, i.e. an example of elliptic curve E/Q(t) such that
E(Q(1))= M, together with explicit generators.

Thus, once a candidate of an excellent family is explicitly given, we can prove
or disprove its excellence by the above method. The reader might then be interested
in knowing how we find a good candidate of an excellent family for a given admissible
type. This is indeed the hardest and perhaps the most interesting step, though logically
it is not necessary for the proof of Theorem 1. There are two main ideas for this:

(A) Magic of weights, (B) Degeneration of Mordell-Weil lattices

3.2. Magic of weights. Given a triple 7, L, M, we have to find some elliptic
curve E/K=k(z) for which the trivial lattice (the direct sum of root lattices T,veR
ranging over the reducible fibres) is equal to T, and L=E(K)° and M=E(X). By
assumption, L is a root lattice with the Weyl group W(L). Let wi(L)= {wg, - -, w}
be the set of weights of the fundamental invariants of W(L), which will be called in
short the weight-set of L.

We start from the known cases (No. 1, No. 2, No. 3). In the case No. 1, we
have L=Eg and T={0}, and the defining equation

yr=xi4oco 18

is a weighted homogeneous one with total weight 30. Thus x, y, ¢ have weights 10,
15, 6 respectively, and they determine the weights of other coefficients p,, etc., which
coincide with the weight-set wt(Eg) (cf. (1.4)). (N.B. This equation has been studied
in some other context, i.e. as the semi-universal deformation of Eg-singularity. The
method of MWL is closely related to that of Milnor lattice in the singularity theory:
see [S4])

Let us consider a general Weierstrass equation

(3.3) yitapxy+ay=x3+a,x*+ax+aq,

where each q, is a polynomial of degree at most d in :

d
ad= Z ad,l'l‘ .
i=0
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Suppose that (3.3) has the same weighted homogeneity (of total degree 30) as before.
Then each a, has weight 5d so that the weight of a,,; is equal to 54— 6i. Omitting

a,; with negative weight, we obtain the following table, which will be called the
weight-table of Eg type:

5 15 10 20 30

9 4 14 24

3 8 18

3.4 ) 12
6

0

Now assume that the weight-set wi(L) of a given root lattice can be embedded
into the above weight-table (3.4). For example, for No. 5 and No. 8, we have
wi(Ds)={2,4,5, 6, 8} and wi(A4,)={2, 3, 4, 5}, both of which satisfy this assumption.
Then, in the equation (3.3), we leave only those terms a, it with the relevant weights
and 3. In this way, we get a candidate for an excellent family of elliptic curves with
Galois group W(L). Then we apply the method described in 3.1. First, in the step
(IT), we compute the discriminant to determine the trivial lattice, which turns out to
be (like magic!) the desired lattice T in many cases, and then we can complete the
proof of excellence by following other steps in 3.1. In such a case, we say that magic
of weights works. For example, this is the case for No. 5, 8, 16, 27, 43, as listed in
Theorem 1 (see §4, §8 below). We note that this magical phenomenon has been first
observed for No. 5 in [U] other than the cases No. 1, 2, 3, 9 treated in [S5].

Of course, “magic” does not always work. For instance, although the weight-set
wi(A4;) can be embedded into the weight-table (3.4), the resulting family does not
‘give an excellent family for No. 6, since it has T=A4;, L= D rather than the desired
T=A4,®A,, L=A;. Another drawback is that the weight-table of type Eg (3.4) is
rather restrictive in the sense that each weight occurs with multiplicity at most 1,
and so it is impossible to embed a weight-set wi(L) having some multiple weights.

However we can remedy this to certain extent by considering the variant for E,
and E4. The defining equation for No. 2, 3

P2i=xd4xt34---, or yl=xd4ce 4t

has total weight 18 or 12 (the Coxeter number), and the weight-table of type E, or
E is given as follows:

396 12 18 2.6 4 8 12
52 8 14 315 9

(3.5) 1 4 10 (3.6) 2 6
0 6 3

2 0
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For example, the weight-set wi(Dg)={2, 4, 6, 6, 8, 10} (for No. 4) embeds into
(3.5), and wi(A45)={2, 3,4, 5, 6} (for Ne. 6) embeds into both (3.5) and (3.6). The
resulting families for these cases turn out to be excellent. Incidentally, note that we get 2
distinct families for No. 6, which shows the non-uniqueness of an excellent family
of elliptic curves in general.

3.3. Degeneration of Mordell-Weil lattices. Another main idea for construct-
ing a family with a new triple {7T", L', M’} is to consider a suitable specialization
of some established family with {7, L, M} where L’ is a lattice of smaller rank than
L. In general, the reducible fibres of an elliptic surface will “increase” under
specialization so that the original trivial lattice T will be enlarged to a new trivial
lattice T”; accordingly the Mordell-Weil lattice L (or M) will degenerate to L' (or
M’) of smaller rank (if not equal).

The problem here is how to specialize parameters in the original family in order
to achieve a desired new triple {7", L', M'}, in particular, how to control parameters
to produce a desired set of reducible fibres. The key ideas are the following:

(a) the frame and the frame invariant

(b) vanishing roots (analogy of vanishing cycles).

The former will be sufficient for proving Theorem 1, while the latter will play a key
role in [S7].

(@) Given an excellent family & ={E,} with the data {7, L, M}, we have
T=@, T, for A generic (see the notation at the beginning of §2). We call T the
Sframe of the family &.

When we specialize A to some A’, the trivial lattice T” for the elliptic surface
f: S;—P*" has a similar description: 7= @, . T,-- The given specialization defines
a map of R into R’, say ¢: R—>R'".

DeFINITION. The frame is said to be preserved or unbroken under the
specialization in question if the map ¢: R—R’ is injective and if, for each veR, we
have T,~T'. with v'=¢(v). Otherwise the frame is said to be broken under the
specialization in question.

There is an invariant of the Weyl group W(L), say J(4), such that the frame T
is broken under a specialization 11’ if and only if J(4’)=0. Such an invariant will
be called a frame invariant of the family.

N.B. The type of the root lattice T,, determines the type of the reducible fibre
f~Y(v) if the rank of T, is greater than 2, but this is not true for lower rank. Thus
T,=A, corresponds to the singular fibre of type I, or III, and T,=A, to that of
type I, or IV. It is natural to regard the frame to be preserved when a singular fibre
of type I, (or I,) is specialized to that of type /II (or IV), leaving the lattice structure
T, to be unchanged. For this, see e.g. No. 4.

Observe that several excellent families in Theorem 1 are related to each other
via specialization where the frame is broken. For instance, for No. 8, we have T=A4,,
L=A,, M=A% and
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E;: y 4 psxy+patiy=x3+x*(p,)+x(p,t3)+1°
)~=(P2, P3s Pa» Ps) .

In this case, the successive specializations

[No. 8 ]2:2%[No. 16 | 2% No. 27 | 22~ No. 43 |

correspond to the following change of the frames:

T= A4"’D5-‘)E6-’E7 .

Other example is given by

[No. 26 ]-2222[No. 15 | 222%[No. 27 .

(b) Now we turn to a more systematic way to study the degeneration of MWL
of an excellent family, by using parameters upstairs (or splitting variables) {u,, - - -, u,}
rather than that of parameters downstairs 4 (cf. (1.2)). To fix the idea, assume that
there is a singular fibre of additive type over =00 and let

P : Ek(1) > G (k)=k

be the specialization homomorphism which was denoted sp’, in [S5].

For A generic, it defines an isomorphism of E(k(t))/(tor)~ L* onto Zu, + - - - + Zu,
where u;=sp.(P) for suitable generators {P,} of E(k(t)) modulo torsion. We choose
{P;} among minimal or short vectors. In particular, the “roots” in the root lattice
L (= L*) are mapped under sp,, to certain Z-linear combinations of u,, - - -, u,, say

‘o, **+, &y, N being the number of roots in L. Let

N
6(}'):' I_[ a,iez[uh Y ur] s
j=1

note that this is an invariant of the Weyl group W(L) which is equal to the square
of the basic anti-invariant up to a constant. _

(N.B. If {P} are only assumed to be independent elements generating a
subgroup of finite index in E(k(t)), then we can modify the above by replacing Z by
Q so that a;, (1) have Q-coefficients.)

Now the proof of Theorem 2 (stated at the end of §2) reduces to the following:

LeMMA 3.1. Suppose that the frame is unbroken under a given specialization
A=A, ie. J(X)#0. Then the Mordell-Weil lattice does not degenerate (E,(k(t))~
E,(k'(t)) if and only if 5(A")£0.

Proof. Let T, L’ denote the trivial lattice and the narrow MWL for E'=E,.
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The T for generic A is naturally embedded into 7" under a given specialization, and
the MWL does not degenerate if and only if 7' = T. First assume this. Then we have
L'=L, so any root Pe E(K)°=L specializes to a root P’'e E'(K)°=L’. Hence the
section (P’) is disjoint from the zero section (0), and in particular, we have sp(P’) #0,
which implies 6(1")#0.

Conversely, assume T'#T; by assumption, there is a new reducible fibre
S~ 1(v), ve R’— ¢(R). Take an irreducible component, say @, other than the identity
component. It has the self-intersection number —2, and is orthogonal to T as well
as (0) and any fibre in NS(S;)). Thus it defines a root of L, which vanishes under
the specialization in question, which implies d(4")=0. q.e.d.

We can reformulate the above result by introducing the following terminology.
It is obvious that any specialization upstairs

u=(uy, -, u)-u'=y, -, u;)

uniquely determines a specialization downstairs 1—A'. A root «; of L will be called
a vanishing root if it vanishes under the said specialization. In spirit, this is very close
to the idea of vanishing cycles in the deformation of singularities (cf. [S4]).

CoroLLARY 3.2 (Principle of vanishing roots). Under any specialization u—u’
with a vanishing root, the Mordell-Weil lattice M= E,(k(t)) degenerates.

The mode of degeneration of MWL depends upon the behavior of vanishing
roots. For instance, if there is only one vanishing root (upto sign) under a
frame-preserving specialization, then the rank of MWL decreases by one.

This principle will be used in [S7] to construct a new excellent family from
known ones. Actually it can be used in a more general situation where the narrow
MWL may be no longer a root lattice: indeed this method is applicable for the
existence proof of all the 74 types of T, L, M in [OS], which will be treated
elsewhere (cf. [S8]). .

4. Review for No. 1, No. 2, No. 3 (L=Ej, E;, Eg)

Here let us briefly review the results for No. 1, 2, 3 from [S5] for later reference.
(For instance, (No. 1, V) will refer to No. 1, (V).) Unless otherwise mentioned, 4 is
assumed to be generic, i.e. its components are algebraically independent over Q.

4.1. No. 1 (L=Ey).
() No.1: T={0}, L=Eg, M=E; (cf. [S5], §4, §8)

3 3
y’=x3+X(.Zo on—sit'>+<izopso—6jtj+ts)
i< =

A=(P3, P8: P12: P14s P18 P20> P24> P30) -
(I1) For any 4, the elliptic surface f: S;—P" has an irreducible singular fibre
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of type II (a rational curve with a cusp) at =co. For general 4, it has no reducible
fibres at all, since the discriminant 4(z) is a polynomial of degree 10 in ¢ which has
no multiple factors in general. In particular, for A generic over @, the trivial lattice
is {0} so that L= M = Eg, as required.

(III) The root lattice E; has minimal norm 2 and the number of minimal
vectors (=roots in this case) is 240. Accordingly there are 240 rational points P e E(k(t))
with (P, P) =2, or equivalently (by (3.1)), with (PO) =0, and they are of the form
(cf. [S5], §10, Lemma 10.9)

P=(x,y), x=gt*+at+b,y=ht*+ct*+di+e.
(IV) By the specialization map
P’ Bk~ () =G,
(¥ denotes the smooth part), the above P is mapped to
u:=spo(P)=g/h ([S5], Lemma 8.2).

Substitute x, y into the defining equation to get the relations among g, h, a, - - -, e.
Then an explicit elimination leads to an algebraic equation of degree 240 in u:

U240 4 60p,u?38 4 - - =0;

the left hand side ®(u,A) is a monic polynomial in u with coefficients in
Z[A]1=Z[ p;, - *, P3o], which was called the universal polynomial of type Eg ([S5],
Th. 8.3.). The above equation (and the similar ones in the sequel) will be called the
Jundamental algebraic equation for the case under consideration. This terminology
should be justified by the next step.

(V) Let {P,, ---, Pg} be a basis of E(k(t))~Eg in the sense of root systems,
and let u;=sp,,(P)). Then the 240 roots of the fundamental algebraic equation are
given by u,, - -, ug and certain integral linear combinations of them. Then the
relation of roots and coefficients for u*, w ranging over the weights of W(E;) in (1.4),
gives an explicit expression of p,, as a fundamental invariant of weight w for W(Ej)
(see [SS], Th. (Eg), p. 681; note that the notation p; or q; there correspond to p,q_;
Or p3o-¢; here). It follows that {E;} forms an excellent family for No. 1 (see [S5],
Th. 8.3, 8.4).

(VI) Generators. The above {P,, - -+, Pg} forms a set of generators of the
Mordell-Weil group E(k(t))=E(Q(u,, - - -, ug)(?)). Each P, is of the form

Pi=(fut +at+b, t3fu}+ - +e)

where a;, - - -, ¢; are rational functions in u,, - - -, ug ([S5], Th. 8.5).

(VII) Nondegeneracy condition. The MWL of a specialized elliptic curve E,.
is nondegenerate (=~ Ey) if and only if §(A") #0, where §(4)= &0, A). (Since T=0, the
frame invariant can be taken as the constant 1.)

(VIII) For an example of E(Q(t))~ Ej, together with explicit generators, see
[S3] or [S5], p. 685.
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Figure No. 1| Figure No. 2

42. No.2 (L=E,).
() No.2: T=A,, L=E, M=E}% (cf. [S5], §9).

4
.V2=x3+X(P12+Pst+ta)+<‘z.opxs-4:t‘)

A=(P2, Pés Pss P10s P12> P14 P1s) -

(II) For any A, there is a reducible singular fibre of type I1 at ¢ = oo, consisting
of two smooth rational curves tangent at a single point; thus 7, =4,. For general
1, there are no other reducible fibres so that the trivial lattice T is 4,, and we have
L=E,;, M= E%, as required.

(III) The lattice E* has minimal norm 3/2 and the number of minimal vectors
is 56. Accordingly there are 56 rational points Pe E(k(t)) with (P, P} = 3/2; by (3.1),
this is the case if and only if the section (P) is disjoint from the zero-section (0) and
intersects the non-identity component @, , of f~*(c0). Such a P is given by

P=(x,y), x=at+b, y=ct®’+dt+e

([S5], Lemma 9.1).
(IV) In this case, we use the specialization map sp., which is the map:

P E(k(t)—~ f~(0)*=G, x Z|2Z,
composed with the projection to the G,-component. Then we have for the above P
spL(P)=—c ([S5], Lemma 9.2) .

By the elimination method as in (No. 1, VI), we obtain the fundamental algebraic
equation for No. 2:

d(c, ))=c36—36p,c>*+---=0.

(V) Noting that E¥ is generated by minimal vectors (as easily checked), we
can choose a basis {P,, -, P;} of E(k(t)~E% among minimal vectors. Let
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u;=—sp.(P;). As in (No. 1, V), the relation of roots and coefficients for the above

equation gives the explicit formula of p,, as the fundamental invariants of W(E,) (see

[S5], Th. (E,), p. 680; the p; or g; there correspond to p,4_4; OF pyg_4; here). We

conclude that our family defines an excellent family for No. 2 ([S5], Th. 9.3, 9.4).
(VI) The above {P,, - -, P} generate the MWL E(k()). We have

Pi=(at+b, ut*+dt+e) (i=1,---,7)

where a;, b;, d,, e; are rational functions of uy, - - -, u; ([S5], Th. 9.5).

(VII) The MWL of a specialized elliptic curve E;. is nondegenerate (~ E¥) if
and only if (1) #0, where 8(2) is the product of all the 126 roots «, of E,, expressed
as integral linear combinations of u,, - - -, u, (it was denoted by J, in [S5].) The
frame invariant can be taken as the constant 1, since the frame is unbroken ( T,=A4,)
for any A'.

(VIII) An example of E(Q(r))~ E%*, together with explicit generators, can be
found in [S5], p. 684.

4.3. No. 3 (L=E,).
() No.3: T=Ad,, L=E, M=E?* (cf. [S5], §10)

2 2
y’=x3+X(‘_Zopa-3.-t‘)+(‘Zo p12—3itl+t4)

A=(P3, Ps, Pé> Ps> P P12) -

(IT) For any 4, there is a reducible singular fibre of type IV at 1= oo, consisting
of 3 smooth rational curves transversally meeting at a single point; thus T,=A,. For
general A, there are no other reducible fibres so that the trivial lattice T is 4 2, and
we have L=E,, M= E¥,

(III)  The lattice E¢ has 54 minimal vectors of minimal norm 4/3, which divides
into two orbits under the Weyl group W(E,). Accordingly there are 54 rational points
Pe E(k(1)) with (P, P)=4/3. By (3.1), they are characterized by the condition that
(PO)=0 and that the section (P) intersects one of the two non-identity components
Oy, (i=1,2) of f7!(c0); the two W(E)-orbits correspond to i=1 or 2. Thus there
are 27 P’s such that

P=(x,y), x=at+b, y=t*+dt+e

([S5], Lemma 10.1).
(IV) Asin (No. 2, IV), we define the specialization map sp/, as the composite
of the map:

5Pt E(k(t)> Y (0) =G, x Z/3Z,

and the projection to the G,-component. Then we have for the above P

sp'o(P)= —% ([S5], Lemma 10.2).
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By the elimination method, we obtain the fundamental algebraic equation for No. 3
d(a, A)=a?"+12p,a®*+---=0.

(V) In this case, we can choose a basis {P,, - -, Pg} of E(k(t))~ E¢ among 27
minimal vectors of the above form. Let u;= —2sp. (P;). Again the relation of roots
and coefficients for the above equation gives the explicit formula of p, as the
fundamental invariants of W(Eg) (see [S5], Th.(Eg), p. 679; the p; or g; there
correspond to pg_3; OF py,-—3; here). It follows that our family defines an excellent
family for No. 3 ([S5], Th. 10.3, 10.4).

(VI) The above {P,, - - -, P¢} are generators of the MWL E(k(t)) such that

P;=(u,t+b,, 12+dit+e,.) (i=1’ ,6)

where b;, d,, e; are rational functions of uy, - - -, ug ([S5], Th. 10.5).

(VII) A specialized elliptic curve E,. has a nondegenerate MWL (=~ E¥) if and
only if §(1")#0, where 6(2) is the product of all the 72 roots a, of Eg, expressed as
integral linear combinations of u,, - - -, u (it was denoted by d, in [S5].) The frame
invariant can be taken as the constant 1, since the frame is unbroken (T, = A,) for
any 1",

(VIIT) Examples of E(Q(1))~ E¥, together with explicit generators, can be found
in [SS], p. 683 or [S6], p. 487.

Figure No. 3

5. No. 4 and No. § (L=Dq, Ds)

5.1. No. 4 (L=Dy).
() No.4: T=A% L=Dg, M=D}

E :y2=x3+x%rg+x(pagt+pyt? +t3)+(prot® +pet> +pot?)

l=(p2: Pas Pe> 6> Ps» plO)
(IT) The discriminant is computed as follows:



Fundamental Invariants of Weyl Groups 187

A=16r¥(pi—4p,ore)t* +(—64p3+re(- - N>+ - - - —64t°.

Let us see that the singular fibres over t=0 and ¢= oo are reducible with two irreducible
components: '

f_l(v)=@v.0+@u.1 (U=0, (X))

under the condition

J(2):=p3—4p1or6 #0 .

Indeed, the singular fibre at = oo is of type III for any 4, just as in No. 2. On the
other hand, the singular fibre at 1=0 is of type either I, or JII according to whether
re#0 or =0 under the said condition. For, if 75 0, then ord, . o(4)=2 and the above
Weierstrass equation reduces to a nodal cubic y2=x3+ x?rg (with the node at (0, 0))
as t—0. By the wellknown algorithm ([N], [T]), this shows that we have a singular
fibre of type I, (two smooth rational curves meeting transversally at 2 points). Next,
if r¢=0 (but J#0), then ord,.(4)=3 and the defining equation reduces to the
cuspidal cubic y2=x3 (with the cusp at (0, 0)) as t—0. This shows that the singular
fibre is of type II1I.

For J generic, there are no other reducible fibres (this is easily checked by looking
at some special case; cf. example in (VIID)) and so the trivial lattice is 7= A4$?, which
implies that L= D¢, M=D¥ ([S2], Th. 10.4, or [OS]). Note that the above J is an
example of what we called the frame invariant in §3, 3.3(a), with the property that
the frame is unbroken precisely when J#0.

(ITII) First recall basic facts on the root lattice Dg and its dual lattice D¢ (cf.
[CS]). A standard realization of D is the sublattice of Z°< R® consisting of those
(x4, ** *, Xg) With X, + * * - +xg€2Z. Then we have Dgc Z°< D} with each index 2.
The minimal norm of D¥ is 1 and the minimal vectors are the unit vectors (1, 0, - - -, 0),
etc. up to sign (12 in number). There are 26=64 vectors of norm 3/2 such as
(1/2, - - -, 1/2), any one of which generates D¥/Z5.

The Weyl group W(Dy) is genrated by the permutations of coordinates x; and
the sign change at 2 coordinates x;, x;. It acts transitively on the set of 12 minimal
vectors as well as the set of 60 roots of D¢ (such as (+1, +1,0, - - -, 0)), but the set
of vectors of norms 3/2 in D¥ are divided into 2 orbits under W(Dg). The weights
of the fundamental invariants are {2,4,6,6,8, 10}, as reflected in the chosen
parameter A=(p,, P4, Ps> '6» Ps> P10)-

By the formula of the height pairing (3.1), Pe M = E(K) has norm

1 1
- (PO, )=1 — (PO, ,)=1
(P,P)=2+2(P0)—1{ 2 (POo)=1 |5 (PO,

0 otherwise 0 otherwise.

Here (PO, ,)= 1 means that the section (P) passes through the non-identity component
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0,,, of f~'(v). Hence we have (P, P)=1 if and only if (PO)=0 and (P) passes
through the non-identity components at =0 and 1= 00. In terms of the Weierstrass
equation, this means that P=(x, y) as in (No. 2, III) should satisfy b=e=0 to meet
the node or cusp (0, 0) at 1=0, i.e.

P=(at,ct*+di).

(IV) Using the same notation as in (No. 2, IV), we have sp’(P)= —c for such
a P. Now the above P satisfies the defining equation if and only if

a=c*—p,, 2cd=a’+ap,+ps, d*=pio+aps+a’rs.
Eliminating a, d, we obtain the fundamental algebraic equation for No. 4:
®(c, ))=c'>—6p,c'®+c¥15p2+2p,)
+¢%(2ps—4rs—20p3 —8p,p,)
+c*(—4pg+15p3 +12p3p,+p3—6p2p6 +8pare)
+¢%(—4py0—6p3—8P3ps—2p2p} + 6p3Ps + 2PaPs + 4D2Ps — 4D3T6)
+(P3+PaPs—pe)*=0.

(V) The 12 roots of this equation can be written as +u; (i=1, - - -, 6). Writing
down the relation of roots and coefficients, we obtain the following formulas:

(Pz = £5/6

ps = —(15p3—¢y)/2

Ps =P3+DPbs—%6

re = (—20p3—8p,ps+2ps+eg)d

Ps =(15p3+12p3p,+pi—6p.ps+8p,re—cp)/d

[ P10 =(—6p3—8p3ps—2p:p%+6p2ps+2paps+4p,ps—4p3re+e10)/4 .

Here ¢5; denotes the d-th elementary symmetric function of u?,---,u2 and
€=U, " " ‘ug, which are obviously invariants of W(Dy).

This shows that if p,, ps, pe, rs, Ps, P10 are algebraically independent over Q,
soare g3, - - °, €10 and &g, and hence both of them give a set of the fundamental invar-
iants of W(De), since they have the right weights. It follows that u,, - - -, ug are also
algebraically independent over Q, and that the above formulas express p; and r
explicitly as the fundamental invariants of W(Dy). Passing to the quotient fields, this
implies that the extension Quy, - - -, ug)/Q(p2, ' *, P1o) is a Galois extension with
Galois group W(Dy), and therefore the Galois representation p; has the image W(D)
with the splitting field %" ;= Q(u,, - - -, ug). Thus we have proven the excellency of
our family.

(VD) The 6 rational points

Qi=((u? —po)t, ut* +dyt) (i=1,---,6)

where d, is rationally determined by u; over Q(J) as in (IV), generate the sublattice
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of E(K)~ D¥ of index 2 corresponding to Z°. The full MWL is generated by Q; and
one more rational point of the form

1
Qo=(at+b,ct?+dt+e)  with c=—2—(u,+"'+u5).

(VII) The MWL is nondegenerate if and only if #0 and J #0.‘ In terms of
the splitting variables u,, * * -, ug, we have

5=T1 (tutu)

i<j

and
1
J=i I I—2 (u1+"‘+u5—u6)

where the latter product is taken over 16 linear forms obtained from the written one
under W(Dg)/{ £ 1}.
(VIII) Example 1. Letw=i—1fori=1,---,6,ie.

{u;}={0,1,2,3,4,5}.
Determine p,, - - -, p,, by the formulas in (V), which define the elliptic curve E/Q(¢):

, s 2475 (152625 2849 3) 1313825 ,
yi=x3+——x?+ 1— 2+ x+——1
32 256 24 512
137335 5
- t3+—5t4
432 6

Then we have T=A%2?, L=Dy,, M=D}¥ for this example by checking the above
non-degeneracy condition (or by directly checking that A(7) has order 2 zero at 1=0,
and 7 simple zeroes at t#£0, o0).

The generators of E(Q(f))~ D¢ are given as follows. First the 6 points

- —49
Q,=< 655 t, —60:), Q2=( 2+ 855 t),

6 16
=31 315 -1 795
= L2124+ —"1¢), = —t,3t2———t),
s ( 6 8 ) Q. (6 16
41 405 95 2835
=—1t 42 ——1]), === 1,5¢2 t).
2 (6 4 ) 2 (6 6 )

generate the index 2 subgroup (=~ Z%). Observe that 72-coefficient of the y-coordinate
of Q;is 0, 1, 2, 3, 4, 5 as prescribed. Next, corresponding to c=4(u, + - - - +ug)=
15/2, we find the following point:
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—t Y —
12 64 2 16 512
These points are related by 2Q,=0, + - - - + Qg, and the full Mordell-Weil group
E(Q(1)) is generated by {Qo, 0y, * -+, Os}.

Example 2. If one prefers some examples of the same type but without
denominators (both in the defining equation and in the coordinates of generators),
here is an example. Take

(565 675675 15 , 116295 557431875)
Qo= 12+ 1+ )

{ui} ={0$ 2’ 49 69 8, ]8} .

We leave it as an exercise to verify the above statement.

eo,,/ \ew.,
Q

Qo
=
—
. OO,D O Ooo,o
0 )
Figure No. 4 Figure No. 5

5.2. No.5(L=D;).
(I) No.5: T=A;, L=D;, M=D¥ (cf. [U] for details)
y2+psxy=x>+x*(pat)+x(pst®+pat*) +(pet* +1°)
A=(p2, Ps; Ps; Pe> Ps) -
(II) The discriminant is given as follows:
A=pY(pi—pipeht*+- - —43211°.

It follows that ord, . o(4)=4 if ps#20 and J, : =pZ—p%pe #0, in which case the singu-
lar fibre at =0 is of type I,:

f70)=0,+60,+6,+0,,

where 4 smooth rational curves @; meet in a cyclic way like “#” (@, is the identity
component).

At t=o0, there is a singular fibre of type /I, as in (No. 1, II). For general 4,
there are no other reducible fibres, and hence the trivial lattice is T=A4,, and we
have L=Ds;, M=D¥ by [OS].
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(III) The lattice D¥ has 10 minimal vectors of minimal norm 1 and 32 vectors
with norm 5/4. In view of (3.1), for Pe M = E(K), (P, P) =1 holds if and only (PO)=0
and (P) meets ©,. The minimal vectors P have the following form:

2 3 5 3 _
P=( ), o= U”+pau” +pau—ps

—, —+ct? ,
u?’ u? 2u?
where u=sp(P) should satisfy the equation in (IV).

(IV) The fundamental algebraic equation is a polynomial of degree 10 in u:

B(u, )=u'®+(2p,)u® +(2p, + p3)u’ +(—4pg+2p,pJu’ +(—4pg +plu* —p3=0.

(V) Let u(i=1, ---,5) be the roots of this equation. By the relation of roots
and coefficients, we have:

P2 = —&3/2

Pa=(e4—p3)2

Ps=uUy " Us

Pe = (e6+2paps)/4

ps =(pi—¢ea)/4.
Here ¢}, denotes the d-th elementary symmetric function of u}, - -, u}. This gives
an explicit formula of the fundamental invariants of W(Ds), and we deduce that the
family in question is an excellent family for No. 5 by the same argument as (No.4, V).

(VI) The 5 rational points

2 3
Q,.=(—7,_3+ci,2) (i=1,---,9%)

(c; is determined as in (III)) generate a sublattice of E(K)~D% of index 2. The full
MWL is generated by Q, and one more rational point of the form

12 3 . 1
Q0=(_2+at! ——3‘+Ctz+dt) Wlth u°=—(u1+ ot +u5)-
ug up 2

(VII) By (II), the frame invariant is given by J(1)=psJ,. Both ps and J, are
expressed as the product of linear forms in u; which correspond to the short vectors
of norm 1 or 5/4 in D¥, taken modulo {+1}. Thus

1
Jy =P§"P§P6= t H”z—(ul"' ctug),
where the product runs over 16 transforms of 4(u; + - - - 4+ u;) under W(D;) modulo

{£1}.
(VIII) For an explicit example, see [U].
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6. Two families for No. 6 (L=A4)

6.1. No. 6 (family of type E,).
(I No.6: T=A,PA,,L=A4;,, M=A*

Y2 4p3xy+psty=x>+xHp,0) + x(pat® + 13)+(pet?)
A=(P3, P3; P4> Ps» Pe)
Observe that the weight-set of A is {2, 3, ,4, 5, 6} and that this equation is obtained

by magic of weights from the weight-table of type E, (cf. §3, 3.2).
(II) The discriminant is as follows:

A= —p—p3ipaps+ppapi—p3+p3p)> +(—2Tpd+ps(- - N4+ - —641°.

The singular fibre at t=co is of type III for any A, as in No. 2. The singular
fibre at =0 is reducible with 3 irreducible components:

S7H0)=00,0+6,,,+6,,,
under the condition

J(A):=—pipaps+p:psp}—p3+p3ps#0.

Indded, it is of type either /5 or IV according to whether p;#0 or =0 under the
said condition. For, if p3#0, then ord,_,(4)=3 and the defining equation reduces
to a nodal cubic y2+p;xy=x3 (with the node at (0,0)) as =0, which implies
(IN], [T]) that the singular fibre is of type 75 (3 smooth rational curves forming a
triangle). Next, if p;=0 (but J#0), then ord,_,(4)=4 and the defining equation
reduces to the cuspidal cubic y2=x3 as —0. This shows that the singular fibre is
of type IV.

For A generic, there are no other reducible fibres and so the trivial lattice
is T=A,® A,, which implies that L=A45, M= A% ([OS]).

(III) The lattice A% has 12 minimal vectors of minimal norm 5/6 which are
divided into 2 orbits under the Weyl group W(4s5)=%¢. The sum of 6 vectors in
each orbit is zero, and any 5 vectors among them give a set of free generators of A%.

By (3.1), Pe M = E(K) satisfies (P, P)=5/6 if and only (PO)=0 and (P) meets
the non-identity components at =0 and at ¢= co; the two components @, ; (i=1, 2)
correspond to the 2 orbits. The minimal vectors P have the following form:

P=(at, ct*>+di).
By the defining equation, a4, c, d should satisfy
a=c*, d=0 or d=-—aps—ps, —a*+2cd—a’p,+acp;—ap,+cps—ps=0.

(IV) Substituting a=c2, d=0into the third relation, we obtain the fundamental
algebriac equation:
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®(c, )=cS+c*p,—c3py+c?py—cps+ps=0,

which is nothing but the generic algebraic equation of degree 6 (cf. (1.6)).

(V) Letc=uy (i=1, ---, 6) be the 6 roots of this equation. By the relation of
roots and coefficients (in the standard sense), p, is equal to the d-th elementary
symmetric function of ; (i=1, ---,6) for d=2, ---, 6 and u; + - - - + ug=0. In other
words, we have:

Pzzz Uy, "7y P6=H“i .
i<j i
This represents an explicit formula of the fundamental invariants of W(A4;)=%,
and we conclude that the family in question is an excellent family for No. 6.
(VI) The 6 rational points
Qi=(ui2t7 uitz) (i= 19 Y 6)
form a W(As)-orbit of minimal vectors, and they generate E(K)=~ A%. Note that
QO+ - +0Q¢=0 (in E(K), of course)

corresponding to u,+‘--+ug=0, since the specialization homomorphism
5pl: E(K)—Y; Zu, is an injective map for A generic (cf. [S5], Th. 9.5).

(VII) The nondegeneracy condition of MWL is stated in Theorem 2, where
the frame invariant is now given by J(4) in (II). In terms of u,, it is expressed as a
product of 15 linear forms (corresponding to short vectors of norm 4/3 in a
W(A;)-orbit): :

J= H (ui+uj) )

i<j

while §(4) is equal to the (ordinary) discriminant of the equation &(c, 1)=0, i.c.

5={ I_[‘(u,-—uj)}2 .

i<j

Therefore the MWL is nondegenerate if and only if u; # +u; for any i<j.
(VIII) Example. Takeuy,=i—1(i=1, ---, 5)and ug= — 10, which satisfies the
above nondegeneracy condition. Then

p2=—65, p3=-300, p,=—476, ps=-240, ps=0,
so the elliptic curve E/Q1)
y2—300xy—240ty=x3—651x2 +(—476t2 +t3)x

gives a Q-split example for No. 6. Free generators of E(Q(f))~ A% are given by any
5 points among :

{Qi} = {(Os 0)9 (tv tz)’ (4ta 2t2)9 (9t1 3t2)3 (16tv 4t2)’ (100:, - 10:2)} J
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The 30 minimal vectors (roots) in the narrow MWL E(Q(1))°~ A, are given by
{0i—0; (i<))}-

[~ (48

Figure No. 6

6.2. No. 6 (family of type E;).
(I) No.6: T=A,DA,,L=A;, M=A%
Y2=x34pax? +(pst+pat)x+(pet? +pst® +1%)
A=(p2, P3 Ps> Pss Pe) -

This equation is obtained by magic of weights from the weight-table of type E (cf.
§3, 3.2).
(II) The discriminant is as follows:

A=—16pi(—p3+4pspe)t® —322p3+py(- - N3+ - - - + —4328 .

The singular fibre at r=co is of type IV for any A, as in No. 3. The singular
fibresat 1=0iseither /, or /I (according to whether p, # 0 or =0) under the condition

J@2):=—pi+4p,ps#0.
This can be checked in the same way as before, so it will be omitted. For 1 generic,
we have again T=A4,@® A4, so that L=A4,, M= A4%.
(III) By the same argument as above, the 12 minimal vectors P=(x, y)e E(K) ~
A$ have the x-coordinate of the form x=ar. Then the right hand side of the defining
equation in (I) becomes
{12 +(a®+ap, +p3)t+(a*ps +aps+p)} ,

which should be a square in k[¢].
(IV) Thus we obtain the fundamental algebraic equation:
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®(a, ) =(a>+ap,+p;)* —4a’p,+aps+ pe)
=a®+2a'p,+2a%p, +a*(p}—4p,)+a(2p,ps—4ps)+pi—4ps

=0.
(V) Leta=uy,(i=1, -, 6) be the 6 roots of this equation. Then the relation
of roots and coefficients can be rewritten as follows:

P2 =282
P3= —&f2
Ps= —(e,—p3)/4
Ps = (es+2p,p;)/4
ps = —(es—p3)/4,
where ¢, denotes the d-th elementary symmetric function of u; (i=1,---,6)

(uy + - - - +ug=0). In this way, we have obtained another excellent family for No. 6.
(VI) The 6 rational points

Qi=(uit, t(t+%(ll53 +up,y +P3))) (i=1,---,6)

generate E(K)~A¥, where we have Q, + - - +Q¢=0 as before. Note that, in this
case, we have u;= —2sp’ (Q,) as in (No. 3, IV).

(VII) The frame invariant J(4) in (II) now is an invariant of degree 10 with
the following expression:

1
J=—0 U+ u;+u),
2¢ i<lj—[<k( it )

the factors of which correspond to a half of 20 vectors of norm 3/2 in 4%. Thus the
MWL is nondegenerate if and only if #;#u; and u;+u;+u, #0 for i<j<k.

(VIII) Example. Take u;=2(i—1) (i=1, - - -, 5) and ug= — 20, which satisfies
the above nondegeneracy condition. Then

P2=-—130, p3=1200, p,=6129, ps=—79920, ps=360000,
so we get the elliptic curve E/Q(r)
y2=x3—6129x2 +(—79920t — 1301 2)x + (3600001 2 + 1200¢3 4 ¢4) ,

which is a Q-split example for No. 6 using the new family. Free generators of
E(Q())~ A% are given by the 5 points:

(0, (600+1)), (2t, 6474 +1), (45, 1(372+1), (6t,t(318+1), (8¢, t(336+1)).
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7. No.7(L=D,®A,)
(I) No.7: T=A®3L=D,® A, M=D}® A*

y2=x3 4+ x2(pe+pat)+ xt(t— p)t —qa) + q21%(t—po)?
A=(P2, P4> 94> Ps> 92) -

N.B. This is the first case in the families of Theorem 1 where the elliptic surface has
3 reducible fibres. In addition to the 2 reducible fibres over =0, oo as in No. 4, we
need one more, say over t=v. This v=p, should serve as an invariant of weight 4
when we employ the weight-table of type E,. This is a rough idea for getting the
above equation.

(II) The discriminant:

A= —161%(1—p,)*{p¥4peq.—q3)+ - - - +4t°} .

The singular fibre at 7= oo is of type III for any A, as in No. 2. Assume p, #0.
Then at 1=0 (or t=p,), the Weierstrass equation reduces to the cubic curve

yi=x3+pex?  (or y2=x3+x%(ps+paps))

with a singular point at (0, 0) (node or cusp as the case may be). Thus the singular
fibre at t=0 is either I, or III (according to whether ps#0 or =0) provided that

11=Q§—442P69&0 .

Similarly, the singular fibre at t=p, is either I, or III (according to whether
Pe+P2P4#0 or =0) provided that

Ja=(Ps—q4)? —44,(ps+p2ps) #0 .

For A generic, there are no other reducible fibres than those three, and so the trivial
lattice is 7= AP3, which implies that L=D, @ A,, M= D* ® A* ([0S]). (We note that
the orthogonal complement of a root (i.e. of 4,) in Dgis D, ® A4,.)

(III) Thelattice M =D} @ A¥ has 2 minimal vectors of minimal norm 1/2 com-
ing from A%, and 24 vectors of norm 1 coming from DJ; the latter divides into 3
orbits under W(D,). The number of roots in L is 26 (=24+2).

On the other hand, we have by the formula (3.1)

1 1 1

(P,P>=2+2P0)—] 2 -] 2 _|2
0 0 0

for Pe M = E(K); the 3 terms correspond to the reducible fibres at 1=0, p,, co, with
the value 1/2 if (P) passes through the non-identity component there. In particular,
we have (P,P)>=1/2 if and only (PO)=0 and (P) meets all the non-identity
components at =0, p,, co. Hence we see that the rational points
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+Qo=(0, ustt—p) e Ek) (u=g,)

give the minimal vectors, since they reduce to the singular points (0, 0) at =0, p,, 0.
More generally, the short vectors P meeting the non-identity components at
t=0, oo have the following form:

P=(at, ct*>+di).

The condition for such a P to satisfy the defining equation is:

ct=a+q,

2cd = a®+a’p,—a(ps+94)— 2044,
d* = a’pe+pig,+apaqs -
(IV) Eliminating a, d, we obtain the fundamental algebraic equation, which
factorizes as follows:
®(c, H)=(c*—q,)*¥(c, ))=0,

where

W(c, A)=c®+c®(2p, ~44;)+c*(p3— 2Py —6p2g2 + 693 — 2q4)
+%(—2p2pa—4Ps—2P34, +6p2q3 — 493 — 2244 +4929.)
+(Pa—P292+93—44) .

The first factor corresponds to +Q, mentioned above: ¢2=gq,, a=0. The 8 roots of

¥ define 8 rational points +Q, (i=1, - - -, 4), corresponding to 8 vectors of norm 1

in D} forming one orbit under W(D,), which generate an index 2 subgroup (cf.
No. 4 or No. 5).

(V) Let tu;(i=1, ---, 4) be the 8 roots of this equation, and write down the
relation of roots and coefficients. Then, letting &5, denote the d-th elementary
symmetric function of u?, - - -, uZ, we obtain the following:

g, = uj

p2 = —(—4q,+¢%)/2

Ps=(P2—4p,q,+493— e, +2¢,)/4

s = (P3—8p,q,+893 —e4—2¢,)/4

Ps =(—2p2pa—2p3q,+6p,a3 ~493 —2p2qs + 4929, +£6)/4
where we set e, =u, - - - u,. This gives an explicit formula of the fundamental invariants
of W(D,@® A,)= W(D,) x W(A,) in terms of the splitting variables ug, u,, - -, u,, and
we conclude that the family in question is an excellent family for No. 7.

(VI) Generators. The 5 rational points

Qi=(u?—gq)t, wt*+dp)  (i=1,---,4)
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and Q, generate an index 2 subgroup of E(K)~ D} @ A¥. Taking one more point
| ‘
Qs=(u3—q2)(t—pa), us(t—paft—--), “5=?("1+ ),
we get generators of the full MWL E(K).
(VII) The frame invariant is given by
J)=psJ,J, (cf. II).

In terms of u;, p,, J,, J, are expressed as follows:
1
pa=[1' > +ustus+uy),
, 1 1
Ji=]1 “o+7(“1"“z—“3—u4) “0—7('41_“2—“3—"4) s

a
Jo= il=_[1 (uo+u;)uo—u;)

where the product for p,, J, is taken over 4 choices of changing even number of
signs of u,, u,, u, of the given linear form. The other invariant 6(4) in Theorem 2
is equal to

6={u0 I1 (uf+u,)(u,—uj)}.

1gi<j<4

Therefore the MWL is nondegenerate if and only if uo #0, #;# + u;forany 1<i<j<4
and none of the linear factors of J vanish.
(VIII) Example. Let uq=6,u;=2,u,=4,u;=8, u,=16. Then

q,=36, p,=-98, p,=2025, q,=5825, pe=271350.
So the equation of the elliptic curve E{Q¥) is:
p2=x3+(271350 —98£)x 2 + t(t — 5825)(t — 2025)x + 361 %(1 — 2025)*
and the generators of E(QX¢)) are given by
Qo=(0,612—12150f), Q,=(—321,2:2—69301), Q,=(—20¢,41>—45007),
Q,=(281, 8t2—26280t), Q,=(220¢, 16¢%+ 126000¢),
Q=(—35(t—2025), (t—2025)(t+20475)).
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Qo

Qi

Figure No. 7

8. No. 8, No. 16, No. 27, No. 43 (L=A,, * -+, A;)
8.1. No.8(L=4,).
(I) NO. 8: T= A4, L=A4, M=Az

Y2 4psxy+pat?y=x>+xHp )+ x(p2t3)+1°, A=(py, 3, Pas Ps)

Magic of weights works here using the weight-table of type Eg (cf. 3.2).
(II) The discriminant:

A= —1>{py(piPs—p:P3ps+p3)+ - - +43215}

The singular fibre at =00 is of type /7, as in No. 1. The singular fibre at =0 is of
type 75 under the condition:

ps#0, Jy=pips—ppaps+pi#0.

This is because then the discriminant has order 5 at =0 and the Weierstrass equation
reduces to the cubic curve y?+psxy=x3 with a node at (0, 0). Thus we can write

SH0)=06,+:-+0,,

where the 5 irreducible components @ ; are smooth rational curves forming a pentagon,
numbered in a cyclic way. (We choose @, as the identity component as usual.)

For A generic, there are no other reducible fibres, and the trivial lattice is T= A4,
and L=A,, M= A% ([0S)).

(III) The lattice M =A% has 10 minimal vectors of minimal norm 4/5, which
divide into 2 orbits under W(4,)=s, and M is generated by any 4 of the 5 vectors
in an orbit (cf. (No. 6, III)). The number of roots in L=A, is 20.

On the othr hand, for Pe E(K)~ A%, suppose that (P) meets ), then the formula
(3.1) gives
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6 .
< (=23

(P, P)=2+2(P0)— % 1.4
0 (j=0).

Thus the minimal vectors are exactly those P for which (PO)=0 and (P) meets. ©;
for j=2 or 3; the latter distinguishes the 2 orbits. '
(IV) There are 5 rational points of the form

2 3
P=(;7, —uT) (u=s5p,(P)) .

Indeed, substituting the coordinates into the defining equation, we get the fundamental
algebraic equation in this case:

O(u, ))=u’+p,u—psu* +pu—ps=0

which is the generic algebraic equation of degree 5.

(V) Let uy, --,us be the 5 roots; we have u;+---+us=0. Then p,
(d=2, 3, ,4, 5) is equal to the d-th elementary symmetric function of u,, - - -, us. Thus
we see that the family in question is an excellent one for No. 8.

(VI) Let
Q,-=(t—22,t—33) (=1,---,5).

uy u;

Obviously, each P=Q, is a short vector (i.e. (PO)=0) such that (P) passes through
a non-identity component @; (j>0) (note that P reduces to the node (0, 0) at 1=0).
Observe that these 5 points are conjugate under the Galois group over (4), i.e. they
form a single orbit under W{A4,). Hence {Q;} give 5 minimal vectors in M = A%, which
generate M. Incidentally, notice that they pass through one and the same component,
say @,. For the corresponding sections (Q;) (in the elliptic surface) are disjoint
everywhere, since Q;— Q, is a root in L=A4, for any i#k.
(VII) The frame invariant is given by

J(A)=psJ, (cf. II),
which is expressed as follows in terms of u;:

Ps=Uy " "Us,

Jn=—1-l(u.-+uf)-

i<j

So far we have omitted the proof of such identities as above. As an illustration, let
us check the last identity. Let F(u)=®(u, 1); it has 5 roots ;. Assume for a moment
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that #;+u;=0. Then F(u) and R —u) have a common zero u=u,. By eliminating u,
we obtain a nontrivial relation among p,, which turns out to be J, =0. Thus Jy is
divisible by the product of u;+ ;. Comparing the degree, we see that J 1 is a constant
multiple of this product. A special case determines the constant to be —1.

The MWL is nondegenerate if and only if #;%0 and u, tu;.

(VIII)  Example. Letu,=1, u;=2, u3=3, u,=4, us=—10. Then it is easy to
see that the above nondegeneracy condition holds. Since we have

P2=—65, py=-300, p,=-—476, ps=-—240,
the defining equation of the elliptic curve E/Q(1) is:
y2—240xy—300t2y =x3—4761x2—653x+15 .
(A direct calculation shows that the discriminant has 5 simple roots (conjugate over
Q) at t#0 and order 5 zero at =0, which checks also that the MWL is nondegenerate

for this example.)
The minimal vectors {Q;} € E(Q(f))~ A% are as follows:

t2 3 IS 2 3 2 =3
(t 23 t3) ) (_’ —) ’ <—) —) > <—9 —) ? ( ’ ) ’
4 8 9 27 16 64 100 1000
and the remaining minimal vectors {—Q;} are given by

2 3
(12, — 13+ 540¢2), (IT %+ 36012), etc.

(Note that — P is not equal to (x, —y) for P=(x, y) in general. Of course, we can
rewrite the curve by a simple coordinate change in a more familiar style:

y?=x3+(14400—476£)x 2 + (360001 — 65¢3)x + 22500¢* + 15 ,

but then the generatos {Q;} lose its simplest expression.) Other short vectors such
as Q;+Q; (of norm 6/5) or Q;—Q; (norm 2: roots of A,) can be computed via the
addition theorem. For instance,

2 3
0,+0, =<%+ 1961, ;—7+9812+470401)

Q,~Q,=(345600— 13241+ 1, — 165888000+ 11539201 — 198612+ ¢3) .

Observe that sp,(Q, + Q) =u; +u; =3 or sp(@, ~0,)=2—1=1 is reflected in the
highest coefficients. Also we see that (Q, —Q,) is disjoint from (0) everywhere ([S2],
Lemma 10.9), i.e. (Q,) and (Q,) are disjoint and pass the same irreducible component
at r=0. Let us check directly that this component must be @ ; with j=2 or 3. First
we have (Q;, ;> =2—c, where c=contry(Q;, Q;)=4/5 or 6/5 according as j=1, 4 or
Jj=2, 3. Then (3.2) implies

(@1, 020 =1+(2,0)+(2,0)—(2,Q;)—c=1+0+0—0—c=1—c.
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Thus

01+05, Q1 +050=(01,0:)>+<Q2 02> +2{0), 2>
=Q2—c)+(2—-c)+2(1—c)=6—4c.

On the other hand, the expression for @, + @, shows that it has a norm smaller than
2, since it reduces to (0, 0) at t=0. This implies that c¢> 1, hence ¢=6/5, proving
that j=2 or 3 and hence that Q; are minimal vectors with norm 4/5. (This argument
works for arbitrary A with nondegenerate MWL, while the proof in (VI) is for generic

A. N.B. The generic case, combined with a specialization argument, also proves
the general case.)

©,
) Qi
ya
93 _Qi
CH)
O
|
Figure No. 8 Figure No. 16

8.2. No. 16 (L=4,).
(I) No.16: T=D,, L=A, M=A%

Y2+pat2y=x3+x3pt)+x(pat3)+ 1>, A=(p2, P3: Pa)-

This is obtained from No. 8 by letting ps=0. It turns out that magic of weights
works in this case too.

(I1) The discriminant:
A= —1"{16p3p3+ - +432¢%} .

The singular fibre at 1= o0 is of type II, as before. The singular fibre at =0 is of
type I¥ under the condition:

p3¢0 ’ P4¢0 .

This is because then the discriminant has order 7 at =0 and the Weierstrass equation
reduces to the cuspidal cubic y2=x3 (cf. [K], [N], [T]). Thus we have

f—l(0)=@o+ ot +@3+294+2@5 N

where the 6 irreducible components @; intersect as follows:
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(000,)=(0,0,)=1, (0,05)=(0,0,)=1, (©,05)=1

with all other (©,0;)=0. In this case, the group structure on f~'(0)*/@} is a cyclic
group of order 4, which is indexed by j=0, 1, 2, 3 as if je Z/4Z.

For 4 generic, there are no other reducible fibres, and the trivial lattice is T= D
and L=A4,, M= A% ([0S)).

(III) The lattice M = A% has 8 minimal vectors of minimal norm 3/4, forming
2 orbits under W(A4,)=%,, and M is generated by any 3 of the 4 vectors in an orbit.
The number of roots in L= A4, is 12.

On the other hand, for Pe E(K)~ 4%, suppose that (P) meets ©;, then by (3.1)
(cf. [S2], p. 229), we have

% G=1,3)
(P, P>=2+42(PO)—- 1 (i=2)
0 (j=0).

Thus the minimal vectors are exactly those P for which (PO)=0 and (P) meets @ ;
for j=1 or 3; the latter distinguishes the 2 orbits.

(IV) Arguing as in (No. 8, III), we obtain the fundamental algebraic equatlon
for No. 16:

D(u, )=u*+pu*—piu+p,=0.

Observe that this is deduced from the previous one by setting ps=0 (and dividing
by u#0).

(V) Letu,, -, u, be the roots of the above equation. This is compatible with
the notation of (No. 8, III) by letting us =0 (recall that p; is the product of u,, - - -, us).
Hence the formula of the fundamental invariants for W(4,) is the same as before
(but with u;=0), and it follows that our family is an excellent one for No. 16.

(VI) The 4 rational points Q,=(t%/u?, t3/u?) (i=1, - - -, 4) defined as in (No. 8,
VI), give a half of minimal vectors, and any 3 among them give free generators
of the MWL E(K)~ A%. (Note that Q5 “degenerates” to O under the specialization
ugs—0).

(VII) The frame invariant is given by

J=pips, p3=— [l (wi+u)), pa=uy---uy

15i<j<3

Hence the MWL is nondegenerate (=~ 43%) if and only if we have u;#0 and u,# tu
for all i, j

(VIII) Example. Take u;=1, u;=2, u3=3, u,= —6 (and us=0). Then
y2—60t2y=x3—-361x2—25¢3x+ 13
has the MWL E(Q(#)) > A%, which is generated by
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—(¢2 43 (7 ﬁ _ ﬁi)
Ql_(trt)’ QZ_('I’S), Q3—<9,27 .

8.3. No.27 (L=4,).
(D) No.27: T=E, L=A, M=A*

V24+paPy=x34+p,t3x+1°, A=(p,, ps).

This is obtained from No. 16 by letting p, =0. Again magic of weights works here.
(II) The discriminant:

4= —13{27p$+(64p3+216p3)t+432t%} .

The singular fibre at 1=00 is of type II, as before. The singular fibre at 1=0 is of
type IV* under the condition:

p3#0.

For the discriminant has order 8 at 1=0, while the j-invariant has no pole there (cf.
[K], [N], [T]). There are 7 irreducible components of which 3 have multiplicity 1:

[T0)=00+6,+0,+ -,

and the algebraic group f~!(0)* is the product of @§~G, and a cyclic group of
order 3, indexed by j=0, 1, 2.

For A generic, the trivial lattice is T=Eg and L=A,, M= A%.

(III) The root lattice L= A, is one of the most famous lattice: the hexagonal
lattice (cf. [CS]). It has 6 roots (norm 2), and its dual lattice M= A% has also 6
minimal vectors (of minimal norm 2/3), but they divide into 2 orbits under
W(A4,)=%5. Any 2 vectors in an orbit give free generators of M.

On the other hand, we have for Pe E(K)~ A%

4
p,Py=2+2p0)-|3 U="?
0 (=0,

if (P) meets @; (cf. (3.1), [S2], p. 229). Thus the minimal vectors are the short vectors
meeting @; for j=1 or 2, and the latter distinguishes the 2 orbits.
(IV) The fundamental algebraic equation for No. 27:

D(u, N)=u3+pu—py=0

is obtained from (No. 16, IV) by setting p, =0.

(V) Let uy, u,, uz be the roots of the above cubic equation (¥, +u, +u;=0).
Again this is compatible with the notation of No. 8 and No. 16 by letting u, =us=0
(recall that p, is the product of u,, - - -, #,). It will now be evident that the family
in question is excellent for No. 27.

(IV) The 3 rational points Q,=(t?/u?, t*/u?) (i=1, 2, 3) defined as in (No. 8,
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VI), give a half of 6 minimal vectors, and any 2 among them give free generators of
the MWL E(K)~ A%.
(VII) The frame invariant is given by

J=p3=uuzu; .

Thus the MWL is nondegenerate (=~ 43) if and only if we have u;#0 and u;#u; for
any i<j, or p3#0, 4p3+27p3+#0 in terms of A=(p,, ps) .
(VIII) Example. Take u,=1, u,=2, u3=—3. Then

yi—6t2y=x3-Tt3x+1°
has the MWL E(Q(1))~ A%, which is generated by

2 3 ' 2 _ .3
0,=(t%1%), Q2=<’— ‘—), Q3=(’—,-i) (==0,-0)).

4’8 9’ 27
0,
@
©o 0
0 )
Figure No. 27 : Figure No. 43

84. No.43(L=4,).
(I) No.43: T=E, L=A,, M=A*

yi=x*+p,t3x+1°, i=p,.

This is obtained from No. 27 by letting p;=0. Again magic of weights works here.
(II) The discriminant is:

A=—161%4p3+271).

The singular fibre at t= oo is of type 7J, as before. The singular fibre at =0 is of
type IIT* under the condition:

pZ'-’éO ’

since the discriminant has order 9 at t=0, while the j-invariant has no pole there
(cf. [K], [N], [T]). There are 8 irreducible components of which 2 have multiplicity 1:
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[TH0)=00+6,+: -,

and the algebraic group f~!(0)° is the product of @§~G, and a cyclic group of
order 2, indexed by j=0, 1.

If p,#0, the trivial lattice is T=E; and L=A4,, M= A}.

(III) The lattice M =AY has 2 minimal vectors of minimal norm 1/2, which
are interchanged by W(4,)={+ 1}, and M is generated by them. On the other hand,
for Pe E(K)~ A%, we have

3
il i=1
(P, Py=242(PO)—{ 2 U=1
0 =0,
if (P) meets @; (cf. [S2], p. 229). Thus P is a minimal vector if and only if (PO)=0

and (P) meets O,.
(IV) The fundamental algebraic equation for No. 43 reads:

®(u, )=u?+p,=0.

(V) Let u,, u, be the 2 roots of the above equation (4, +u,=0). This is
compatible with the previous notation of No. 8, No. 16 and No. 27. Obviously the
family defines an excellent family for No. 43.

(VI) The rational point Q, =(t%/u?, t3[u3) is a generator of E(K)~A%*.

(VII) The frame invariant is given by

J=p2=u1u2= "'u% B
Thus the MWL is nondegenerate (=~ A4}) if and only if we have u, #0, or equivalently,
p2#0.
(VIII) Example. Take u,=1, u,=—1. Then
yr=x3—13x+15
has the MWL E(Q(f))~ A%, which is generated by Q,=(¢2,¢3). We have Q,=
—Q,=(t* —r) and
2—6t+1 24152 —-9t+1
2Q1 =( ) ) )
4 8
the latter being a root of the narrow MWL E(Q(1)°~4,.
Incidentally the familiar elliptic curve defined over Q(j) with the j-invariant j

y2=x3—sx+s, S=L
4j—12%)

can be transformed to the above example by a simple coordinate change. The obvious
rational point (x, y)=(1, 1) corresponds to Q, and is a generator of E(Q(j)), if jis a
variable over Q.
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REMARK. Asshown in the above discussion, the 4 families treated in this section
are related by specializing the parameters: ps—0, p,—0 and p;—0, or in terms of
u;, us—0, u;—0 and u;—0. While the variables “downstairs” are sufficient for
describing how the singular fibre at =0 changes, i.e. how the frame is broken (in
the terminology of 3.2), the degeneration of MWL can be best described in terms
of the variables “‘upstairs” or the splitting variables ;.

9. No.9, No. 10, No. 11 (L=D,, A; ® 4,, A??)

9.1. No.9 (L=D,).
() No.9: T=D, L=D,, M=D} (cf. [SS], §6)

y2=x3+x(ps— 1))+ (ge+ st +42t>), A=(92 9as Pa> 96) -

This case has been treated in [S5], which we review here to compare with other cases
and also to make some supplements. The equation is weighted homogeneous of total
weight 6; the relevant weight-table (cf. §3, 3.2) should be called of type D,.

(IT) The discriminant is a polynomial of degree 6:

4= —=244(p,— 17’ +27(gs+qat +4:1%)}
and we have a singular fibre of type I§ at t=o00:
S 0)=0,+60,+6,+0;+20,.

There are no other reducible fibres in general, so for A generic, the trivial lattice is
T=D, and L=D,, M= D% (cf. [0OS)]).
(I1I) In a standard realization (cf. (No. 4, III)), we have

D,cZ*cD%.

The Weyl group W(D,) is generated by &, (permutations of 4 coordinates) and
sign-change at 2 coordinates, and has order 23-4!. The lattice M = D} has 24 minimal
vectors of minimal norm 1, which divide into 3 orbits under W(D,). If we denote
by {e;} the unit vectors in Z*, then they are: (i) {+e;}, (ii) {*/, f—ei—e;} (i<)),
(iii) {£(f—e;)}, where we set f=4(e;+ - +e,). The quotient group D}/D, is
isomorphic to Z/2Z @ Z/2Z, with representatives {0, e,, f, f —e,}. In particular, M
is generated by {e,, e,, 3, f}. The roots in L=D, are { +e;+¢; (i#/)}.

The minimal vectors Pe E(K)~ D} are precisely the short vectors (P) which meet
©;(j>0) (use (3.1)); the 3 cases j=1, 2, 3 correspond to the 3 orbits under W(D,).
In terms of Weierstrass coordinates, they are given by

P=(at+b,dt+e).

" (IV) The condition for a, b, d, e is easily written down. In particular, we see
a=0, 1 or —1, which correspond to the 3 cases as above, say j=1, 2 or 3 (by
renaming ©; if necessary). Let a=0; then b=gq,—d? e=q,/(2d) (if d#0), and
elimination yields the fundamental algebraic equation for 4:
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1 2
&(d, /1)=d“—3qzd6+(p4+3q§)d“—(qs+qu4+q2)d’+(?44) =0.

(V) Let u (i=1, ---, 4) be the roots of this equation. Then the relation of
roots and coefficients gives the formula (cf. [S5], Th. (D,), p. 678):

g2 = €3/3

Pa=84—3q3

gqa = Uy" " Uy

96 = €6—42P4—q3 -
Here &3, denotes the d-th elementary symmetric function of u2, - - -, u3. This gives
an explicit formula of the fundamental invariants of W(D,), and we see that the
family in question is an excellent family for No. 9 (cf. No. 4, No. 5).

(IV) The 4 rational points

Qi=(q—u?, wt +uuu;) (i=1,---,4), {ijk1}={1,2,3,4}
generate the sublattice ~Z* of E(K)~D}. The full MWL is generated by Q; and

one more rational point corresponding to — f, which has the form

x=_t+q2+z u,uj

i<j

Zui)t—{z wiu;+uuh)+2 Y u,uju,‘}.
i<j

i i<j<k

(20==(x’)0,
a

(VII) By (II), the frame invariant can be taken as the constant 1. The MWL
is nondegenerate if and only if u;# +u; (i<j).
(VIII) For an example, see [S5], p. 683.

92. No.10 (L=A,®4,).
() No.10: T=A @A, L=A,®A,, M=A*D A*
Y 4paxy=x3+xHpyt)+ M pat>+13)+qot*, A=(P2, P3, Par d2) -

The equation is obtained by magic of weights using the weight-table of type E,.
(IT) The discriminant is:

A= —t*{p3(—pi+pig)+ - +641%}.

We have a singular fibre of type III at t= oo, as in No. 2. The singular fibre at 1=0
is of type I, under the condition:

p3#0, Jy=—pl+pig,#0.

This is verified as in (No. 5, II), noting that the reduced curve at =0 has a node
at (0,0). Let
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M 0)=0p+0,+6,+0;, [Ho)=0,+0].
There are no other reducible fibres in general. Hence, for A generic, the trivial lattice
is T=A, @A, and L=A,® A,, M=A%® A% (cf. [0S]).

(III) The lattice M= A%® AT has 2 minimal vectors of minimal norm 1/2
(coming from the factor A¥), say +ii,, and 8 vectors of norm 3/4 (coming from the
other factor) which divide into 2 orbits under W(4,). If we denote by &, (i=1, - -+, 4)
an orbit, then {&; (i=0, - - -, 3)} forms a basis of M (note that ZL , #;=0).

The rational points Q; € E(K) corresponding to &;€ M can be described as follows.
They are short vectors, i.e. (Q;0)=0, and the minimal vectors +Q, meet the
components @, and @'; the formula (3.1) says 2—1—1/2=1/2. The 4 points Q; pass
through @' and either one of @; (j=1, 3), and (3.1) reads 2—3/4—1/2=3/4. In terms
of Weierstrass coordinates, they are given by

P=(at,ct?®+dt).
(IV) Substitutingitinto the defining equation, we get the condition fora, ¢, d:
a=c*—q,, d=0 or d=—ap,, a*+a’p,—acp,+ap,=2cd.

Consider the case d=0 (d= — ap, corresponds to changing P— — P). Then eliminating
a, we get the fundamental algebraic equation:

d(c, )=a*+a’p,—acp;+ap,
=(c?—qy)c* +c*(p,—29;)—cp3+ps—P29. +97)=0.
(V) Letc= +ugbethe roots of the first factor c2 — g,; then we have a=0and
Qo=(0,upt?), gr=uj.

Next let +u;(i=1, - - -, 4) be the roots of the second factor of ®(c, A). By the relation
of roots and coefficients, we have u, +u, +u3+u,=0 and

q, = “%
& =pr—2q, ie. |P2= &,+2q;
€3 =D P3=¢&;3 ,
€4 = Pa—P292+43 Pa=¢s+P2dr—4q5.

Here ¢, is the d-th elementary symmetric function of u,, - - -, u,. This gives an explicit

formula of the fundamental invariants of the Weyl group W(A4,® A,)= W(4,) x

W(A4,), and we see that the family in question is an excellent family for No. 10.
(VD) Generators. Let

Qi=«u12_q2)t’uitz) (l':]’ “'14)'

Then Q,+ - +Q,=0 and {Qo, Q;, 05, O3} generate the full MWL E(K)~
M=A%@ A%,
(VII) By (II), the frame invariant is given by
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JA)=p3J=ps(—pi+priq).
In terms of splitting variables u;, we have

Py=—(uy +u)uy +uz)(u, + u3)
4
Ji=— l:[l (o +u;)uo—u;) .

The invariant (7) is given by the product of all roots of L=A,@® A4,, expressed in
terms of u;:

5=(2“o)2 H (“i-“j)z .

1si<j<4
Therefore the MWL is nondegenerate if and only if uy # 0 and i, # + u;(0<i<j<4).

(VIII) Example. Take uy=4,u;=0,u,=1,u3=2, u,=—3, which satisfy the
above condition. Then g, =16, p, =25, p; = — 6, p, = 144. So the elliptic curve E/Qz)

y2—6xy=x3+25tx?+(144t% 4+ t>)x + 16¢*

has the MWL E(Q(f))~M = A% @ A}. The rational points Q,, - -, Q, are given as
follows:

0,4t%), (—16t,0), (—15t,¢%), (—124,2t3), (=Tt —3t?),

of which the first 4 elements form free generators. The duplication formula on E gives
2Q,= (?14—(20160— 1312t +¢3), %(—2419200+ 137280t — 856t —t3)) ,

which confirms that the point 2Q, has norm 22:1/2=2, i.e., it is a root in 4, L.
(This also checks that (Q,) passes through @,.) For other P=2Q,, the x-coordinate
is a rational function of degree 4 in ¢, reflecting the fact that their norm 22-3/4=3
shows (PO)=1.

0, Qo
[————
9,
) (C] N Q-’
©o
o
0 00

Figure No. 10 Figure No. 11
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9.3. No. 11 (L=A4%?).
() No.1l: T=A%L L= 492, M=A%0?
Y24paxy+psty=x3+x(gt2)+(g:> + 1%, A=(py; P3, 92, q3) -

This equation is obtained by magic of weights using the weight-table of type Es.
(II) The discriminant is:

A=t —pN—p3—P3P:sd:+P3q3)+(=2Tp3+pa(- - N+ —43215} .

We have a singular fibre of type IV at 1=c0, as in No. 3. The singular fibre at =0
is of type I or IV under the condition:

J=—p3—p3p1q:+p39:#0.

This is verified as in No. 6, noting that the reduced curve at =0 has a node or a
cusp at (0, 0) according as p, is zero or not. Let

ST 0)=60,+0,+0,, fH0)=0,+6,+0,.

For A generic, there are no other reducible fibres, so the trivial lattice is T=A$?,
which implies L=A$2, M= A%®2 (cf. [0S]).

(IIT) The lattice A% has 6 minimal vectors of norm 2/3, which form 2 orbits
under W(4,)=5; 3 vectors in each orbit sum up to 0 and any 2 among them
generate this lattice. Hence the lattice M= A4%®2 has 12 minimal vectors of minimal
norm 2/3, which form 4 orbits under W(L)= W(A4,) x W(4,) of the form:

{ah ﬁz: a3} s {_ala —liz, _a3} ’ {519 529 63} > {—61s _62’ _53} )
where ﬁ1+ﬁ2+ﬁ3=0, 61 +62+63=0.

By (3.1), Pe E(K) is a minimal vector if and only if (PO)=0 and (P) passes
through a non-identity component both at =0 and t=co. In terms of Weierstrass
coordinates, we have

P=(at,ct®+dt).

As in No. 3, we have c= +1 and d= +2sp’ (P).

(IV) It follows from the defining equation that a, ¢, d should satisfy the
condition: :

c=1or —1, d=0 or d=—ap,—p,, a*+alg,—cp,)—2cd—cp3+q;=0.

The 4 choices of ¢, d correspond to the 4 orbits mentioned above. The choice c=1,
d=0 (or c= —1, d= —ap,—p,) leads to one of the fundamental equations:

®(a, Y=a’+a(—p,+4,)—p3+4:=0,
and the choice c=—1, d=0 (or c=1, d= —ap, —p;) to another:
Py(a, )=a>+a(p,+42)+p3+q5=0.
(V) Let a=y (i=1,2,3) (resp. v; (i=1, 2, 3)) be the roots of the first (resp.
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second) equation. By the relation of roots and coefficients, we have u, +u, +u; =0,
v, +v,+v3=0 and

1 1
Pz=‘2—(—ﬁz+’lz) P3=?(33—’73)

1 1
=—(e2+1), =—(—g3-n3).
UF 2 (e2+1n2) q3 2( 3—1"3)

Here ¢, is the d-th elementary symmetric function of u,, u,, u3, and 5, is that of v, v,, v5.
Therefore the two extensions of polynomial rings with Galois group W(4,)= <,

Olu,, u;1o0les, &3] , Olv,, v,1> 02, 15]
glue into a single extension with Galois group W(4,) x W(4,)

Oluy, uz, vy, v,1> Ole,, €3, M2, 13]= QL P2, 92, 3, 45] -
This proves that the family in question is an excellent family for No. 11.
(VD) Generators. Let
P,-=(u,~t, tz), Qi=(vit, —tz) (i=], Y 3).

Then {P,, P, 0,, Q,} generate the full MWL E(K)~M=A%®2 Note that
P, + P, + P;=0, since the 3 points are collinear, lying on the line y =2, and similarly
for Q..

(VII) The frame invariant is given by J in (II), which is expressed as

1 3
J(A)=*8— H (ui_vj)
ij=1

in terms of splitting variables u;, v;. The invariant §(4) is equal to the product of the

discriminants of @, and ®,. Therefore the MWL is nondegenerate if and only if u,,
u,, Us, Uy, Uy, U3 are mutually distinct.

(VIII) Example. Take u,=0, u,=1, v,=2, v,=3, which satisfy the above
condition. Then we get an elliptic curve E/QX1)

y2—9xy+ 15ty=x3—10¢2x+ 1513 + 14,
having the MWL E(Q(1))~ M = A%®2, The generactors P,, P,, Q,, O, are given by
©0,t%), (1%, @2t —t?), (3t,—t?).

10. No. 15 and No. 26 (L=A,® 4,, 49?)

10.1. No.15(L=4,DA4,).
(D) No.15: T=A;, L=A,®A,, M=A:D A*

Y24qopaxy+pst?y=x3+p,g,tx* +(p,+ @ )3x+ 1%, A=(py, p3, q2) .
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Note that this equation is obtained from No. 8 by specializing the parameters in a
way less obvious than the case No. 16. It will be seen below that this arises quite
naturally when we use the splitting variables.

(I1) The discriminant is:

4=t%{q3p3(q3+P3 293P+ 2P+ - — 4324}
The singular fibre at =00 is the same type II as in No. 8. The singular fibre at =0
is of type I4 under the condition:

4:#0, p3#0, Jy=q3+p3—2q43p,+4q,p3#0,

since 4 has order 6 at r=0 and the reduced equation gives a nodal cubic
y2+4gyp3xy=x3 (with the node (0,0)). It has 6 irreducible components @ j
(=0, - - -, 5) forming a hexagonal cycle.

For A generic, the trivial lattice is T=A5,and we have L=A4, ® 4,, M= A$ D A*
(cf. [OS)).

(IIT)  Given Pe E(K)~ M, suppose that (P) meets @,. By the formula (3.1), we
have

(=15

(P, Py=2+2(PO) — (=24

(U=3)

(j=0).
Hence P has norm 1/2 (resp. 2/3 or 7/6) if and only if (PO)=0 and (P) passes through
O, (resp. @,, 0, or O,, O,).

(V) Asin No. 8, there are 5 rational points:

o N|w W s a|w

TR R
P= (F’ ‘u—3> (u=sp(P)),
where u satisfies the fundamental algebraic equation:
P(u, N)=u’+(py+q2)u> —p3u* +prqu—q,ps
=(u” +q,)(u’ +pu—p;)=0.

(V) Let +u, be the roots of u2+¢,=0 and let u,, u,, us be the roots of
u>+pu—p3=0 (u4y +u, +u;=0). The relation of roots and coefficients gives

2
q2= —Up
P2 =Uyly +u Uz +usuy

P3=u urus .
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This represents the fundamental invariants of the Weyl group W(L)= W(A4,) x W(4,),
and we can conclude that our family is an excellent family for No. 15.

REMARK. At this point, we can explain the degeneration of MWL from No. 8
to No. 15. In the notation of (No. 8, II), we should have p;50 and J, =0 in order
to make the singular fibre at 1=0 to be of type /. In terms of the splitting variables
Uy, yUs (Ug+ - +us=0) in (No. 8, V), the invariants p,, J, are expressed as in
(No. 8, VII) and so we should have u;#0 for all i and u;+u;=0 for some i<}.

Now let u,=u, and us=—u, so that u;+u,+uy;=0. Then the elementary
symmetric functions pj of u,, - - -, us, which were denoted by p, in No. 8, are rewritten

as follows:

P2=P2+42, P3=P3, P4=P2dz, Ps=42P3

This defines the family for No. 15 under consideration.

(VD) Let
2 3
Q‘=(’—2, ’—3) (i=0, -, 3).

Observe that {+Q,} and {Q,, Q,, Q,} are stable under the Galois group W(L) (for
A generic). It follows that + Q, are the minimal vectors of norm 1/2 and Q,, Q,, O,
form one orbit of vectors of norm 2/3, and that Q,, @, and Q, generate the MWL
E(K)~M=A% @ A}. In view of (I1]), (Q,) meets @,, while (Q,) (i=1, 2, 3) meet either
@, or O,.

(VII) The frame invariant is given by
JA)=qp3J,  (cf. 1]),

where J, is expressed as follows in terms of u;:
3
Jy=—TT (o~ u)uo+u;) .
i=1

Thus the MWL is nondegenerate if and only if all u,, - - -, u; are different from 0
and from each other and u,# —y; for any i=1, 2, 3. ’
(VIII) Example. Let uq=4, u,=1, u,=2, uy;=—3. Then the elliptic curve

y2+96xy—6t2y=x>+112tx?—23t3x +1¢°
has a rank 3 MWL E(Q(?))~ M = A% @ A%, which is generated by

(2. 0. ﬁﬁ) _(ii)
Ql_(t5t)’ QZ—(4’8 ’ QO— ]6,64 .
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Figure No. 15 T Figure No. 26

10.2. No. 26 (L=A%2)
() No.26: T=Dg, L=AP2, M=A1®?

Y =x 4 paqatx? —(pa+@)’x+ 1%, A=(p2, q2).

This is obtained from No. 15 by letting p; =0 and changing the sign of p,, ¢,.
(I) The discriminant is:

A=161%{p3q3(p—gq2)*+ - —271%}.

The singular fibre at ¢=co is the same type II as in No. 8. The singular fibre at =0
is of type I} provided that

Pﬁﬁo, ‘12#0, P2¢Q2 .

For 4 has order 8 and the j-invariant has a pole of order 2 at t=0. It has 7 irreducible
components @; (j=0, - - -, 6), which we arrange in a similar way to (No. 16, II); in
particular, @; (j=0, - - -, 3) have multiplicity 1.
For A generic, the trivial lattice is T=Ds, and L=AP?, M=A}®2 (cf. [0S]).
(ITN) The lattice M is generated by 2 minimal vectors (of norm 1/2) which are
orthogonal to each other. There are 4 minimal vectors and 4 vectors of norm 1. By
(3.1), if (P) meets &, then

> G=13)
{P,P)=2+4+2(PO) — 1 (i=2)
0 (j=0).

Hence P has norm 1/2 (resp. 1) if and only if (PO)=0 and (P) passes through @,
or O, (resp. @,).

(IV) In this case, there are 4 rational points of the form:
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Pe 2 3
- 79? )

and the fundamental algebraic equation is given by

P, A)=(u>—p,)u*—q,)=0.
(V) Let u,, u, be the splitting variables such that

— 2 2
Pa=uy, q=uj.

For generic (p,, g,), the extension Q(u,, u,)/Q(p,, q,) is a Galois extension whose

Galois group is the Weyl group W(L)=W(A4,)x W(4,)={£ 1} x{+1}. It is easy to
see that our family is an excellent family for No. 26.

(V) Let
12 3 .
Qi=(—;,_u§) (i=1,2).

uj i

We claim that Q,, @, are minimal vectors such that {Q,, Q,>=0. Indeed, let ¢ be
the automorphism of Q(u,, u,) sending u, to —u, and leaving u, fixed. Then we
have 0] = —Q,, 03 =0,.On the other hand, we have {Q9, 03> =<Q,, @,) in general
(see [S2], Prop. 8.13). This proves {Q,, @,>=0. Now both Q,, @, have norm <2
by (3.1) mentioned above. Therefore the only possibility is that they are minimal
vectors in M = A}®2. (The claim can be also proven by other argument which works
even if the extension is trivial; cf. example below).
(VII) The frame invariant is given by

JA)=p,9:(P2—142),

while 6= {(2u,)2u,)}*>=2%p,q,. Hence the MWL is nondegenerate if and only if
u  #0, u; #0, uy +u, #0.
(VIII) Example. Let u;=1, u,=2. Then we get the elliptic curve

yi=x3+4tx2—5t3x+13,
and the rational points
23
= tza 13 ’ =\ 7
0,=(0%1), Q, ( 23 )
forming an orthogonal basis of E(Q(f))~ M = A¥®2, By the addition theorem, we have
1 1
0,—0,=(—4t+1t2,6t2—13), Q1+Q2=(?(—36t+t2), 7(126t2+r3));
these are also short vectors and, in fact, {+Q, +Q,} are all the vectors of norm 1.

Note also that the above expression implies that (Q,) and (Q,) pass through different
irreducible components at =0, by renumbering if necessary, (Q,) meets @, and (Q,)
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meets ©,, and {+Q,+Q,} meet @,. The 4 roots in L=AP? are given by
+20,, +20,; for instance,

1 1
20, =<Z(9+2t+t2), ?(—27—33t+3t2+t3)) .

This shows directly that Q, is a minimal vector, since 2Q, has norm <2 as a short
vector so that {(Q,, 0, <2/2%=1/2. Combined with the above formula for 0, + 0,
showing that their norm is less than 2, we deduce that [{Q,, 0, | < 1/2, which implies
that {Q,, 0,>=0 by (3.2) and [S2], p. 229.

(B]
(CS]
K]
[N]
[0s]
[s1]

(52]
[s3]

[s4]
(s5]
(s6]
[87]
(s8]
ml

(vl
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