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Abstract :

The 3D vector version of the back-propagation algorithm (called “3DV-BP”) is a nat-
ural extension of the complex-valued version of the back-propagation algorithm (called
“Complex-BP”). The Complex-BP can be applied to multi-layered neural networks whose
weights, threshold values, input and output signals are all complex numbers, and the 3DV-
BP can be applied to multi-layered neural networks whose threshold values, input and
output signals are all 3D real valued vectors, and whose weights are all 3D orthogonal
matrices. It has already been reported that an inherent property of the Complex-BP is
its ability to learn “2D motion”. This paper shows in computational experiments that
the 3DV-BP has the ability to learn “3D motion”, which corresponds to the ability of the
Complex-BP to learn “2D motion”.

1 Introduction

One of the most popular neural network models is the multi-layered network and the re-
lated back-propagation training algorithm, called here, “Real-BP” [7]. Back-propagation
networks have many successful applications.

The “Complex-BP” is a complex valued version of the back-propagation algorithm,
which can be applied to multi-layered neural networks whose weights, threshold values,
input and output signals are all complex numbers [1, 3]. This algorithm enables the
network to learn complex valued patterns naturally. It has already been reported that an
inherent property of the Complex-BP is its ability to learn “2D motion” [1, 3]. And also,
the Complex-BP has been applied to the interpretation of optical flow (motion vector field
calculated from images) and estimation of motion which are important tasks in computer
vision [5, 6].

The “3DV-BP” is a three-dimensional vector version of the back-propagation algo-
rithm which can be applied to multi-layered neural networks whose threshold values,
input and output signals are all 3D real valued vectors, and whose weights are all 3D or-
thogonal matrices [2]. This algorithm is a natural extention of the Complex-BP algorithm.
This paper shows in computational experiments that the 3DV-BP has the ability to learn
“3D motion”, which corresponds to the ability of the Complex-BP to learn “2D motion”.

Hereafter, we shall refer to a real valued (usual) neural network used by the Real-BP
as a “Real-BP network”, a complex valued neural network used by the Complex-BP as
a “Complex-BP network”, and a three-dimensional vector valued neural network used by
the 3DV-BP as a “3DV-BP network”.

This paper is organized as follows: Section 2 describes the 3DV-BP algorithm, and
Section 3 deals with the empirical analyses of the ability of the 3DV-BP network model
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to learn 3D motion . The paper will end with our conclusions.

2 The “3DV-BP” Algorithm

This section briefly describes the 3DV-BP algorithm [2]. It can be applied to multi-layered
neural networks in which threshold values, input and output signals are all 3D real valued
vectors, and whose weights are all 3D orthogonal matrices, and the output function F' of
a neuron can be defined as

f(th) ai
F(A) = | fla) |, A=|a |, (1)
f(a3) as

where f(u)=1/(1 + exp[—ul), that is, each component of an output F(A) of a neuron
means the sigmoid function of each component a,, of the net input A to the neuron,
respectively (m = 1,2, 3). The learning rule has been obtained by using a steepest descent
method.

3 Ability to Learn 3D Motion

We wiil now present some illustrative examples to show that an adaptive network of 3D
valued neurons can be used to learn 3D motion such as rotation, similar transformation,
and translation. Due to space limitations, we will restrict the presentation of our results
to similar transformations, although similar work has been carried out on rotations, and
parallel displacement [4].

We used a 1-6-1 three-layered network, which transformed a point (z;, x5, x3) into an-
other point (z), 2%, 2%) in 3-dimensional space. Although the 3DV-BP network generates
a value X = '[x; o 23] within the range 0 < xy, 29,23 < 1, for the sake of convenience,
we present it in the figures given below as having a transformed value within the range
—1 < xy,29, 23 < 1.

We also conducted experiments with a 3-15-3 network with real valued weights and
thresholds, to compare the 3DV-BP with the Real-BP. The first component of a 3-vector
was input into the first input neuron, the second component was input into the second
input neuron, and the third component was input into the third input neuron. The output
from the first output neuron was interpreted as the first component of a 3-vector, and the
output from the second output neuron was interpreted as the second component, and the
output from the third output neuron was interpreted as the third component.

The learning constant £ used in these experiments was 0.5. The initial components
of the weights and the thresholds were chosen to be random real numbers between — 0.3
and 0.3. We determined that learning finished when
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held, where ||@|| % /22 + 23 + 23, @ ="'[z1 22 23]; T, OP € R? denote the desired
output value, the actual output value of the neuron k for the pattern p, i.e. the left side
of (2) means the error between the desired and actual output patterns (R denotes the
set of real numbers); N denotes the number of neurons in the output layer. We regarded
presenting a set of learning patterns to the neural network as one learning cycle. In this
connection, time complexity per learning cycle of the 1-6-1 three-layered network for the
3DV-BP was nearly equal to that of the 3-15-3 three-layered network for the standard BP,
as seen in Table 1. Furthermore, the space complexity (i.e. the number of parameters)
was almost half that of the standard BP.

The experiments described in this section, consisted of two parts - a training step,
followed by a test step.

3.1 Learning of a Simple 3D Motion

Figs. 1 and 2 show the result of an experiment on a simple similar transformation.

The training step consisted of learning a set of (3D orthogonal matrix valued) weights
and (3D vector valued) thresholds, such that the input set of 11 points (with equal inter-
vals) lying along the straight line

x 1
y | =t|1 (0.0 <t < 1.0) (3)
z 1

gave as output, half-scaled straight line points (Fig. 1). The output training points also
lay along the same straight line (equation (3)), but the range was 0.0 <t < 0.5. To avoid
complexity, we omitted the points and showed only the lines joining them in the figures.

In a second (test) step, the 48 input points (with equal intervals) lying on three squares
would hopefully be mapped to an output set of points lying on three half-scaled squares.
The actual output test points for the 3DV-BP did, indeed, almost lie on the squares (but,
with an error) (Fig. 2).

To compare how a real valued network would perform, the 3-15-3 (real valued) network
mentioned above was trained using the same pairs of training points lying along equation
(3). The same 48 test points lying on the three squares were then input with this real
network. All points were “mapped” onto straight lines, as shown in Fig. 2.

3.2 Learning of a More Complex 3D Motion

This subsection shows that the 3DV-BP can make more complicated transformation.

Fig. 3 shows how the training points mapped onto each other. Those 11 points (with
equal intervals) lying along the straight line indicated by “Input Pattern 1”7, mapped onto
points along the same line, but with a scale reduction factor of 2. Those 11 points (with
equal intervals) lying along the straight line indicated by “Input Pattern 2” mapped onto
points along the same line, but with a scale reduction factor of 10. All the training points
lie along the straight line



y | =t|1 (1.0 <t < 1.0), (4)

where “Input Pattern 1”7 for 0.0 <t < 1.0, “Output Pattern 1”7 for 0.0 < ¢ < 0.5, “Input
Pattern 2” for —1.0 < ¢ < 0.0, and “Output Pattern 2” for —0.1 < ¢ < 0.0.

In the test step, by presenting the 60 points lying on the three circles 2% + 22 = 1,
y? + 22 =1 and 22 + y? = 1, the actual output points took the patterns as shown in Fig.
4.

It appears that this 3DV-BP network has learned to generalize the reduction factor
« as a function of the position in three-dimensional space, i.e. a point ‘[z y 2] is
transformed into another point o'[z y 2], where a(‘[x y 2]) ~ 0.5 for z,y,2 > 0, and
a(tlr y z]) =~ 0.1 for z,y,2 <0.

4 Conclusions

We investigated by computational experiments the characteristics of the 3DV-BP algo-
rithm which is a natural extension of the Complex-BP algorithm. It was learned that
the 3DV-BP had the ability to learn “3D motion” such as similar transformation as its
inherent property, which corresponded to the ability of the Complex-BP to learn “2D
motion”. We expect that applications for the 3DV-BP algorithm will be found in such
areas as 3D image processing.
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Time complexity Space complexity

Network x and + | + and — | Sum | Weights | Thresholds | Sum

3DV-BP 1-6-1 255 141 396 36 21 57

Standard BP 3-15-3 264 141 405 90 18 108

Table 1 The Computational Complexity of the 3DV-BP and the Standard BP. Time
complexity means the sum of the four operations performed per learning cycle. Space
complexity means the sum of the parameters (weights and thresholds).
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