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Abstract

We describe a new neuron model, � -dimensional
vector neuron, which can deal with � signals as
one cluster, by extending the 3-dimensional vector
neuron to � dimensions naturally. The � -bit par-
ity problem which cannot be solved with a single
usual real-valued neuron, can be solved with a sin-
gle � -dimensional vector neuron with the orthog-
onal decision boundary, which reveals the potent
computational power of� -dimensional vector neu-
rons. Rumelhart, Hinton and Williams showed that
increasing the number of layers made the compu-
tational power of neural networks high [Rumelhart
et al., 1986a; Rumelhart et al., 1986b]. Here we
show that extending the dimensionality of neural
networks to� dimensions originates the similar ef-
fect on neural networks.

1 Introduction

In order to provide a high computational power, there have
been many attempts to design neural networks, taking ac-
count of task domains. For example, complex-valued neu-
ral networks have been researching since the 1970s [Aizen-
berg et al., 1971; Widrow et al., 1975]. Complex-valued
neural networks whose parameters (weights and threshold
values) are all complex numbers, are suitable for the fields
dealing with complex numbers such as telecommunications,
speech recognition and image processing with the Fourier
transformation. Actually, we can find some applications of
the complex-valued neural networks to various fields such
as telecommunications and image processing in the literature
[Hirose et al., 2002; Nitta, 2001; Kuroe et al., 2002]. For ex-
ample, the fading equalization problem has been successfully
solved with a single complex-valued neuron with the highest
generalization ability [Nitta, 2003], using the property that
the decision boundary for the real part of an output of a sin-
gle complex-valued neuron and that for the imaginary part
intersect orthogonally [Nitta, 2000]. The exclusive-or (XOR)
problem and the detection of symmetry problem which can-
not be solved with a single real-valued neuron [Minsky and
Papert, 1969], can be solved with a single complex-valued
neuron with the orthogonal decision boundaries [Nitta, 2003].

A three-dimensional vector neuron is a natural extension
of the complex-valued neuron to three dimensions [Nitta and
Garis, 1992], which can deal with three signals as one clus-
ter: the input signals, thresholds and output signals are all
3D real-valued vectors, and the weights are all 3D orthogonal
matrices. The activity � of neuron is defined to be :
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where �� is the �-th 3D real-valued vector input signal, � �

is the 3D orthogonal weight matrix for the �-th input signal
�� (that is, an element of the 3-dimensional orthogonal group
�����: � � � �� � � �� � �� � � �� where� denotes the set
of real numbers, and � � the 3-dimensional identity matrix),
and � is the 3D real-valued vector threshold value. The output
signal � ��� is defined to be :
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In the above formulation, various restrictions can be imposed
on the 3D matrix, e.g. it can be regular, symmetric or orthog-
onal etc., which will influence the behavioral characteristics
of the neuron. The weights are assumed to be orthogonal ma-
trices because this assumption is a natural extension of the
weights of the complex-valued neuron. We demonstrate this
natural extension as follows. Consider a 	-input complex-
valued neuron with weights 
� � 
�� � �
�� � � �� � � �
	� (� denotes the set of complex numbers, � �

���) and
a threshold value � � �� � ��� � �. Given input signals
�� ��� � � �� � � � 	�, the neuron generates a complex-
valued output value � � �� , where
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and ����� � ��� � ������ � � � ��. Furthermore,�
�
�

�
� ��

�
��

���

�

�� �
��

�� 
��

� �
�
��

�
�

�
��

��

�	
�

(4)

where ��
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is an element of the two-dimensional

orthogonal group �����. Considering eqn (4), the for-
mulation of a neuron as given in eqns (1) and (2) above is
natural.

2 � -Dimensional Vector Neuron
It is a matter of common occurrence that a vector is used in
the real world, which represents a cluster of something, for
example, a 4-dimensional vector consisting of height, width,
breadth and time, and a � -dimensional vector consisting of
� particles and so on. Then, we formulate a model neu-
ron that can deal with � signals as one cluster, called N-
dimensional vector neuron, by extending the 3-dimensional
vector neuron described above to � dimensions naturally.

2.1 � -Dimensional Vector Neuron Model
We will consider the following � -dimensional vector neu-
ron with � inputs. The input signals, thresholds and out-
put signals are all � -dimensional real-valued vectors, and the
weights are all � -dimensional orthogonal matrices. The net
input � to a � -dimensional vector neuron is defined as:

� �
��
���

	 �
� � �� (5)

where 
� is the �-th � -dimensional real-valued vector in-
put signal, 	 � is the � -dimensional orthogonal weight ma-
trix for the �-th input signal 
� (that is, an element of
the � -dimensional orthogonal group �� ���), and � is the
� -dimensional real-valued vector threshold value. The � -
dimensional real-valued vector output signal is defined to be:
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2.2 Decision Boundary
We can find that a decision boundary of a� -dimensional vec-
tor neuron consists of � hyperplanes which intersect orthog-
onally each other, and divides a decision region into � equal
sections, as that of a complex-valued neuron case. The net
input � (eqn (5)) to a � -dimensional neuron with � inputs
can be rewritten as:
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where ����
� is the �-th row vector of 	 � �� � �� � � � � � � � �

�� � � � ���, and � � �
���� � � � �����. Thus,
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is the decision boundary for the �-th component of an out-
put of the � -dimensional vector neuron with � inputs (� �
�� � � � � � ). That is, input signals �

�� � � � �
� � � ���

are classified into two decision regions ��

�� � � � �
� � �
��� � �����
�� � � � �
� � � 		 and ��

�� � � � �
� � �
��� � �����
�� � � � �
� � � 		 by the hyperplane given
by eqn (8) (� � �� � � � � � ). The normal vector  ��� of the
decision boundary for �-th component (eqn (8)) is given by
�
��
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� � �� � �� � � � � ��, and it follows from the

orthogonal property of the weight matrix 	 � �i.e.�	 � �
�	 � � �	 � �	 � � �� (� -dimensional identity matrix)�
that the inner product of the normal vectors of the decision
boundaries for any two distinct components is zero: for any
� � �� � � � such that � 
� �,
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Thus, the decision boundary of a � -dimensional vector neu-
ron consists of � hyperplanes which intersect orthogonally
each other.

2.3 � -Bit Parity Problem
We will find a solution to the � -bit parity problem, using a
single � -dimensional vector neuron with the orthogonal de-
cision boundary with the highest generalization ability. Min-
sky and Papert clarified the limitations of a single real-valued
neuron: in a large number of interesting cases, a single real-
valued neuron is incapable of solving the problems [Minsky
and Papert, 1969]. The most difficult problem among them
is the parity problem, in which the output required is 1 if the
input pattern contains an odd number of 1s and 0 otherwise.

Rumelhart, Hinton and Williams showed that the 3-layered
real-valued neural network (i.e., with one hidden layer) can
solve the parity problem [Rumelhart et al., 1986b]. As de-
scribed above, the parity problem cannot be solved with a



single real-valued neuron. Then, it will be proved that the
parity problem can be solved by a single � -dimensional vec-
tor neuron with the orthogonal decision boundary. Rumel-
hart, Hinton and Williams showed that increasing the number
of layers made the computational power of neural networks
high. We will show that extending the dimensionality of neu-
ral networks to � dimensions originates the similar effect on
neural networks.

2.4 A Solution
The input-output mapping in the � -bit parity problem is
shown in Table 1(a). In order to solve the � -bit parity prob-
lem with � -dimensional vector neurons, the input-output
mapping is encoded as shown in Table 1(b) where the out-
puts �[ 0 0 0 � � � 0 0 0], �[ 0 0 0 � � � 0 1 1], �[ 0 0
0 � � � 1 0 1], �[ 0 0 0 � � � 1 1 0], � � � are interpreted to
be 0, and �[ 0 0 0 � � � 0 0 1], �[ 0 0 0 � � � 0 1 0], �[
0 0 0 � � � 1 0 0], � � � are interpreted to be 1 of the original
� -bit parity problem (Table 1(a)), respectively. We use a sin-
gle � -dimensional vector neuron with only one input with a
weight
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(we assume that it has no threshold parameters). The deci-
sion boundary of the � -dimensional vector neuron described
above consists of the following � hyperplanes which inter-
sect orthogonally each other:
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for any input signal 
 � �
� � � � � � � �� . The � equa-
tions of eqn (11) are the � decision boundaries for the �
components of the output of the � -dimensional vector neu-
ron, respectively. Fig. 1 shows an example of the decision
boundary of the � -dimensional vector neuron (� �  for
the sake of simplicity).

Letting 
�� � � �� � �� � � � � �� and 
�
 � 	 �� 
� ��
(i.e., the weight	 is the� -dimensional identity matrix), we
can find that the � -dimensional vector neuron implements
the input-output mapping shown in Table 1(b), the decision
boundary of which consists of the orthogonal� hyperplanes
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... (12)
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Figure 1: An example of the decision boundary in the input
space of the 2-dimensional vector neuron (i.e., � � ). The
black circle means that the output in the parity problem is 1,
and the white one 0.
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Figure 2: The decision boundary in the input space of the 2-
dimensional vector neuron that solves the 2-parity problem
(i.e., � � ). The black circle means that the output in the
parity problem is 1, and the white one 0.



and divides the input space (the decision region) into �

equal sections, and has the highest generalization ability for
the � -bit parity problem. Fig. 2 shows an example of the
decision boundary for the 2-bit parity case.

3 Discussion
There exist some neural network models that can solve the
� -bit parity problem. The comparison between our result
and the previous works is shown in Table 2. The number of
neurons of the� -dimensional vector neuron and Aizenberg’s
model is 1 constantly whereas those of the other models in-
crease as � increases on the order � . The number of param-
eters of the Lavretsky’s model is the least, but the number of
layers of which is ��� which increases as � increases. The
number of parameters of the Stork and Allen’s model is on
the order� , but the activation function of the hidden neurons
of which is considerably complicated:
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where � is a constant greater than 1.0. The number of param-
eters of the � -dimensional vector neuron is the least among
the models on the order � �. The number of layers of the � -
dimensional vector neuron and Aizenberg’s model is only 2,
which is the least. As described above, the Aizenberg’s model
seems to be the best totally, but its activation function is some-
what special. Thus, we can conclude that the � -dimensional
vector neuron proposed in this paper is the best totally among
the models with the traditional activation functions such as a
step function. It should be emphasized here that the number
of neurons needed is only one (i.e., a single neuron).

4 Conclusions
We cannot point out for the present that the � -dimensional
vector neuron is a plausible model of brains. However, a solu-
tion to the � -bit parity problem with a single � -dimensional
vector neuron suggests that making the dimensionality of
neural networks high (for example, complex numbers and
quaternions [Nitta,1995] is a new directionality for enhancing
the ability of neural networks, and that it is worth researching
the neural networks with high dimensional parameters, keep-
ing the association with brains in mind.
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Input Output
� � � � � � ��� ��� � �
0 0 0 � � � 0 0 0 0
0 0 0 � � � 0 0 1 1
0 0 0 � � � 0 1 0 1
0 0 0 � � � 1 0 0 1
...

...
...

...
...

...
...

...
0 0 1 � � � 0 0 0 1
0 1 0 � � � 0 0 0 1
1 0 0 � � � 0 0 0 1
0 0 0 � � � 0 1 1 0
0 0 0 � � � 1 0 1 0
0 0 0 � � � 1 1 0 0
...

...
...

...
...

...
...

...
0 1 1 � � � 0 0 0 0
1 0 1 � � � 0 0 0 0
1 1 0 � � � 0 0 0 0
...

...
...

...
...

...
...

...

1 1 1 � � � 1 1 1

�
� (if � is odd)
	 (if � is even)

Table 1(a) The � -bit parity problem

Input Output
� � � � � � ��� ��� � �

-1 -1 -1 � � � -1 -1 -1 �[ 0 0 0 � � � 0 0 0 ]
-1 -1 -1 � � � -1 -1 1 �[ 0 0 0 � � � 0 0 1 ]
-1 -1 -1 � � � -1 1 -1 �[ 0 0 0 � � � 0 1 0 ]
-1 -1 -1 � � � 1 -1 -1 �[ 0 0 0 � � � 1 0 0 ]
...

...
...

...
...

...
...

...
-1 -1 1 � � � -1 -1 -1 �[ 0 0 1 � � � 0 0 0 ]
-1 1 -1 � � � -1 -1 -1 �[ 0 1 0 � � � 0 0 0 ]
1 -1 -1 � � � -1 -1 -1 �[ 1 0 0 � � � 0 0 0 ]
-1 -1 -1 � � � -1 1 1 �[ 0 0 0 � � � 0 1 1 ]
-1 -1 -1 � � � 1 -1 1 �[ 0 0 0 � � � 1 0 1 ]
-1 -1 -1 � � � 1 1 -1 �[ 0 0 0 � � � 1 1 0 ]
...

...
...

...
...

...
...

...
-1 1 1 � � � -1 -1 -1 �[ 0 1 1 � � � 0 0 0 ]
1 -1 1 � � � -1 -1 -1 �[ 1 0 1 � � � 0 0 0 ]
1 1 -1 � � � -1 -1 -1 �[ 1 1 0 � � � 0 0 0 ]
...

...
...

...
...

...
...

...
1 1 1 � � � 1 1 1 �[ 1 1 1 � � � 1 1 1 ]

Table 1(b) An encoded � -bit parity problem



The number The number The number Direct Activation
of neurons of parameters of layers link function

Ours 1 �
� �� � �� 2 No Step

function
Aizenberg [Aizenberg et al., 1996] 1 � �  2 No Somewhat

special
Setiono [Setiono, 1997] �

��� � �� �
� �� � �� � �� � �� 3 No Sigmoidal

or more or more function
Stork and Allen [Stork and Allen, 1992] � � � � � � 3 No Considerably

complicated
Minor [Minor, 1993] �

���� � �� �
� �� � �� � �� � �� 3 Yes Sigmoidal

or more function
Lavretsky [Lavretsky, 2000] � � � � � � � � � Yes Sigmoidal

function
Liu et al. [Liu et al., 2002] �

���� � �� �
� �� � �� 3 Yes Step

or more or more function

Table 2 The comparison between our result and the previous works. The number of layers includes an input layer; it is 3
if the network has one hidden layer. Direct link means that there are at least one direct link between the input layer and the
output layer in the neural network with at least one hidden layer. Note that the number of parameters in Aizenberg’s work in
the table is the estimated one by the author because Aizenberg et al. solved only the 3, 8 and 9-bit parity problems with a single
complex-valued neuron.


