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Abstract :

A 3D vector version of the back-propagation algorithm is proposed for multi-layered neural
networks in which vector product operation is performed, and whose weights, threshold
values, input and output signals are all 3D real numbered vectors. This new algorithm
can be used to learn patterns consisted of 3D vectors in a natural way. The XOR problem
was used to successfully test the new formulation.

1 INTRODUCTION

We present a three-dimensional vector version of the back-propagation algorithm (called
“VP-BP” (Vector Product Back Propagation)), which can be applied to multi-layered
neural networks whose weights, threshold values, input and output signals are all 3D
real valued vectors, and are computed using 3D vector product that is invented by the
demands of sciences, e.g. dynamics. There has already existed a back-propagation learning
algorithm for patterns consisted of 3D vectors [4] (3DV-BP), which can be applied to
multi-layered neural networks whose threshold values, input and output signals are all
3D real valued vectors, the weights are all 3D orthogonal matrices. The difference
is that matrix operation is used in neural networks for 3DV-BP while vector product
operation is used in neural networks for the new algorithm. We expect that VP-BP can
be effectively used in the field dealing with three-dimensional vectors, especially vector
product operation. This new algorithm was applied to the XOR problem. Results suggest
that the new method is superior to standard BP [5].

2 THE “VP-BP” ALGORITHM
2.1 A Vector Product Neuron

There appear to be several approaches for extending the standard BP to higher dimen-
sions. One approach is to extend the number field, i.e. from real numbers z (1 dimension),
to complex numbers z = z +iy (2 dimensions; [1], [2], [3]), to quaternions ¢=a+ib+jc+kd
(4 dimensions), to sedenions (16 dimensions), ---. Another approach is to extend the
dimensionality of the weights and threshold values from 1 dimension to n dimensions
using n-dimensinal real valued vectors. Moreover, the latter approach has two varieties
: (a) weights are n-dimensional matrices [4], (b) weights are n-dimensional vectors. In
this paper we use the approach (b) (n = 3), in which vector product is adopted for the
multiplication of vectors.

A model neuron used in the VP-BP algorithm is as follows. The input signals, weights,




thresholds and output signals are all 3D real valued vectors. The activity A; (analogous
to the real activity in the standard BP) of neuron j is defined to be :

A Z kXSk —|—TJ, (1)

where W j; is the 3D real valued vector weight connecting neuron j and k, S is the
3D real valued vector input signal coming from the output of neuron k, T'; is the 3D
real valued vector threshold value of neuron j, and & X y denotes vector product of
=" vy w3]andy="[y1 yo y3],i.e. T Xy ="[T2y3 —T3y2 T3Y1 —T1Y3 T1Y2 — T21].
To obtain the (3D real valued vector) output signal, convert the activity value A; into
its three components as follows.
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as
The output signal F(A,) is defined to be
)= | Hy | e =L ®)
F(A,) = a , where a;) = . 3
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2.2 A Vector Product Neural Network

In this subsection, we introduce the network used in the VP-BP algorithm. It has 3
layers, for the sake of simplicity. We use Wj; = ‘lw¥, wY w?] € R® for the weight
between the input neuron i and the hidden neuron j (where R denotes the set of real
numbers), Vi = ‘[vf; vl vij] € R’ for the weight between the hidden neuron j
and the output neuron k, ©; = ‘(67 67 0?] € R’ for the threshold of the hidden
neuron j, Ty = Yy ~¢ ] € R® for the threshold of the output neuron k. Let
I, ='I* I} I?] € R denote the input signal to the input neuron i, and let H; =
'[Hf H! H?] € R*and Oy ="'[0f O} Of] € R denote the output signals of the hidden
neuron j, and the output neuron &, respectively. Let Ay =![67 67 67] = Tx—O;, € R
denote the error between O, and the target output signal T} = !TZ TY T¢] € R
of the pattern to be learned for the output neuron k. We define the square error for
N

the pattern p as E, = (1/2)>_||T — Ox||?, where N is the number of output neurons,
k=1

]| = ot +ad+a3, @ ="[x1 w5 3],
2.3 The Learning Algorithm

Next, we define a learning rule for the VP-BP model described above. For a sufficiently
small learning constant € > 0, and using a steepest descent method, we can show that



the weights and the thresholds should be modified according to the following equations.
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where Az denotes the amount of the correction of a parameter x. The above equations
(4) can be expressed as :

AV, = Hj; x ATy,
ATy = eCrAy,
AW, = I, x A®,,
A®; = D;) (ATy x Vi),
k
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where
[ (1 —0%)0% 0 0
C, = 0 (1 -00)0} 0 : (9)
i 0 0 (1—-07)0;
(1 - H]‘?)H]‘? 0 0
D; = 0 (1-— H;-/)H;-/ 0 ) (10)
i 0 0 (1-— Hj)H]

3 SIMULATION

The XOR problem was used to compare the performance of the new VP-BP algorithm
with the standard back-propagation algorithm. We used a 1-3-1 three-layered network
for the VP-BP, and a 3-7-3 three-layered network for the standard BP. Table 1 shows
that their time complexities per learning cycle are almost equal. The learning constant
used in the experiment was 0.5. The initial X-, Y- and Z-components of the weights and
the thresholds were chosen to be random real numbers between — 0.3 and + 0.3. The
input data are presented in sequence, together with the desired output, to the net as
shown in Table 2.

The results of the simulation are plotted in Fig.1. The new algorithm converged
in 1,500 iterations, whereas the original algorithm required 3,000. Furthermore, the




space complexity (i.e. the number of parameters) is almost half that of the standard BP,
as seen in Table 1.

4 CONCLUSIONS

We have proposed a three-dimensional vector version of the back-propagation learning
algorithm, for neural networks based on vector product, where the input signals, weights,
thresholds, and output signals are all 3D real valued vectors. The XOR problem was used
to test the presented method and it showed excellent performance. We expect that this
new algorithm will demonstrate its real ability in the areas dealing with three-dimensional
vectors, especially vector product operation. The extension of the VP-BP algorithm to
fully connected neural networks will be presented in a future paper. It seems that higher
dimensional (more than 4 dimensions) version of the back-propagation learning algorithm
can be derived using higher dimensional vector product.
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Time complexity Space complexity
Network x and + | + and — | Sum | Weights | Thresholds | Sum
VP-BP 1-3-1 117 78 195 18 12 30
Standard BP 3-7-3 128 69 197 42 10 52

Table 1 : The Computational Complexity of the VP-BP and the Standard BP. Time
complexity means the sum of the four operations performed per learning cycle. Space
complexity means the sum of the parameters (weights and thresholds).



Figure 1: Learning Curves for the XOR problem.
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Table 2 : The Input Patterns and the Corresponding Desired Output Patterns for the
XOR Problem. z is given to the X-component of the input/output neuron 1, y is the
Y-component, and z is the Z-component in the 3DV-BP network. x is given to the
input/output neuron 1, y is the neuron 2, and z is the neuron 3 in the standard BP
network.



