Published in International Journal of Neural Systems, Vol.18, No.2, pp.123-134,
2008.



The Uniqueness Theorem for Complex-Valued Neural Networks
with Threshold Parameters and the Redundancy of the Parameters

Tohru Nitta

National Institute of Advanced Industrial Science and Technology (AIST),
AIST Tsukuba Central 2, 1-1-1 Umezono, Tsukuba-shi, Ibarak:, 305-8568 Japan
E-mail: tohru-nitta@aist.go.jp

This paper will prove the uniqueness theorem for 3-layered complex-valued neural networks where the
threshold parameters of the hidden neurons can take non-zeros. That is, if a 3-layered complex-valued
neural network is irreducible, the 3-layered complex-valued neural network that approximates a given
complex-valued function is uniquely determined up to a finite group on the transformations of the
learnable parameters of the complex-valued neural network.

1. Introduction

Complex-valued neural networks whose weights,
threshold values, and input and output signals are
all complex numbers, are useful from the viewpoint
of applications. Actually, Watanabe et al. ! ap-
plied the complex-valued back-propagation learning
algorithm called Complez-BP 23* in the computer
vision field. They successfully used the 2D motion
learning ability (an ability to transform geometric
figures) of the Complex-BP network to complement
the optical flow which was a 2D velocity vector field
derived from a set of images. Also, Miura et al. ®
applied the Complex-BP to the generation of fractal
tmages. They used the 2D motion learning ability
of the Complex-BP network to approximate iterated
function systems (IFS). And, recently the problem of
source separation has been extended to the complex
domain %78, due to the need of frequency domain
signal processing. The application fields of complex-
valued neural networks have grown more and more.

It is important to clarify the properties of
complex-valued neural networks in order to accel-
erate its practical applications. As for the inherent

properties of complex-valued neural networks, sev-
eral ones have already been shown in the literatures.
49 Tt should be noted that so-called component-
wise complex-valued activation functions are used
in the complex-valued neural networks described
above. Although the Cauchy-Riemann equations
do not hold, the component-wise activation func-
tion model has several distinct properties, compared
with the real-valued neural network, and is a univer-
sal approximator. In recent years, non-component-
wise complex-valued activation function models have
been studied '°, which may have attractive prop-
erties that the component-wise activation function
model does not have, although they are universal
approximators conditionally.

The singularity is important because it affects the
plateaus during learning '!, which causes a standstill
wn learing. This paper focuses on the singularity of
complex-valued neural networks.

Sussmann investigated the class of 3-layered real-
valued neural networks that can approximate a given
real-valued function. He showed that the 3-layered
real-valued neural network that can approximate the
given real-valued function is uniquely determined



up to a certain finite group (uniqueness theorem).
12 The extension of Sussmann’s results to complex
numbers is important for the reasons described be-
low.

Fukumizu and Amari demonstrated the mecha-
nism by which local minima of a real-valued neural
network occur, based on Sussmann’s results. ** Hagi-
wara et al. showed theoretically that the AIC can-
not be introduced into real-valued neural networks
due to the nonuniqueness of the weights, based on
Sussmann’s results. 4 Furthermore, it follows from
Sussmann’s results that the Fisher information ma-
trix for the parameters of the real-valued neural net-
work is not positive-definite. In other words, the
asymptotic regularity of maximum-likelihood esti-
mation (i.e., asymptotically unbiased and minimum
variance) of the parameters of the real-valued neu-
ral network is not guaranteed. Thus, the asymp-
totic behavior of maximum-likelihood estimation is
unknown. In this context, Fukumizu investigated the
asymptotic behavior of the maximum-likelihood es-
timation of unidentifiable models. ' Watanabe rig-
orously derived an asymptotic representation for the
stochastic complexity of an unidentifiable model and
established a computational algorithm for its behav-
ior. 16,17
As seen above, Sussmann’s results provide the
basis for investigating the properties of real-valued
neural networks, particularly the statistical proper-
ties. Similarly, it seems to be important that the
properties of complex-valued neural networks corre-
sponding to Sussmann’s results should be revealed in
order to have a clear knowledge of their characteris-
tics.

As a matter of fact, we have already shown the
singularity of complex-valued neural networks with
hidden neurons whose thresholds are all zero, prov-
ing the uniqueness theorem in refs. 18 and 19. The
assumption that thresholds of the hidden neurons
are all zero is not, however, practical. Actually, the
threshold parameters are not always zero in real ap-
plications. ¥ So, the analysis for such a case is
needed.

This paper proves the uniqueness theorem for
complex-valued neural networks with hidden neu-
rons whose thresholds are not always zero. That is,
if a 3-layered complex-valued neural network is irre-
ducible, the 3-layered complex-valued neural network
that approximates a given complex-valued function

is uniquely determined up to a certain finite group.
The uniqueness theorem is basically proved by ex-
tending Sussmann’s technique to complex numbers.
Note that in the analysis of this paper, the hidden
neurons are restricted to a certain family of hidden
neurons, whereas such a restriction was not needed
to prove the uniqueness theorem for complex-valued
neural networks with hidden neurons whose thresh-
olds are all zero. Such a restriction is caused by the
technique for the proof which Sussmann used in ref.
12.

Section 2 describes the complex-valued neural
network which is the object of analysis. Section 3 is
devoted to derivation of the uniqueness theorem for
complex-valued neural networks, which is followed
by our conclusion in Section 4.

2. The Complex-Valued Neural Network

This section describes the 3-layered complex-
valued neural network used in the analysis. First,
we will consider the following complex-valued neu-
ron. The input signals, weights, thresholds and out-
put signals are all complex numbers. The net input
U,, to a complex-valued neuron n is defined as:

Up =Y WomXm + Vi, (1)

where W,,, is the (complex-valued) weight connect-
ing complex-valued neurons n and m, X,, is the
(complex-valued) input signal from complex-valued
neuron m, and V,, is the (complex-valued) thresh-
old value of complex-valued neuron n. To obtain the
(complex-valued) output signal, convert the net in-
put U, into its real and imaginary parts as follows:

U,=x+1iy =z, (2)

where i denotes /—1. The (complex-valued) output
signal is defined to be

o(z) = tanh(z) + i tanh(y) (3)

where tanh(u) Lef (exp(u) — exp(—u))/(exp(u) +
exp(—u)),u € R (R denotes the set of real num-
bers) is called hyperbolic tangent. Tt is obvious that
—1 < Re[o], Im[o] < 1. Note also that o(z) is not
holomorphic, because the Cauchy-Riemann equa-
tions do not hold: ORelo(z)]/0x # i0Im[o(z)]/dy
for any z = = + iy € C such that ¢ # y (C denotes
the set of complex numbers).



It seems that the way of the analysis used in
this paper can be applied to the models with the
complex-valued activation functions other than eqn
(3). Kobayashi has addressed the uniqueness theo-
rem for the model with the complex-valued activa-
tion function proposed by Hirose 2° o(2) = tanh(|z])-
(z/|z|) and confirmed that the uniqueness theorem
holds true provided that all the thresholds of the
hidden neurons are zero so far 2!.

The complex-valued neural network consists of
such complex-valued neurons described above. The
network used in the analysis will have 3 layers:
m—n—1network. We will use wy; = wj; +iwj; € C
for the weight between the input neuron j and the
hidden neuron k, ¢, = ¢ +ici, € C for the weight
between the hidden neuron k and the output neuron,
Wko = Wiy +iw20 € C for the threshold of the hidden
neuron k, and ¢ = ¢} + ich € C for the threshold of
the output neuron. Let yx(z),h(z) denote the out-
put values of the hidden neuron k, and the output
neuron for the input pattern z = *[21,-- -, 2] € C™
where z; = 2z} + zz; € C(1 < j < m), respec-
tively. Let also v4(z) and p(z) denote the net in-
puts to the hidden neuron k£ and the output neuron
for the input pattern z € C™, respectively. That is,
vi(z) = 2070 wejzj + wko, (2) = 2ok, ceyr(z) +
co, Y (2) = 0(va(2)), and h(z) = o(u(=)).

A constraint is imposed on the hidden neurons of

the above complex-valued neural network, which we
now state.
Definition 1 If any of the following eight conditions
1s valid, the two complex-valued linear affine func-
tions @, : C™ — C* and p, : C™ — C* are called
nearly rotation-equivalent:

Vz € C™; Relps(2)] = Rel[pi(2)]

and 3z € C™;Imps(2z)] # Im[p(2)], (4)
Vz € C™;Relps(2)] = —Re[p:(z)]

and 3z € C™;Imlps(2)] # —Imlpi(2)], (5)
Vz € C™;Relps(2)] = —Im[pi(2)]

and 3z € C™;Im[ps(2)] # Re[pi(2)], (6)
Vz € C™; Relps(2)] = Im[p(2)]

and 3z € C™;Im[ps(2)] # —Re[p(2)], (7)
Vz € C"; Imlps(2)] = Imfp(z)]

and Jz € C™; Re[ps(z)] # Relpi(z)], (8)
Vz € C™;Imlps(z)] = —Imfp(2)]

and 3z € C™; Re[ps(2)] # —Relpi(z)], (9)

Vz € C™;Imlps(2)] = Re[p(2)]

and dz € C™; Relps(2)] # —Im[pi(2)],(10)
Vz € C™;Imlps(z)] = —Relpi(z)]

and 3z € C™; Relp,(2)] # Imlpu(2)]. (11)

z

(Remark) The net input r(z) = Y%, wrz + wio
to a complex-valued neuron k is a complex-valued
linear affine function on C™. The nearly rotation-
equivalence is a concept that a complex-valued linear
affine function on C™ comes close to be identically
equal to another one by a counterclockwise rotation
of it by a 0,7/2,7 or 37 /2 radians about the origin
(See Definition 3).

Let Ny, be a set of all m —n —1 complex-valued
neural networks such that the net inputs to any two
hidden neurons are not nearly rotation-equivalent.
Np,n is the object of the analysis in this paper.

Proposition 1 The set of all compler-valued neu-
ral networks such that the thresholds of all hidden
neurons are all zero, 1s included in Ny, .

Proof. Take any complex-valued neural network
such that the thresholds of all hidden neurons are
all zero, and fix it. And, take any two hidden neu-
rons j and k from the complex-valued neural net-
work. Since the thresholds are all zero, ¢;(z) =
Aj(z) and @r(z) = A\r(z). Here, we can easily find
that (a) Relp;(2)] = Relpu(2)] <= Imlp;(2)
Imlpu()], (b) Relpi(z)] = —Relpi(2)]
Imlp;(z)] = —Imlp(2)], and (c) Relp;(2)]
—Imlpi(2)] <= Imlp;(2)] = Relpu(2))- So, ¢;
and ¢y, are not nearly rotation-equivalent. Thus, the
proof is complete. 0.

Proposition 1 states that the 3-layered complex-
valued neural network with the hidden neurons
whose thresholds are all zero, is the object of the
analysis of this paper.

Proposition 2 For any ni,ny > 1 and for any
N1 € Niynyr No € Ny ony, the net input to any hid-
den neuron of N1 and the one to any hidden neuron
of No are not nearly rotation-equivalent.
Proof. It is trivial from the definition of the set
Npn. O

Proposition 2 is used in the proof of Theorem 1
(Uniqueness Theorem).

3. The Uniqueness Theorem for the Complex-
Valued Neural Network



This section derives the uniqueness theorem for
the complex-valued neural network described in the
previous section. First, several definitions and pre-
liminary propositions are presented, some of which
are the same as those described in refs. 18 and 19
because the paper should be self-contained.
Definition 2 (I-O equivalence) For a fized m,
two 3-layered complex-valued neural networks Ny €
Ny, and No € Ny, n, are called 1-O equivalent
of their corresponding complexr-valued functions are
same.

Definition 3 (rotation-equivalence) Two
complex-valued linear affine functions p,,p; : C™ —
C* are called rotation-equivalent if one of the fol-
lowing conditions holds:

= oi(z) (=€ pi(2), (12)
=—p(z) (=" @lz),  (13)
ivz) (=3 @(2), a9

= —ipi(z) (=) 0(2). (15)
(Remark) In addition to the two conditions of sign-
equivalence that Sussmann defined to prove the
uniqueness theorem for real-valued neural networks
in ref. 12, the two new conditions (eqns (14) and
(15)) related to the rotation of complex numbers are
added.

Definition 4 (reducibility) A
neural network N € Np, ,, @5 called reducible if one
of the following three conditions holds:

ps(z

ps(z

ps(z

)
)
)
)

ps(z

complez-valued

1. One of the weights between the hidden layer
and the output layer 1s zero:
1<3j<n;¢;=0.

2. There exist two hidden neurons such that the
net inputs to them are rotation-equivalent:
1 < 351,352 < ny @j, and @j, are rotation-
equivalent.

3. There exists a hidden neuron such that the net
wiput to it is a constant:
1 <35 < n; @; 1s a constant.

As regards reducibility, the following property ex-
its, as the name suggests.
Proposition 3 If a 3-layered compler-valued neural
network s reducible, then it is I-O equivalent to an-
other 3-layered complex-valued neural network with
fewer hidden neurons.

Proof. See the appendix for the proof. Although
this proposition can be proved in the same manner
as ref. 19, the proof is presented in the appendix
because the paper should be self-contained. 0.
Definition 5 (irreducibility) A
complez-valued neural network which ts not reducible
1s called irreducible.

3-layered

The following four transformations are required
in order to represent the redundancy of the learning
parameters in a complex-valued neural network.

Proposition 4 The following four transformations
do not affect the complex-valued function realized by
the 3-layered complez-valued neural network.

1. Swgn inversion of learning parameters 9]71

The transformation 0;1 reverses all of the
learning parameters related to hidden neuron
J, that is, the signs of all weights {w;, }7, be-
tween the input neuron k and the hidden neu-
ron j, and the threshold wjo of the hidden neu-
ron j, as well as the weight c; between the hid-

den neuron j and the output neuron.

2. Correction of argument of learning parameters
0
The transformation 0} multiplies each of the
weights {wjr Y, between the input neuron k
and the hidden neuron j, and the threshold wjg
of the hidden neuron j by —i € C, and also
multiplies the weight c; between the hidden neu-
ron j and the output neuron by i € C.

3. Correction of argument of learning parameters
;" '
The transformation 67" multiplies each of the
weights {wjr Y, between the input neuron k
and the hidden neuron j, and the threshold w;o
of the hidden neuron j by i € C, and also mul-
tiplies the weight c; between the hidden neuron
j and the output neuron by —i € C.

4. Ezchange of hidden neurons 1j, ;,
The transformation 1;, j, exchanges two hidden
neurons ji1 and js.

The 3-layered complex-valued neural networks which
are obtained by applying the above four transforma-
tions to the 3-layered compler-valued neural network
N € Ny, are denoted as 0]-_1(N),0§-(N),9]-_i(]\7),
and T4, j,(N), respectively.



Proof. See the appendix for the proof. Although
this proposition can be proved in the same manner
as refs. 18 and 19, the proof is presented in the ap-
pendix because the paper should be self-contained.
0.

Proposition 5 The two transformations 0;'. and
Tj,j. described in Proposition 4 form the finite group
Win,n velated to the transformation of the set Ny, r,.
In other words, Wy, , 1is the finite group formed
by the transformations consisting of combinations of
a finite number of the above two transformations:
Wnn = {07",05,++,0,0,0% 0 712,07 0 o3, - -}
Proof. Trivial O.

(Remark) (07)* = 67" and (6})* = 6;".

Definition 6 (equivalence) Consider two  3-
layered complex-valued neural networks Ni € Ny, p
and Ny € Ny, n. If there exists a transformation
h € Wiyn such that Ny and h(Nz) are the same
3-layered complez-valued neural networks (i.e., all of
the learning parameters are the same), N € Npn
and Ny € Ny, are called equivalent.

All the preparations have been done. The following
Lemma 1 is required in order to prove Theorem 1
which is the main result obtained in this paper.
Lemma 1 Let J be a finite set. Let {p;}jes be a
family of complex-valued linear affine functions de-
fined on C™, satisfying the following three condi-
tions:

1. No function in {@;}jes is a constant.

2. No two functions in {p;}jcs are rotation-
equivalent.

3. No two functions in {p;}jes are nearly
rotation-equivalent.

Then, the complex-valued functions oop;(j € J) and

the constant function 1 are linearly independent.

(Remark) (o o ¢;)(2) o o(pj(z)) for any z € C™.

Proof. Assume that a+3_ ;. ; a;(0op;) =0 where
a,a; € C (j € J). We have to prove that ¢ and a;
are equal to zero for any j € J.

Write ¢;(z) = Aj(z) + A where \; is a nonzero
complex-valued linear function and )\2 is a complex-
valued constant. Our hypothesis guarantees that, if
J1 # Jjo, then either (a) the functions Aj,,Aj, are
not rotation-equivalent, or (b) if A;, = 7\, for some
7 = +1,+i then A9 # 7)Y, because g;, and g;, are
not rotation-equivalent.

Define an equivalence relation on J by calling two
elements ji,j» of J equivalent if the corresponding
linear complex-valued functions Aj, , A;, are rotation-
equivalent. Let ¢ be the set of equivalence classes.

Pick a jg for each E € e. As E varies over
the classes in ¢, no two of the functionals \;, are
rotation-equivalent. So, for each pair E;, F» of dis-
tinct members of e, the set of points z € C™ where
Ajp, (2) # TAjg, (2) for any 7 = £1,+i is open and
dense in C™. Also, for each E, the set of z € C™
such that Aj, (z) # 0 is open and dense in C™ be-
cause Aj, is not = 0. So, we can pick an z such that
Aig(2) # 0 for all E € ¢, and A\j; (2) # TAjp, (2)
for any 7 = £1,+i and all pairs E;, E> of distinct
members of e.

Here, let \j(z) = 7);(z) for any j € J and z €
C™, 7 = +1, +i being chosen so that Re[\;(z)] > 0
and Im[\;(2)] > 0. Let A0 = 7A2, ¢;(2) = 79;(2)
and @; = 7~ 'a; with the same 7. Then,

a+ Y aj(oo@;) =0. (16)
JjeJ
Our proof will be complete if we show that @ and
@; are equal to zero for any j € J. Moreover, if a;
is equal to zero for any j € J, then eqn (16) shows
that @ = 0. So it will be enough to show that a; is
equal to zero for any j € J. Here, if E € ¢, all the
/N\j (j € E) are equal to one and the same function,
which we will call Ag.

For any j € E and z € C™,

where ¢ = exp[2Re[\Y]] and & = exp[2Im[\V]].
Since Re[Ag(2)] > 0, Im[Ag(2)] > 0, & > 0 and
& > 0, we obtain lim; o, 0(@;(tz)) = 1 +i. Thus,
from eqn (16),

i+ a;(1+i)=0. (18)
jeJd
If we subtract eqn (18) from eqn (16), we get
> ailo0p; — (1+i)] =0. (19)
j=1

For any z € C™,

(00¢;)(2) = (1 +1) = =24;(2). (20)



So, we have
> =0, (21)
JjeJ

where ¢; = ¢F + i, (2) = —rm— and

= E;e2Re[ij(z)]+1
i) — 1
Yi(z) = e
Now order the classes £ € ¢ in a finite se-
quence (Ey, Es, -+, E,.), chosen so that |Ag,(2)] <
|Ag, ()] < --- <'|)\Er(z)~|. Let vy = Ap, (2),v} =
Re[Ag, (2)] and v}, = Im[Ag, (2)]. We then have
1 v 1
™ 11— ,
f;.“e_w’k + 1 é‘;e—2tv}C + 1

¥ (—tz) = (22)

if j € Ey. For each j, let k(j) be the k such that
j € Ey. For t > 0 and sufficiently large, we have
0< 65672”’2 <land 0 < fjefm’i < 1. So we can
expand eqn (22) in a convergent power series:

oo

z/)j(—tz) — Z(_g}*)se—msv;(j) +i Z(_g;:)se—%su;(j) -

s=0 s=0
(23)
If we multiply eqn (23) by a; and sum over j, we get

0 = ) au(—tz)

jeJ

— Zzefwsvg Z (_f;)saj

s=0 k=1 JEE)

FiY D e N (=g)a. (24)

s=0 k=1 JEE

(from eqn (21))

We rewrite eqn (24) as

0 = D e 3 Y )’y

veR s€{0,1,--} JEE
vr>0 k€{1,2,--,r}
v =sv]
k
- —2tv" i\8 ~
+e E € E E (=&;)°a;.
v'ER s€{0,1,---} JEE)
v*>0 kef{1,2,--r}
vi=svy

(25)

The indexes of summation v™ and v’ are non-negative
real numbers, but in fact the only v™’s and v*’s oc-
curring in the summation are those that can be ex-
pressed as integral multiples of some v}, and v}. So
these v"’s and v'’s form discrete subsets A" and A!
of the half-line [0, o], respectively. If we order the

i (1) (2)
elements of A" U A? as a sequence v® 0% .-

such that 0 < v < 08 < ... where 8 denotes
or i, then it follows easily from eqn (25) that for any
[=1,2,--,

Iilﬁ = 0 (B denotes r or i) (26)

where

hli, = Z Z (_é-;)sa’j (l = ]-> 27 T ')7 (27)
s€{0,1,---} JEEK
ke{1,2,---,r}

1
r_prl
S’Uk—’U

K=Y > (=&)ra; (=12 (28)
s€{0,1,---} JEEK
ke{1,2,--,r}
svi=pil
3

(This can be proved by induction on [ =1,2,--).

It can be easily proved that F {w €
C™ | Ap,(w) #0 for any i € {1,2,---,7}, v/ (w) #
v (w) for any i,j € {1,2,---,r} such that i # j,
vi(w) # vi(w) for any i,j € {1,2,---,r} such that
i # J, vl (w) # v;.(w) for any i,j € {1,2,---,r} such
that ¢ # j, vl (w) # vi(w) for any i € {1,2,---,7}
} is not empty. Then, choose a w € F, and let
o = vp(w),vl = vi(w) (1 <k <r). Fixake
{1,2,---,r}, and let & = |Et|. Then, Choose inte-
gers s” > 0,h" > 0, such that s"vj, (s"+h")v}, (s" +
2h")ug, -+, (s" + (@ —1)h")v}, are not integral multi-
ples of v}, (k < k' < r) and vi,(k < k' <r) (See the
appendix for the proof).

Assume that we have already proved that a; is
equal to zero for any j € Ey/, k' < k. Let 6" be an
integer such that 0 < 6" < a. Then, the following
equations hold true:

(=) M a; =0 (8" =0,1,--,a=1). (29)
JEE,
Eqn (29) can be proved as follows. First, there exists
some [ such that (s" +d6"h")v] = v, For the above

! s
me= >, Y (g)Ta; (1=1,2,). (30)
s'€{0,1,--} J€EEL
kle{1,2,---,r}
Ipr —pr
s'vy,=v
This sum contains no contribution coming from val-
ues of k' such that k' < k, because we are assuming
that all the corresponding a; vanish. A k' such that
k' > k can only contribute to the sum if s'v}, = o
for some integer s’, and this can only happen if
s'vy, = (s" + 6"h")v}. Since this is impossible by
our choice of s” and A", we conclude that the sum



only contains contributions coming from k' = k. In
this case, the only possible value of s’ is s + dh. So,

0 = &L (from eqn(26))

= Y (=) ey (31)
JEER
Thus, eqn (29) is proved.

Here, eqn (29) can be rewritten as follows:

0= 3 (=g

JEER
= > gi(6"b; (8" =0,1,---,a—1), (32)
JEE)
where
9;(8") = (=€) (j € E), (33)
bj = a;(=¢))" (j € By). (34)
Furthermore, eqn (32) can be rewritten as follows:
1 1 by 0
gi() - ga(1) by 0

(1(1)* - (92(1))? bs | = | O

(gr (1) (ga(1)*1 ] L ba
because g;(0) = 1, g;(1) = (=&, g;(2) =
(9i(1))%,---, gj(@—=1) = (g;(1))*"*. The matrix (we
let it denote X) in eqn (35) is a Vandermonde matrix
whose determinant is given by ;s (g1(1) — gm(1)).

Here, for any k € {1,2,---,r}, for any I,m € E
such that [ # m,

9i(1) # gm(1). (36)

Eqn (36) can be proved as follows. Fix k €
{1,2,---,r} arbitrarily. Also, fix [,m € Ej such
that [ # m arbitrarily. Since g;(1) = (=¢)" and
& = e2RelN] | the proof of eqn (36) is complete if
Re[\0] # Re[\%] is shown. Since I,m € Ej, there
exists some 7 = =1, 47 such that \; = 7\,,. So,
Al = A,n. Here, assume that Re[A\?] = Re[\?,]. Then,
from the assumption of Lemma 1, ¢; and ¢, are
not nearly rotation-equivalent. Then, the following
equation holds:

Im[AY] = Im[3%,] (37)

(See the appendix for the proof). Thus, @ = @m-
So, ¢; and ¢, are rotation-equivalent, which contra-
dicts the assumption of Lemma 1. This means that
Re[M\] # Re[\?,]. Thus, eqn (36) is proved.

From eqn (36), det X = ;s (g:(1) —gm (1)) # 0.
So, we conclude that all the b; vanish. However,
this implies that all the d; vanish as well because
b; = a;(—€)*" and € = 2N > 0. 0.

The following Theorem 1 is the main result ob-
tained in this paper.

Theorem 1 (Uniqueness Theorem) Let Ny, N
be rreducible I-O equivalent 3-layered complex-
valued neural networks i Ny pn,, Nmon,, respec-
tively. Then (i) ny = mo and (i) Ny and N are
equivalent.

Theorem 1 states that the redundancy of the
learning parameters of an irreducible complex-valued
neural network to approximate a given complex-
valued function is determined up to a finite group.
Proof. Consider two complex-valued neural net-
works N1 € Np, ., and Ny € Ny, ,, which are irre-
ducible and I-O equivalent. Suppose that n; < ns
(generality is not lost by this assumption). Since Ny
and Ny are I-O equivalent, we have hl(z) = h*(z)
for any input pattern z € C™. In explicit form, the
following relation is obtained:

(cg—cg)+zc;a(u; (2)) —Zc§a(y§(z)) =0. (38)

The variables with superscript 1 are concerned with
the complex-valued neural network Ny, and the vari-
ables with superscript 2 are concerned with the
complex-valued neural network No.

Let ap = ¢} — 2, J = {1,2,--+,n1 + n2},a; =
i1 <j <m)a; = —c; , (m+1<j<n+
na),0; =vi(1 <j<ni)and ; =vi , (m+1<

Jj < ny+mn2). Then, eqn (38) is written as

a0 + Y a;o(p;(2)) =00 (39)
jeJ

Since Ny and Ny are irreducible, it cannot occur that
all of a1, --,an,+n, € C are 0. Consequently, by
Lemma 1, at least one of the following is valid: (a)
there exists j € J such that ¢; is a constant func-
tion, (b) there exist 1 < ji, j2 < my + ng such that
v;, and ¢;, are rotation-equivalent, (c) there exist
1 < j1, j2 < ni + ng such that ¢;, and ¢j;, are
nearly rotation-equivalent.

Since N; and N» are irreducible, however, (a)
cannot be the case. And, from the proposition 2,
(c) cannot be the case. Thus, (b) must be true.



It also follows from the irreducibility of N; and
N> that ¢;, and ¢j, are not of the same network.
Thus, it must be the case that 1 < j7; < n; and
n1 +1 < jo <ni+ny. Eqn (39) is therefore written
as

(aj, + paj,)o(p;(2))

+la+ ¥ ajoleiz)| =0 (0)
je7
J#J1,02
where p = +1, +i. Since N; and N, are irreducible,
any ¢;(j # ji,j2) appearing in eqn (40) is not
rotation-equivalent to ¢, .

Assume that aj, + paj, # 0. Then oo ¢;, 1
(constant function) and {o o ¢;}jecsj2j,,5. are lin-
early dependent. Then, by Lemma 1, at least one
of the following is valid: (a) there exists k € J
such that k # jo and ¢y, is a constant function, (b)
there exist 1 < k,I < n; + ny such that k,[ # jo,
and ¢ and ¢; are rotation-equivalent, (c) there ex-
ist 1 < k,l < ny + no such that k,I # jo, and ¢y
and ¢; are nearly rotation-equivalent. Since N; and
N, are irreducible, however, (a) cannot be the case.
And, from the proposition 2, (c¢) cannot be the case.
Thus, (b) must be true. The two can be integrated
as follows:

aro(pr(2)) +ao(pi(2)) = (ar+p'a)o(pr(2)) (41)

where p' = +£1,+i. Here, @ is not rotation-
equivalent to any ¢;(j € J, j # j1,J2,k,1) (due
to the irreducibility of N; and Ns). Thus, still
oo, land {o00y;}jes jzj.j., are linearly de-
pendent. Then, by Lemma 1, at least one of the
following is valid: (a) there exists s € J such that
s # ja,l and ¢, is a constant function, (b) there
exist 1 < s,t < ny + ny such that s, # js,l, and
ps and ; are rotation-equivalent, (c) there exist
1 < s,t < mnj+nsg such that s,t # js,[, and @, and
are nearly rotation-equivalent. Since N; and N> are
irreducible, (a) cannot be the case. And, from the
proposition 2, (¢) cannot be the case. Thus, (b) must
be true. By iterating the same procedure, a family of
functions {p;}jex is constructed from {y;}jes £/,
in which no two ¢; and ¢ are rotation-equivalent.
Then, ¢;, and some ¢;,j € K must be rotation-
equivalent. This contradicts the statement below eqn
(40). Thus, we have a;, + pa;, = 0.

Eqn (40) is therefore written as

ap + Z a;o(p;(z)) =0. (42)
el
J#J1,52

Applying the same procedure as above to eqn (42),
it follows that there exist 1 < j3 < np such that
jz # j1 and ny + 1 < jy < nq + ny such that js # jo
such that ¢;, and ¢j;, are rotation-equivalent, and
the following relation is valid:

(aj, + plaj,)o(pj,(2))

+lao+ >

ajo(p;j(z))| =0, (43)

j€J
JF#J1,2,53,74
Ay + pla'j4 :Ov (44)
ap + Y ajo(pi(z) =0 (45)

ier
J#51,52,53,54

where p' = 1, +4. Since N; and N» are irreducible,

any ¢;(j # j1,J2,J3,ja) appearing in eqn (45) is not

rotation-equivalent to ¢j,.

Continuing the same procedure, we see that there
must exist @ (n1 + 1 < j' < ny + ng) for any
1 < j < n; which is rotation-equivalent to ;.

Assuming that ny < no, we finally obtain

a+ Y ajo(p;(z)) =0. (46)
i€l
jZni+1
Since none of a;(j € J,j > n1 + 1) are zero, one of
the following conditions is valid, as can be seen from
Lemma 1: (a) there exists some n; +1 < j < ng+ns
such that ¢; is a constant function, (b) there exist
n1 +1 <4, 7 < ni +ne such that ¢; and p; are
rotation-equivalent, (c) there exist ny +1 < j, j' <
ni1 + na such that ¢; and ¢ are nearly rotation-
equivalent. Here, (a) and (b) contradict the irre-
ducibility of Ny. (c) cannot be the case becasue of
the proposition 2. Consequently, it must be the case
that ny = ns.
Summarizing, the following relations are ob-
tained:

~, 2 1
aw + Y () +paf)olef) (2)) = 0, (47)
=1
ap = 0, (48)
a + pa? =0 (1<i<m) (49)
where p; = +1,4i (1 < I < ny). The coefficient
and function with superscript “(1)” are concerned



with Ny, and the coefficient with superscrlpt “(2)”
are concerned with N». No two of {cp }l 1 appear-
ing eqn (47) are rotation-equivalent (thls is obvious
from the construction).

First, it follows from ag = ¢} — ¢3 = 0 (eqn (48))
that ¢§ = ¢ (the thresholds of the output neurons
in N; and N> are equal). It follows from eqn (49)
that one of the following four relations is valid for
any 1 <[ <njy:

: )=eP(2),
) =0 and % '(2) = P (2), (51
ag-ll) + mg-?) =0 and ‘sz (

o — ia?

o)
Jz +
o) _

Jz

5 =0 and ‘PJ, (z )
a; )

() = wf)(z), )
=0 and 90]1 (z) 90]1 (z) (53)

Each of these four cases is considered separately.

1. Case of eqn (50)

It follows from a(l) + a(z) = 0 that c(l) = cf),
that is, the welght between the hldden neuron
j1 and the output neuron in N; and that in N,
are equal. It follows from cp(l)( ) = @5-12) (2)
that vj (z ) = vi(z ) for any z € C™, that
is, Zk 1wk],Zk + Wio = Yopet Wiy 2k + W5

Thus, wy;, = wi; (1 < k < m) and wjllo =
w3 - In other words, the weight between the
hidden neuron j; and the input neuron in Ny
is equal to that in N5, and the threshold of the
hidden neuron j; in Ny is equal to that in N,.

2. Case of eqn (51)
It follows from ag-ll) 512) = 0 that c;ll) =

—cg-?), that is, the weight between the hid-
den neuron j; and the output neuron in N;
is equal to that in Ny with reversal of sign.
It also follows from gagll)( ) = 90512) (z) that
vi(z) = —vi(z ) for any z € C™, that is,
2 k1 Wiy, 2k + Wio = Yoy (= wkj,) k= Wio-
Consequently, w,lw.l = —wzjl(l < k < m) and
wjl-lo = —w?lo. In other words, the weight be-
tween the hidden neuron j; and the input neu-
ron in Ny is equal to that in Ny with reversal
of sign, and the threshold of the hidden neuron
Jiin Ny is equal to that in No with reversal of
sign. Consequently, the result of applying the
transformation 0*1 to N, is equal to Ny, that

IS 0 ( ) N1

3. Case of eqn (52)
It follows from ag-ll) -H'ag-lz) = 0 that cg-ll) = icf),

that is, the weight between the hidden neu-
ron j; and the output neuron in N; is equal to
that in Ny multiplied by ¢. It also follows from
oM (2) = —ip'?) (2) that v} (z) = —iv? (2) for
any z € C™, that is, YL, wy; 2k i wjl-lo =
S 1( Wi, )2k — w5 - Consequently, Wi, =
—iwj; (1 <k < m) and wj, = —iwj,. In
other words the weight between the hidden
neuron j; and the input neuron in NV; is equal
to that in No multiplied by —¢, and the thresh-
old of the hidden neuron j; in Nj is equal to
that in No multiplied by —i. In other words,
0, (N2) = Ny.

4. Case of eqn (53)
It follows from ag.ll) — iaf) = 0 that cg-ll) =
—icg.?), that is, the weight between the hidden
neuron j; and the output neuron in Nj is equal
to that in No multiplied by —¢. It also follows
from \V (2) = ipl (2) that v} (2) = iv3(2)
for any z € C™, that is, Y ;") wy; 2k +wj o =
>y (fwi; )2k + w3y Consequently, wy; =
iwp;, (1 <k <m) and wjy = iwj,y. In other
words, the weight between the hidden neuron
ji and the input neuron in N; is equal to that
in Ny multiplied by 7, and the threshold of the
hidden neuron j; in N; is equal to that in Ny
multiplied by i. In other words, 6} “(N3) = N.

Thus, N; and N, are equivalent. O.
Theorem 2 can be proved in the same manner as
ref. 19. See the appendix for the proof.

Theorem 2 The order of the finite group Wy, p, de-
scribed in Proposition § is 22" - nl.

Definition 7 (minimality) If a  three-layered
complez-valued neural network with n hidden neu-
rons 1s not I-O equivalent to any three-layered
complez-valued neural network with n — 1 or fewer
hidden neurons, that three-layered complexr-valued

neural network is called minimal.

Corollary 1 The irreducible three-layered complez-
valued neural network is minimal.

The results obtained in this paper are useful from
an engineering viewpoint. For example, when a
large-scale complex-valued neural network is used to
process large-scale image data, there is a possibility
that the network is reducible. It is desirable for pro-
cessing efficiency that the network employed be as



small in size as possible. After learning, the mini-
mal network can be obtained by checking the three
conditions of Definition 4 one by one. Corollary 1
guarantees this.

4. Conclusions

This paper has proved the uniqueness theorem
for the complex-valued neural network. That is, if
a 3-layered complex-valued neural network is irre-
ducible, the 3-layered complex-valued neural network
that approximates a given complex-valued function
is uniquely determined up to a certain finite group.
The assumption for the analysis is more practical
than those of the previous papers, %19 that is,
this paper has dealt with the 3-layered complex-
valued neural network with the hidden neurons
whose thresholds are not always zero, whereas the
previous papers 819 dealt with the one with the
hidden neurons whose thresholds were all zero. We
believe that the results can be the basis for investi-
gating the properties of complex-valued neural net-
works, particularly the statistical properties.

Note that the constraint on nearly rotation-
equivalent was imposed on the hidden neurons of
the complex-valued neural network. As far as Suss-
mann’s technique for proof is used, such a constraint
inevitably occurs, which seems to be caused by the
non-holomorphic activation function (eqn (3)) of the
complex-valued neuron. The other technique for
proof would be needed in order to remove the con-
straint on nearly rotation-equivalent.

Thimm and Moerland %2 proved that there ex-
isted a precise relationship between gain parame-
ter (i.e., slope in the nonlinear activation function),
learning rate, and initial weights for two backprop-
agation feedforward neural networks M and N with
the same topology: the neural network M whose gain
parameter is 3, learning rate 7, and initial weights
w is equivalent to the neural network N whose gain
parameter is 1, learning rate 427, and initial weights
Bw. Furthermore, Mandic and Chambers extended
the results obtained by Thimm and Moerland to a
class of recurrent neural networks trained by the real-
23,24 We believe
that the uniqueness theorem proved in this paper can
be generalized using those results.

time recurrent learning algorithm

In the future, the asymptotic behavior of the
maximum likelihood estimator of the learning pa-
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rameters in the complex-valued neural network will
be analyzed on the basis of the results presented in
this paper.
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Appendix

Proof of Proposition 3:

Suppose that a three-layered complex-valued neural
network is reducible. Then, one of the three condi-
tions in Definition 4 is valid. If the first condition
is valid, the output of hidden neuron j has no effect
on the output of the output neuron. Consequently,
the hidden neuron j can be eliminated. If the second
condition is valid, let the weight between hidden neu-
ron j; and the output neuron be c¢;,, and the weight
between the hidden neuron j» and the output neuron
be ¢j,. Then, the hidden neuron js is eliminated and
the weight between hidden neuron j; and the output
neuron is modified from c;, to cj, +pc;,. Then the re-
sulting complex-valued neural network is I-O equiv-
alent to the original complex-valued neural network.
Here, p is a value that depends on which of the four
conditions (eqns (12) - (15)) for rotation-equivalence
is satisfied; it takes one of the values 1, —1,¢ and —1.
If the third condition is valid, the output of the hid-
den neuron j is always constant. Consequently, the
value is added to the threshold of the output neu-
ron and hidden neuron j is eliminated. Then the
complex-valued neural network is I-O equivalent to
the original complex-valued neural network.

Proof of Proposition 4:

It is noted that tanh is an odd function, that is,
tanh(—u) = —tanh(u).
of complex numbers are also noted. For any com-

The following properties

plex numbers w,z € C, we have Re[(—w)z] =
—Re[wz], Im[(-w)z] = —Im[wz], Re[(—i)z] =
Im[z], Im[(—i)z] = —Relz], Re[iz] = —Im[z] and
Im[iz] = Relz]. Thus, it is easy to show that the
output of the output neuron is not affected by any
of the four transformations.

Proof of choosing integers s” > 0 and A" > 0:
Let B be the subset of {k + 1,---,7} consisting of
those k' such that the quotient v}, /v is rational.



Write this quotient as p/qrs, where pg and g are
relatively prime positive integers. Also, let C' be the
subset of {k,---,r} consisting of those k" such that
the quotient v, /v is rational. Write this quotient
as pgr /qikr, where ppr and g are relatively prime
positive integers. Then, sv; cannot be an integer
multiple of v}, unless s is divisible by pi where
s is a positive integer (This can be proved as fol-
Assume that there exists an integer n such
that sv; = nvp,. Then, s = nvj, /vy = npe/qw-
So, n = sqi' /prr. Thus, s must be divisible by py.)
Similarly, sv cannot be an integer multiple of v},

lows.

unless s is divisible by pi~ where s is a positive in-
teger. SO, if we piCk h" = Hk’EB,k”eCpk’pk” and
s" = 1+ h", we see that s"v; cannot be an in-
teger multiple of v}, and v}, for any k' € B and
k" € C. If 6 is an integer, then (s” + dh")v}, cannot
be an integer multiple of v}, and v}, for any k' € B
and k" € C because s" + dh" can never be divisi-
ble by pg: and pg#. So s” and h" are the desired
integers. On the other hand, if v}, /v}, is irrational,
(s"+0h")v; cannot be an integer multiple of v}, (This
can be proved as follows. Let z = v},/v}. Then,
vp = 2vj. So, (8" + dh")v}, = (s" + 6h")zv. Thus,
(s" + 0h" vy = [(s" + 0h") /x]v}, where (s" + dh")/x
is not an integer). Similarly, if v, /vl is irrational,
(8" 4+ 6h")vy, cannot be an integer multiple of v}, .

Proof of eqn (37):

Since there exist some 77,7, = =£1,+i such that
X =7\ and An = T Am, we will show Im[X?] =
Im[X0] for each case of T = +1,+i. In
case of 1 = 7, = 1, & = A\ (e, Re[N] =
Re[An], Im[N] = Im[A ]) and Re[)\l] = Re[\2)].
So, foranyzEC,R[(]: elh(2)] +

Re[\] = Re[Am(2)] + Re[\}] = Re[om(2)]. Thus,
from eqn (4), Im[p)] = Im [ m] holds true. Then,
for any z € C™, Im[p ( )] = Im[\(2)] + Im[\?] =

= Imlp

Im[Am (2)]+1m[A]] m(2)]+HIm[N]]=Im[X},].
Thus, Im[\?] = Im[X’,]. Therefore, Im[\)] =
Im[)\?] = Im[\°] = Im[)\°,]. The other cases can
be shown in the same manner.

Proof of Theorem 2:

Wi n| = “The number of transformations obtained
by applying or not applying the transformations
9_1,9;,0J ‘ to each of n hidden neurons” x “The
number of permutations of n hidden neurons ob-

11

tained by applying 7;,;,”= 4"

-nl =227 . pl.
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