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This paper presents some results of an analysis on the decision boundaries of
complex-valued neural networks whose weights, threshold values, input and
output signals are all complex numbers. The main results may be summa-
rized as follows. (a) A decision boundary of a single complex-valued neuron
consists of two hypersurfaces which intersect orthogonally, and divides a de-
cision region into four equal sections. The XOR problem and the detection of
symmetry problem which cannot be solved with 2-layered real-valued neural
networks, can be solved by 2-layered complex-valued neural networks with
the orthogonal decision boundaries, which reveals a potent computational
power of complex-valued neural nets. Furthermore, the fading equalization
problem can be successfully solved by the 2-layered complex-valued neural
network with the highest generalization ability. (b) A decision boundary of a
three-layered complex-valued neural network has the orthogonal property as
a basic structure, and its two hypersurfaces approach orthogonality as all the
net inputs to each hidden neuron grow. In particular, most of the decision
boundaries in the 3-layered complex-valued neural network intersect orthog-
onally when the network is trained using the Complex-BP algorithm. As a
result, the orthogonality of the decision boundaries improves its generalization
ability. (c) Furthermore, the average of the learning speed of the Complex-
BP is several times faster than that of the Real-BP. The standard deviation
of the learning speed of the Complex-BP is smaller than that of the Real-BP.
It seems that the complex-valued neural network and the related algorithm
are natural for learning of complex-valued patterns for the above reasons.

1 Introduction

It is expected that complex-valued neural networks, whose parameters (weights and
threshold values) are all complex numbers, will have applications in fields dealing with
complex numbers such as telecommunications, speech recognition and image processing
with the Fourier transformation. When using the existing method for real numbers, we
must apply the method individually to their real and imaginary parts. On the other hand,
complex-valued neural networks allow us to directly process data. Moreover complex-
valued neural networks enable us to automatically capture good rotational behavior of
complex numbers. Actually, we can find some applications of the complex-valued neural



networks to various fields such as telecommunications and image processing in the litera-
ture (Miyauchi, Seki, Watanabe, & Miyauchi, 1992, 1993; Watanabe, Yazawa, Miyauchi,
& Miyauchi, 1994; KES, 2001, 2002; ICONIP, 2002). The fading equalization technology
is an application domain suitable for the complex-valued neural network, which will be
described in Section 4.3.

The back-propagation algorithm (called here, Real-BP) (Rumelhart, Hinton, & Williams,
1986a, 1986b) is an adaptive procedure which is widely used in training a multi-layer per-
ceptron for a number of classification applications in areas such as speech and image recog-
nition. The Complez-BP algorithm is a complex-valued version of the Real-BP, which was
proposed by several researchers independently in the early 1990’s (Kim & Guest, 1990;
Nitta & Furuya, 1991; Benvenuto & Piazza, 1992; Georgiou & Koutsougeras, 1992; Nitta,
1993, 1997). The Complex-BP algorithm can be applied to multi-layered neural networks
whose weights, threshold values, input and output signals are all complex numbers. This
algorithm enables the network to learn complex-valued patterns naturally, and has an
ability to transform geometric figures as its inherent property, which may be related to
the Identity Theorem in complex analysis (Nitta & Furuya, 1991; Nitta, 1993, 1997).

It is important to clarify the characteristics of the complex-valued neural networks in
order to promote the real applications. This paper makes clear the differences between
the real-valued neural network and the complex-valued neural network by analyzing their
fundamental properties from the view of network architectures, and clarifies the utility
for the complex-valued neural network which the properties discovered in this paper bring
about. The main results may be summarized as follows. (a) A decision boundary of a
single complex-valued neuron consists of two hypersurfaces which intersect orthogonally,
and divides a decision region into four equal sections. The XOR problem and the detection
of symmetry problem which cannot be solved with 2-layered real-valued neural networks,
can be solved by 2-layered complex-valued neural networks with the orthogonal decision
boundaries, which reveals a potent computational power of complex-valued neural nets.
Furthermore, the fading equalization problem can be successfully solved by the 2-layered
complex-valued neural network with the highest generalization ability. (b) A decision
boundary of a three-layered complex-valued neural network has the orthogonal property
as a basic structure, and its two hypersurfaces approach orthogonality as all the net inputs
to each hidden neuron grow. In particular, most of the decision boundaries in the 3-layered
complex-valued neural network intersect orthogonally when the network is trained using
the Complex-BP algorithm. As a result, the orthogonality of the decision boundaries
improves its generalization ability. (c¢) Furthermore, the average of the learning speed of
the Complex-BP is several times faster than that of the Real-BP. The standard deviation
of the learning speed of the Complex-BP is smaller than that of the Real-BP.

This paper is organized as follows: Section 2 describes the complex-valued neural
network and the related Complex-BP algorithm. Section 3 deals with the theoretical
analyses of decision boundaries of the complex-valued neural network model. The utility
for the complex-valued neural network which the properties discovered in Section 3 bring
about are given in Section 4. Section 5 is devoted to the discussion on the results obtained
in this paper. Finally, we give some conclusions.



2 The Complex-valued Neural Network

This section describes the complex-valued neural network used in the analysis.

2.1 The Model

First, we will consider the following complex-valued neuron. The input signals, weights,
thresholds and output signals are all complex numbers. The net input U, to a complex-
valued neuron n is defined as:

where W, is the (complex-valued) weight connecting complex-valued neurons n and
m, Xy, is the (complex-valued) input signal from complex-valued neuron m, and Vj, is
the (complex-valued) threshold value of neuron n. To obtain the (complex-valued) output
signal, convert the net input U, into its real and imaginary parts as follows: U,, = z+1y =
z, where ¢ denotes v/—1. The (complex-valued) output signal is defined to be

fo(z) = fr(x) +ifr(y), (2)

where fr(u) = 1/(1 4+ exp(—u)),u € R (R denotes the set of real numbers), that is,
the real and imaginary parts of an output of a neuron mean the sigmoid functions of the
real part x and imaginary part y of the net input z to the neuron, respectively. Note
that the activation function fc is not a regular complex-valued function because the
Cauchy-Riemann equation does not hold.

A complex-valued neural network consists of such complex-valued neurons described
above. The Complex-BP learning rule (Nitta & Furuya, 1991; Nitta, 1993, 1997) has
been obtained by using a steepest descent method for such (multi-layered) complex-valued
neural networks.

2.2 The Activation Function

In this section, the validity of the activation function defined in expression (2) is described.

In the case of real-valued neural networks, an activation function of real-valued neurons
is usually chosen to be a smooth (continuously differentiable) and bounded function such
as a sigmoidal function. As some researchers have pointed out (Georgiou & Koutsougeras,
1992; Nitta, 1997; Kim & Adali, 2000; Kuroe, Hashimoto, & Mori, 2002), in the complex
region, however, we should recall the Liouville’s theorem, which says that if a function
G is regular at all z € C' and bounded, then G is a constant function where C' denotes
the set of complex numbers. That is to say, we need to choose either the regularity or
the boundedness for an activation function of complex-valued neurons. In this paper,
the expression (2) is adopted as an activation function of complex-valued neurons for the
analysis, which is bounded but non-regular (that is, the boundedness is chosen).

There are some reasons for adopting the complex function defined in expression (2) as
an activation function of complex-valued neurons, which we now state in the following.
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First, although the expression (2) is not regular (i.e., the Cauchy-Riemann equation does
not hold), there is a strong relationship between its real and imaginary parts. Actually,
consider a complex-valued neuron with n-inputs, weights wy, = wj +iwi € C (1 < k < n),
and a threshold value § = 0" +:0° € C. Then, for n input signals x;,+iy, € C (1 < k < n),
the complex-valued neuron generates

X+iY = fc (Z(w;+iw;)(xk+iyk)+(9T+z‘9i)>
k=1

n
= I (3 (whne—wign) +0" ) + ifr( X (wioe+wiy) +6) (3
k=1 k=1

as an output. Both the real and imaginary parts of the right-hand side of the expression
(3) contain the common variables {z, yx, wi, wi}?_,, and influence via those 4n variables
each other. Moreover, the activation function (2) can process complex-valued signals prop-
erly through its amplitude-phase relationship. Actually, as described in (Nitta, 1997), the
1 —n — 1 Complex-BP network with the activation function (2) can transform geometric
figures, e.g. rotation, similarity transformation and parallel displacement of straight lines,
circles, etc. This cannot be done without the ability to process signals properly through
the amplitude-phase relationship in the activation function. Second, it has been proved
that the complex-valued neural network with the activation function (2) can approxi-
mate any continuous complex-valued function, whereas the one with a regular activation
function (for example, fo(z) = 1/(1 + exp(—=z)) proposed by Kim & Guest (1990), and
fc(z) = tanh(z) by Kim & Adali (2000)) cannot approximate any non-regular complex-
valued function (Arena, Fortuna, Re, & Xibilia, 1993; Arena, Fortuna, Muscato, & Xibilia,
1998). That is, the complex-valued neural network with the activation function (2) is a
universal approximator, and the one with a regular activation function is not, however, a
universal approximator. Thus, the ability of complex-valued neural networks to approxi-
mate complex-valued functions depends heavily on the regularity of activation functions
used. Third, the stability of the learning of the complex-valued neural network with the
activation function (2) has been confirmed through some computer simulations (Nitta &
Furuya, 1991; Nitta, 1993; Arena, Fortuna, Re, & Xibilia, 1993; Nitta, 1997). Finally, the
activation function (2) clearly satisfies the following 5 properties an activation function
H(z) = u(z,y) + iv(z,y), z = x + iy should possess, which Georgiou & Koutsougeras
(1992) pointed out:

1. H is nonlinear in z and y.

2. H is bounded.

3. The partial derivatives u,, u,, v, and v, exist and are bounded.

4. H(z) is not entire. That is, there exists some z, € C such that H(z) is not regular.
5. u,vy is not identically equal to v, u,.

We adopted the activation function (2) for the above reasons.



3 Orthogonality of Decision Boundaries in the Complex-
valued Neural Network

Decision boundary is a boundary by which the pattern classifier such as the Real-BP
classifies patterns, and generally consists of hypersurfaces. Decision boundaries of real-
valued neural networks have been examined empirically by Lippmann (1987). This section
mathematically analyzes the decision boundaries of the complex-valued neural network.

3.1 A Case of a Single Neuron

We first analyze the decision boundary of a single complex-valued neuron (i.e., the number
of hidden layers is zero).

Let the weights denote w = ‘[w;---w,] = w" + iw’, w" = Yw]---wl], w' =
Hw? -+ w!], and let the threshold denote # = 0" + if*. Then, for n input signals (complex
numbers) z = [z -z, = x +iy, ® =r1--- x|, y = y1 - - yn], the complex-valued
neuron generates

e G M R R O MEL B

as an output. Here, for any two constants C% CT € (0,1), let
X(z,y) = ﬁz([t'w’" — "] l z ] +9’"> = CF, (5)
Y(z,y) = fR<[twi "] l Z ] +9i> =, (6)

Note here that expression (5) is the decision boundary for the real part of an output of the
complex-valued neuron with n-inputs. That is, input signals (x,y) € R* are classified
into two decision regions {(z,y) € R*|X (z,y) > C®} and {(x,y) € R™| X (z,y) < C}
by the hypersurface given by expression (5). Similarly, expression (6) is the decision
boundary for the imaginary part. The normal vectors QF(x,y) and Q!(x,y) of the
decision boundaries ((5), (6)) are given by

0X 0X 0X 0X
R f— —_— - s . _ - s .
Q(@,y) = <8x1 ox, Oy 8yn>

= fifter w2 )t ) )

( oY oYy oY oY >
8.7)1 8£Un 8y1 8yn

= filtet w1 5] e) e e )

Noting that the inner product of expressions (7) and (8) is zero, we can find that the
decision boundary for the real part of an output of a complex-valued neuron and that for
the imaginary part intersect orthogonally.

Q' (w,y) =




It can be easily shown that this orthogonal property also holds true for the other
types of the complex-valued neurons proposed in (Kim & Guest, 1990; Benvenuto &
Piazza, 1992; Georgiou & Koutsougeras, 1992). It should be noted here that there seems
to be a problem on learning convergence in the formulation in (Kim & Guest, 1990);
the complex-valued back-propagation algorithm with the activation function fo(z) =
1/(1 4 exp(—=2)), z = = + iy never converged in our experiments.

Generally, a real-valued neuron classifies an input real-valued signal into two classes (0,
1). On the other hand, a complex-valued neuron classifies an input complex-valued signal
into four classes (0, 1, i, 1+14). As described above, the decision boundary of a complex-
valued neuron consists of two hypersurfaces which intersect orthogonally, and divides a
decision region into four equal sections. Thus, it can be considered that a complex-valued
neuron has a natural decision boundary for complex-valued patterns.

3.2 A Case of a Three-layered Network

Next, we examine the decision boundary of a three-layered complex-valued neural network
(i.e., it has one hidden layer). Consider a three-layered complex-valued neural network
with L input neurons, M hidden neurons, and N output neurons. We use w;; = wj; +zw§Z
for the weight between the input neuron ¢ and the hidden neuron j, vy; = vg; + ivy; for
the weight between the hidden neuron j and the output neuron k, 6; = 07 + if; for the
threshold of the hidden neuron j, v, = v} + 47, for the threshold of the output neuron £.
Then, for L input (complex-valued) signals z = [z, -+ 2;] = @ +iy, * =[x, 21], y =
Hyy -+ -yz], the net input U; to the hidden neuron j is given by

Uy = U;+¢U;
L

1=1

L

=1

Hence, the output H; of the hidden neuron j is given by
H; = Hr—i-zH’—fR( )—i—sz(Ul) (10)
And also, the net input S; to the output neuron k is given by

Sy = Sp+iS;
M M ) )
_ [Z(U;jﬂr vl HY) +7k] +Z{Z o HT 4 vl HY) + 4] (11)
j:l :

Hence, the output Oy of the output neuron £ is given by
Oy = O +i0; = fr(SE) +ifr(S}). (12)
Here, for any two constants C® C7 € (0,1), let

Oi(m,y) = CF, (13)
Oi(z,y) = C. (14)



The expressions (13) and (14) are the decision boundaries for the real and imaginary parts
of the output neuron k in the 3-layered complex-valued neural network, respectively. The
normal vectors QF(x,y), Q' (x, y) of these hypersurfaces ((13), (14)) are given by

00, 007, 00, 007,
R k k k k
et . e PP 1
Q (m,y) <8x1 61:L 8y1 8yL>’ ( 5)
00! 00: 00! 00!
I k k k k
et . e PP 1
Q(@y) <8x1 ox;, Oy, 3yL>’ (16)
and their inner product is given by
Q(z,y) - 'Q (x,y)
00" 00% 001 90:  90L 90 00" 90%
0r, 0Ox; * * Oxy  Oxp, * oy Oy * * Oy, Oyr (17)
Note here that, for any 1 <1 < L,
00~ 90 N 00" 90%
oxr; Ox; oy; 0y
QS OIS0 1§ O e O]
oS}, dS: = ki =i ou7 kit 6UJ@
Mo Ofr(UY) - Ofp(UY)
[j:1 1 oU; I oU;
_Ofn(Sp)  0fn(S). [f(vr.wr_ RGN 1 CH >>]
0S5}, oS} = KAA an KAA ouU;
Mo, Ofr(UY) - Ofr(UT)
[jl 1 oU; I oU]

Hence, the inner product of the normal vectors is not always zero. Therefore, we can
not conclude that the decision boundaries (hypersurfaces) for the real and imaginary
parts of the output neuron £ in the 3-layered complex-valued neural network intersect
orthogonally. However, paying enough attention to expression (18), we can find that if

Ofw(Uy) _ 0fn(U})
our U

(19)

for any 1 < j < M, then the inner product is zero. In general, if both |u;| and |us| are
sufficiently large, we can consider that fi(u;) is nearly equal to fr(us). Hence, if, for any
1<j <M, there exist sufficiently large positive real numbers K, K5 such that |UJ"| > K,
and |U}| > K5, then the two decision boundaries ((13), (14)) nearly intersect orthogonally.
That is, if, for any 1 < j < M, both the absolute values of the real and imaginary parts
of the net input (complex number) to the hidden neuron j are sufficiently large, then the
decision boundaries nearly intersect orthogonally. Therefore, the following theorem can



be obtained.

Theorem  The decision boundaries for the real and imaginary parts of an output
neuron in the 3-layered complex-valued neural network approach orthogonality as both
the absolute values of the real and imaginary parts of the net inputs to all hidden neurons
grow. O

4 Utility of the Orthogonal Decision Boundaries

In this section, we will show the utility which the properties on the decision boundary
discovered in the previous section bring about.

Minsky and Papert (1969) clarified the limitations of 2-layered real-valued neural
networks (i.e., no hidden layers): in a large number of interesting cases, the 2-layered
real-valued neural network is incapable of solving the problems. A classic example of this
case is the exclusive-or (XOR) problem which has a long history in the study of neural
networks, and many other difficult problems involve the XOR as subproblem. Another
example is the detection of symmetry problem. Rumelhart, Hinton, & Williams (1986a,
1986b) showed that the 3-layered real-valued neural network (i.e., with one hidden layer)
can solve such problems including the XOR problem and the detection of symmetry
problem and the interesting internal representations can be constructed in the weight-
space.

As described above, the XOR problem and the detection of symmetry problem cannot
be solved with the 2-layered real-valued neural network. Then, first, contrary to expecta-
tion, it will be proved that such problems can be solved by the 2-layered complex-valued
neural network (i.e., no hidden layers) with the orthogonal decision boundaries, which
reveals a potent computational power of complex-valued neural nets. In addition, it will
be shown as an application of the above computational power that the fading equaliza-
tion problem can be successfully solved by the 2-layered complex-valued neural network
with the highest generalization ability. Rumelhart, Hinton and Williams (1986a, 1986b)
showed that increasing the number of layers made the computational power of neural
networks high. In this section, we will show that extending the dimensionality of neural
networks to complex numbers originates the similar effect on neural networks. This may
be a new directionality for enhancing the ability of neural networks.

Second, we will present the simulation results on the generalization ability of the 3-
layered complex-valued neural networks trained using the Complex-BP (called Complez-
BP network) (Nitta & Furuya, 1991; Nitta, 1993, 1997) and will compare them with those
of the 3-layered real-valued neural networks trained using the Real-BP (called Real-BP
network) (Rumelhart, Hinton, & Williams, 1986a, 1986b).



4.1 The XOR Problem

In this section, it is proved that the XOR problem can be solved by 2-layered complex-
valued neural network (i.e., no hidden layers) with the orthogonal decision boundaries.
The input-output mapping in the XOR problem is shown in Table 1.

Table 1 The XOR problem

Input | Output
Ty | 2y y
00 0
01 1
110 1
111 0

In order to solve the XOR problem with complex-valued neural networks, the input-output
mapping is encoded as shown in Table 2 where the outputs 1 and ¢ are interpreted to be
0, 0 and 1+ are interpreted to be 1 of the original XOR problem (Table 1), respectively.

Table 2 An encoded XOR problem for complex-valued neural networks

Input Output
z=x+1wy | Z=X+1Y
—1—3 1
-1+ 0
1—1 1+
1+ 1

We use a 1-1 complex-valued neural network (i.e., no hidden layers) with a weight w =
u + iv € C between the input neuron and the output neuron (we assume that it has no
threshold parameters). The activation function is defined to be

lo(2) = 1r(z) +ilr(y), z=z+1y (20)

where 1g is a real-valued step function defined on R, that is, 1g(u) = 1 if u > 0, 0
otherwise for any u € R. The decision boundary of the 1-1 complex-valued neural network
described above consists of the following two straight lines which intersect orthogonally:

[w =]z yl=0, (21)

for any input signal 2 = x + iy € C where u and v are the real and imaginary parts of the
weight parameter w = u +iv, respectively. The expressions (21) and (22) are the decision
boundaries for the real and imaginary parts of the 1-1 complex-valued neural network,
respectively. Letting u =0 and v =1 (i.e., w = i), we have the decision boundary shown
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in Fig. 1, which divides the input space (the decision region) into four equal sections,
and has the highest generalization ability for the XOR, problem. On the other hand, the
decision boundary of the 3-layered real-valued neural network for the XOR problem does
not always have the highest generalization ability (Lippmann, 1987). In addition, the
required number of learnable parameters is only 2 (i.e., only w = u + iv), whereas at
least 9 parameters are needed for the 3-layered real-valued neural network to solve the
XOR problem (Rumelhart, Hinton, & Williams, 1986a, 1986b), where a complex-valued
parameter z = x + 4y (where i = /—1) is counted as two because it consists of a real part
x and an imaginary part y.

4.2 The Detection of Symmetry

Another interesting task that cannot be done by 2-layered real-valued neural networks is
the detection of symmetry problem (Minsky and Papert, 1969). In this section, a solution
to this problem using 2-layered complex-valued neural network (i.e., no hidden layers)
with the orthogonal decision boundaries is given.

The problem is to detect whether the binary activity levels of a one-dimensional array
of input neurons are symmetrical about the centre point. For example, the input-output
mapping in the case of 3 inputs is shown in Table 3. We used patterns of various lengths
(from 2 to 6) and could solve all the cases with 2-layered complex-valued neural networks.
Only a solution to the case with 6 inputs is presented here because the other cases can
be done by the similar way.

Table 3 The detection of symmetry problem with 3 inputs. Output 1 means that the
corresponding input is symmetric, and 0 asymmetric.

Input Output
T ‘ T2 ‘ T3 Y
01010 1
01011 0
0]11]0 1
11010 0
011 0
110711 1
1{11]0 0
11111 1

We use a 6-1 complex-valued neural network (i.e., no hidden layers) with weights
wr = uy + ivy € C between an input neuron k and the output neuron (1 < k < 6)
(we assume that it has no threshold parameters). In order to solve the problem with
the complex-valued neural network, the input-output mapping is encoded as follows: an
input x, € R is encoded as an input xp + iy, € C to the input neuron k where 3, = 0
(1 < k < 6), the output 1 € R is encoded as 1 +1i € C, and the output 0 € R is
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encoded as 1 or ¢ € C which is determined according to inputs (for example, the output
corresponding to the input [0 0 0 0 1 0] is ). The activation function is the same as
in expression (20).

The decision boundary of the 6-1 complex-valued neural network described above
consists of the following two straight lines which intersect orthogonally:

[U/l PR U/G _Ul PR _'UB] . t[xl PO x6 yl ... yﬁ] = 0, (23)
[,Ul PR ,UB U/l PR Uﬁ] . t[xl PR .’L‘ﬁ yl ... yﬁ] = 0 (24)
for any input signal 2y = xp + iy, € C where u; and vy are the real and imaginary parts

of the weight parameter wy = uy + ivg, respectively (1 < k < 6). The expressions (23)
and (24) are the decision boundaries for the real and imaginary parts of the 6-1 complex-

valued neural network, respectively. Letting ‘[u; -+ ug] = -1 2 —4 4 —2 1] and
Hop oo wg]) =11 —2 4 —4 2 —1] (e, wy = =1 +i,wg =2 — 2i, w3 = —4 + 4i,wy =
4 — 4i, w5 = —2 + 2i and wg = 1 — i), we have the orthogonal decision boundaries shown

in Fig. 2 which successfully detect the symmetry of the 2°(= 64) input patterns.

In addition, the required number of learnable parameters is 12 (i.e., 6 complex-valued
weights), whereas at least 17 parameters are needed for the 3-layered real-valued neural
network to solve the detection of symmetry (Rumelhart, Hinton, & Williams, 1986a,
1986b) where a complex-valued parameter z = z + iy (where i = \/—1) is counted as two
as in Section 4.1.

4.3 The Fading Equalization Technology

In this section, it is shown that 2-layered complex-valued neural networks with orthogonal
decision boundaries can be successfully applied to the fading equalization technology
(Lathi, 1998).

Channel equalization in a digital communication system can be viewed as a pattern
classification problem. The digital communication system receives a transmitted signal
sequence with additive noise, and tries to estimate the true transmitted sequence. A
transmitted signal can take one of the following four possible complex values: —1 —
i,—1+i,1 —iand 14+ (i = v/—1). Thus the received signal will take value around
—1—14,—1414,1—17 and 1+, for example, —0.9 — 1.24, 1.1 + 0.84¢ or something because
some noises are added to them. We need to estimate the true complex values from such
complex values with noises. Thus, the method with an excellent generalization ability is
needed for the estimate. The input-output mapping in the problem is shown in Table 4.

Table 4 The input-output mapping in the fading equalization problem

Input ‘ Output ‘

—1—-2| -1—1
—1+4+7| —1+:
1—1 11—
1+ 1+

12



We use the same 1-1 complex-valued neural network as in Section 4.1. In order to
solve the problem with the complex-valued neural network, the input-output mapping in
Table 4 is encoded as shown in Table 5. Letting v =1 and v = 0 (i.e., w = 1), we have
the orthogonal decision boundary shown in Fig. 3, which has the highest generalization
ability for the fading equalization problem, and can estimate true signals without errors.
In addition, the required number of learnable parameters is only 2 (i.e., only w = u + iv).

Table 5 An encoded fading equalization problem for complex-valued neural networks

‘ Input ‘ Output ‘

—1—1 0
-1+ l
1—1 1
141 1+

4.4 Generalization Ability of 3-layered Complex-valued Neural
Networks

We present below the simulation results on the generalization ability of the three-layered
complex-valued neural networks trained using the Complex-BP (called Complez-BP net-
work) (Nitta & Furuya, 1991; Nitta, 1993, 1997) and compare them with those of the
three-layered real-valued neural networks trained using the Real-BP (called Real-BP net-
work) (Rumelhart, Hinton, & Williams, 1986a, 1986b).

In the experiments, the three sets of (complex-valued) learning patterns shown in
Tables 6-8 were used, and the learning constant ¢ was 0.5. The initial components of the
weights and the thresholds were chosen to be random real numbers between —0.3 and

0.3. We judged that learning finished, when \/Zp SN T — 0P |2 = 0.05 held, where
T,Ep ), O,(cp ) € C denoted the desired output value, the actual output value of the output

neuron k for the pattern p; N denoted the number of neurons in the output layer. We
regarded presenting a set of learning patterns to the neural network as one learning cycle.

Table 6 Learning pattern 1

‘ Input pattern ‘ Output pattern ‘

—0.03 —0.03¢ 1+
0.03 — 0.03¢ v
0.03 + 0.03¢ 0

—0.03 +0.032 1
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Table 7 Learning pattern 2

‘ Input pattern ‘ Qutput pattern ‘

—0.03 —0.03¢ 0
0.03 —0.03¢ 0
0.03 4+ 0.032 1

—0.03 + 0.03¢ 1+

Table 8 Learning pattern 3

‘ Input pattern ‘ Qutput pattern

—0.03 —0.03¢ 0
0.03 —0.03¢ 1
0.03 4+ 0.032 1+

—0.03 +0.03¢ v

We used the four kinds of three-layered Complex-BP networks: 1-3-1, 1-6-1, 1-9-1 and
1-12-1 networks. After training, by presenting the 1,681(=41x41) points in the complex
plane [—-1,1]x[-1,1] (z+iy, where z = —1.0, —0.95, - - -, 0.95,1.0; y = —1.0, —0.95, - - - , 0.95,
1.0), the actual output points formed the decision boundaries. Fig. 4 shows an example of
the decision boundary of the Complex-BP network. In Fig. 4, the number 1 denotes the
region in which the real part of the output value of the neural network is OFF (0.0-0.5),
and the imaginary part OFF; the region 2 the real part ON (0.5-1.0), and the imaginary
part OFF; the region 3 the real part OFF, and the imaginary part ON; the region 4
the real part ON, and the imaginary part ON. And the decision boundary for the real
part (i.e., the boundary that the region “143” and the region “2+4” form) and that for
imaginary part (i.e., the boundary that the region “1+2” and the region “3+44” form)
intersect orthogonally.

We also conducted the corresponding experiments for the Real-BP networks. We
chose the 2-4-2 Real-BP network for the 1-3-1 Complex-BP network as a comparison
object because the numbers of the parameters (weights and thresholds) were almost the
same: the number of parameters for the 1-3-1 Complex-BP network was 20, and that
for the 2-4-2 Real-BP network 22 where a complex-valued parameter z = = + iy (where
i = /—1) was counted as two because it consisted of a real part x and an imaginary
part y. Similarly, the 2-7-2, 2-11-2 and 2-14-2 Real-BP networks were chosen for the
1-6-1, 1-9-1 and 1-12-1 Complex-BP networks as their comparison objects, respectively.
The numbers of parameters of them are shown in Table 9. In the Real-BP networks,
the real component of a complex number was input into the first input neuron, and the
imaginary component was input into the second input neuron; the output from the first
output neuron was interpreted to be the real component of a complex number, and the
output from the second output neuron was interpreted to be the imaginary component.
Fig. 5 shows an example of the decision boundary of the Real-BP network where the
numbers 1-4 have the same meanings as those of Fig. 4. We can find from Fig. 5 that
the decision boundary for the real part (i.e., the boundary that the region “143” and
the region “244” form) and that for imaginary part (i.e., the boundary that the region
“1+42” and the region “344” form) do not intersect orthogonally.
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Table 9  The number of parameters in the Real-BP and Complex-BP networks

Complex-BP network 1-3-1 | 1-6-1 | 1-9-1 | 1-12-1
The number of parameters 20 38 56 74
Real-BP network 2-4-2 | 2-7-2 | 2-11-2 | 2-14-2
The number of parameters 22 37 o7 72

First, we measured the angles between the decision boundary for the real part (i.e., the
boundary that the region “1+3” and the region “2+4” formed) and that for imaginary
part (i.e., the boundary that the region “142” and the region “3+4” formed) which
were the components of the decision boundary of the output neuron in the Complex-BP
networks in the visual observation under the experimental conditions described above.
In the visual observation, the angles of the decision boundaries observed were roughly
classified into three classes: 30, 60 and 90 degrees. The result of the observation is shown
in Table 10 where most of trials were 90 degrees, few trials 60 degrees and none of trials
30 degrees. Then, the average and the standard deviation of the angles of 100 trials for
each of the 3 learning patterns and each of the 4 kinds of network structures were used
as the evaluation criterion. Although we stopped learning at the 200,000th iteration,
all trials succeeded in converging. And also, we measured the same quantities of the
Real-BP networks for the comparison. The results of the experiments are shown in Table
11. We can find from Table 11 that all the average angles for the Complex-BP networks
are almost 90 degrees, which are independent of the learning patterns and the network
structures, whereas those of the Real-BP networks are around 70-80 degrees. In addition,
the standard deviations of the angles for the Complex-BP networks are around 0-5 degrees
and those for the Real-BP networks around 20 degrees. Thus, we can conclude from the
experimental results that the decision boundary for the real part and that for imaginary
part which are the components of the decision boundary of the output neuron in the
three-layered Complex-BP networks almost intersect orthogonally, whereas those for the
Real-BP networks do not.

Table 10 Result of the visual observation of the angles of the decision boundaries
(Complex-BP network). Angles were roughly classified into the three classes: 30, 60
and 90 degrees. A numeral means the number of trials in which the angle observed was
classified into a specific class.

‘ H 30 degrees ‘ 60 degrees ‘ 90 degrees ‘

Learning pattern 2 (1-3-1 network) 0 4 96
Learning pattern 3 (1-6-1 network) 0 3 97
Learning pattern 3 (1-9-1 network) 0 1 99
Other 9 cases 0 0 100
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Table 11. Comparison of the angles of the decision boundaries (the average and the
standard deviation). The unit is degree.

(a) Pattern 1

Complex-BP network || 1-3-1 | 1-6-1 | 1-9-1 | 1-12-1
Average 90 90 90 90
Standard deviation 0 0 0 0
Real-BP network 2-4-2 | 2-7-2 | 2-11-2 | 2-14-2
Average 78 72 76 80
Standard deviation 19 22 17 17

(b) Pattern 2

Complex-BP network || 1-3-1 | 1-6-1 | 1-9-1 | 1-12-1
Average 89 90 90 90
Standard deviation 6 0 0 0
Real-BP network 2-4-2 | 2-7-2 | 2-11-2 | 2-14-2
Average 85 7 77 75
Standard deviation 16 20 18 21

(c) Pattern 3

Complex-BP network || 1-3-1 | 1-6-1 | 1-9-1 | 1-12-1
Average 90 89 90 90
Standard deviation 0 5 3 0
Real-BP network 2-4-2 | 2-7-2 | 2-11-2 | 2-14-2
Average 86 76 72 73
Standard deviation 11 20 22 22

It seems that there is a possibility of the improvement of the generalization ability of
neural networks caused by the orthogonality of the decision boundaries of the network.
Next, we measured the discrimination rate of the Complex-BP network for unlearned
patterns in order to clarify how the orthogonality of the decision boundary of the 3-layered
Complex-BP network changed its generalization ability. To specifically, we counted the
number of the test patterns for which the Complex-BP network could give the correct
output in the same experiments described above on the angles of decision boundaries of
100 trials for each of the 3 learning patterns and each of the 4 kinds of network structures.
We defined the correctness as follows: the output value X + Y (0 < X,Y < 1) of the
Complex-BP network for an unlearned pattern x + iy (—1 < z,y < 1) was correct if
|X — A] < 0.5 and |Y — B| < 0.5, provided that the closest input learning pattern to
the unlearned pattern x + iy was a + ib whose corresponding output learning pattern
was A+ iB (A, B = 0 or 1). For example, the output value X +iY (0 < XY < 1) of
the Complex-BP network for an unlearned pattern x + iy (0 < x,y < 1) was correct if
both the real and imaginary parts of the output value of the Complex-BP network took
value less than 0.5, provided that the corresponding output learning pattern for the input
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learning pattern 0.03 + 0.03: was 0. Then, the average and the standard deviation of the
discrimination rate of 100 trials for each of the 3 learning patterns and each of the 4 kinds of
network structures were used as the evaluation criterion. The results of the experiments
including the Real-BP network case appear in Table 12. The above simulation results
clearly suggest that the Complex-BP network has better generalization performance than
that of the Real-BP network. Furthermore, we investigated the causality between the high
generalization ability of the Complex-BP network and the orthogonal decision boundary.
Table 13 shows the average of the discrimination rate for the three upper cases shown in
Table 10. It is clearly suggested from Table 13 that the average of the discrimination rate
for the 3-layered complex-valued neural network with the orthogonal decision boundary is
superior to that for the one with the non-orthogonal decision boundary. Thus, we believe
that the orthogonality of the decision boundaries causes the high generalization ability of
the Complex-BP network.

Table 12.  Comparison of the discrimination rate (the average and the standard devia-
tion). The unit is percentage (%).

(a) Pattern 1

Complex-BP network || 1-3-1 | 1-6-1 | 1-9-1 | 1-12-1
Average 92 95 97 98
Standard deviation 6 5) 3 2
Real-BP network 2-4-2 | 2-7-2 | 2-11-2 | 2-14-2
Average 88 90 93 93
Standard deviation 8 7 4 4

(b) Pattern 2

Complex-BP network || 1-3-1 | 1-6-1 | 1-9-1 | 1-12-1
Average 93 95 96 97
Standard deviation 6 4 4 3
Real-BP network 2-4-2 | 2-7-2 | 2-11-2 | 2-14-2
Average 88 91 92 93
Standard deviation 8 7 D 6

(c) Pattern 3

Complex-BP network || 1-3-1 | 1-6-1 | 1-9-1 | 1-12-1
Average 92 94 97 97
Standard deviation 7 4 3 3
Real-BP network 2-4-2 | 2-7-2 | 2-11-2 | 2-14-2
Average 87 90 90 92
Standard deviation 9 7 7 6

17



Table 13 The average of the discrimination rate for the three upper cases shown in
Table 10. The unit is percentage (%).

‘ H 30 degrees ‘ 60 degrees ‘ 90 degrees ‘

Learning pattern 2 (1-3-1 network) — 88 93
Learning pattern 3 (1-6-1 network) — 88 93
Learning pattern 3 (1-9-1 network) — 84 96

Finally, we investigated the average and the standard deviation of the learning speed
(i.e., learning cycles needed to converge) of 100 trials for each of the 3 learning patterns
and each of the 4 kinds of network structures in the experiments described above. The
results of the experiments are shown in Table 14. We can find from these experiments that
the learning speed of the Complex-BP is several times faster than that of the Real-BP,
and the standard deviation of the learning speed of the Complex-BP is smaller than that
of the Real-BP.

Table 14.  Comparison of the learning speed (the average and the standard deviation).
The unit is learning cycle.

(a) Pattern 1

Complex-BP network || 1-3-1 | 1-6-1 | 1-9-1 | 1-12-1

Average 10770 | 10178 | 9766 | 9529
Standard deviation 438 472 210 144

Real-BP network 2-4-2 | 2-7-2 | 2-11-2 | 2-14-2
Average 31647 | 29945 | 28947 | 28230

Standard deviation 1268 944 697 566

(b) Pattern 2
Complex-BP network || 1-3-1 | 1-6-1 | 1-9-1 | 1-12-1

Average 10608 | 9932 | 9713 | 9539
Standard deviation 418 167 148 110

Real-BP network 2-4-2 | 2-7-2 | 2-11-2 | 2-14-2
Average 31781 | 29842 | 28902 | 28267

Standard deviation 2126 809 721 576

(c) Pattern 3
Complex-BP network || 1-3-1 | 1-6-1 | 1-9-1 | 1-12-1

Average 10746 | 10055 | 9713 | 9502
Standard deviation 740 412 228 188

Real-BP network 2-4-2 | 2-7-2 | 2-11-2 | 2-14-2
Average 34038 | 29620 | 28980 | 28471

Standard deviation 5182 806 603 584
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5 Discussion

We have proved that the decision boundary for the real part of an output of a single
complex-valued neuron and that for the imaginary part intersect orthogonally in Section
3.1. Since this property is completely different from an usual real-valued neuron, one
needs to design the complex-valued neural network for real applications and its learning
algorithm taking into account the orthogonal property of the complex-valued neuron
whatever the type of the network is (multi-layered type or mutually-connected type).
Moreover, it has constructively been proved using the orthogonal property of the decision
boundary that the XOR problem and the detection of symmetry problem can be solved by
2-layered complex-valued neural networks (i.e., complex-valued neurons), which cannot
be solved by 2-layered real-valued neural networks (i.e., real-valued neurons). These
results reveal a potent computational power of complex-valued neural nets. Making the
dimensionality of neural networks high (for example, complex numbers) may be a new
directionality for enhancing the ability of neural networks. In addition, it has been shown
as an application of the above computational power that the fading equalization problem
can be successfully solved by the 2-layered complex-valued neural network with the highest
generalization ability. One should use 2-layered complex-valued neural networks rather
than 3-layered ones when solving the fading equalization problem with complex-valued
neural networks.

It is not always guaranteed that the decision boundary of the 3-layered complex-valued
neural network has the orthogonality, as we have made clear in Section 3.2. Then, we have
derived a sufficient condition for the decision boundaries in the 3-layered complex-valued
neural network to almost intersect orthogonally in Section 3.2 (Theorem). The sufficient
condition was as follows: both the absolute values of the real and imaginary parts of the
net inputs to all hidden neurons are sufficiently large. This is a characterization for the
structure of the decision boundaries in the 3-layered complex-valued neural network. The
theorem will be useful if a learning algorithm such that both the absolute values of the
real and imaginary parts of the net inputs to all hidden neurons become sufficiently large
is devised because there is a possibility that the orthogonality of the decision boundaries
of the network can improve the generalization ability of 3-layered complex-valued neural
networks as we have seen in Section 4.4. That is, there is a possibility that we can utilize
the theorem in order to improve the generalization ability of the 3-layered complex-valued
neural network. However, the situation in which the theorem is directly useful for the
Complex-BP network cannot be considered regrettably for now because the control of
the net input is difficult as long as the Complex-BP algorithm (that is, steepest descent
method) is used. The Complex-BP is one of the learning algorithms for complex-valued
neural networks. Thus it should be noted that the usefulness of the theorem depends
on the learning algorithm used. Although the orthogonality of the decision boundaries
in the 3-layered complex-valued neural network can be guaranteed conditionally as de-
scribed above, we can find from the experiments in Section 4.4 that most of the decision
boundaries in the 3-layered Complex-BP network intersect orthogonally. Moreover, it
is learned from the experiments that there is a possibility that the orthogonality of the
decision boundaries in the 3-layered Complex-BP network improves its generalization
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ability. The decision boundary of the complex-valued neural network which consists of
two orthogonal hypersurfaces divides a decision region into four equal sections. So, it
is intuitively considered that the orthogonality of the decision boundaries improves its
generalization ability. Then, we showed the possibility experimentally. The theoretical
evaluation of the generalization ability of the complex-valued neural network using the
criteria for the evaluation such as the Vapnik-Chervonenkis dimension (VC-dimension)
(Vapnik, 1998) could clarify how the orthogonal property of the decision boundaries of
the complex-valued neural network influences its generalization ability.

It had already been reported that the average of the learning speed of the Complex-
BP is several times faster than that of the Real-BP (Nitta, 1997). In this connection, we
could confirm this again in the experiments on the orthogonality of the decision boundary
and the generalization ability of the 3-layered Complex-BP network in Section 4.4. It was
learned that the standard deviation of the learning speed of the Complex-BP was smaller
than that of the Real-BP, which had not been reported in (Nitta, 1997).

6 Conclusions

We have made clear the differences between the real-valued neural network and the
complex-valued neural network through theoretical and experimental analyses of their
fundamental properties, and clarified the utility for the complex-valued neural network
which the properties discovered in this paper bring about.

It turned out that the complex-valued neural network has some inherent properties on
decision boundary, as a result of the extension to complex numbers. A decision boundary
of a single complex-valued neuron consists of two hypersurfaces which intersect orthogo-
nally, and divides a decision region into four equal sections. The XOR problem and the
detection of symmetry problem which cannot be solved with 2-layered real-valued neural
networks, can be solved by 2-layered complex-valued neural networks with the orthogo-
nal decision boundaries, which reveals a potent computational power of complex-valued
neural nets. Furthermore, the fading equalization problem can be successfully solved by
the 2-layered complex-valued neural network with the highest generalization ability. A
decision boundary of a three-layered complex-valued neural network has the orthogonal
property as a basic structure, and its two hypersurfaces approach orthogonality as all the
net inputs to each hidden neuron grow. In particular, most of the decision boundaries in
the 3-layered complex-valued neural network intersect orthogonally when the network is
trained using the Complex-BP algorithm. As a result, the orthogonality of the decision
boundaries improves its generalization ability. Its theoretical proof is a future topic. Fur-
thermore, the average of the learning speed of the Complex-BP is several times faster than
that of the Real-BP. The standard deviation of the learning speed of the Complex-BP
is smaller than that of the Real-BP. The complex-valued neural network and the related
Complex-BP algorithm are the natural methods to learn complex-valued patterns for the
above reasons, and are expected to be effectively used in the fields dealing with complex
numbers.
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Figure 1: The decision boundary in the input space of the 1-1 complex-valued neural
network that solves the XOR problem. The black circle means that the output in the
XOR problem is 1, and the white one 0.

Decision boundary for
the imaginary part (x=0)

IM  pecision boundary
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Figure 2: The decision boundary in the net-input space of the 6-1 complex-valued neural
network that solves the detection of symmetry problem. Note that the plane is not the
input space but the net-input space because the dimension of the input space is 6 and
the input space cannot be written in a 2-dimensional plane. The black circle means a
net-input for a symmetric input, and the white one asymmetric. There is only one black
circle at the origin. The four circled complex numbers mean the output values of the 6-1
complex-valued neural network in their regions, respectively.

Decision boundary
for the real part of
the net input (x=0) Decision boundary
% Im fortheimaginary part
///é/,/// of the net input (y=0)
///// N
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Figure 3: The decision boundary in the input space of the 1-1 complex-valued neural
network that solves the fading equalization problem. The black circle means an input
in the fading equalization problem. The four circled complex numbers mean the output
values of the 1-1 complex-valued neural network in their regions, respectively.

Decision boundary for
the real part (x=0)

Decision boundary
Im for the imaginary
part (y=0)
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Figure 4: An example of the decision boundary of the 1-12-1 Complex-BP network
learned with the learning pattern 1. The meanings of the numerals in Fig. 4 are as
follows. 1: Real part OFF(0.0-0.5), Imaginary part OFF, 2: Real part ON(0.5-1.0),
Imaginary part OFF, 3: Real part OFF, Imaginary part ON, and 4: Real part ON,
Imaginary part ON. The decision boundary for the real part (i.e., the boundary that
the region “14-3” and the region “244” form) and that for imaginary part (i.e., the
boundary that the region “142” and the region “344” form) intersect orthogonally.
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Figure 5: An example of the decision boundary of the 2-14-2 Real-BP network learned
with the learning pattern 1. The numbers 1-4 have the same meanings as those of
Fig. 4. The decision boundary for the real part (i.e., the boundary that the region
“143” and the region “244” form) and that for imaginary part (i.e., the bound-
ary that the region “142” and the region “344” form) do not intersect orthogonally.
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