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Abstract - This letter will clarify the fundamental properties of aquaternary neuronwhose
weights, threshold values, input and output signals are all quaternions, which is an extension
of a usual real-valued neuron to quaternions. The main results of this letter are summarized
as follows. A quaternary neuron has an orthogonal decision boundary. The 4-bit parity
problem which cannot be solved with a single usual real-valued neuron, can be solved with
a single quaternary neuron with the orthogonal decision boundary, resulting in the highest
generalization ability.
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1. Introduction

Several neural network models with complex-valued (i.e., two-dimensional) or three-dimensional parame-
ters have been proposed [1, 2, 3, 4, 5, 6] which can deal with complex-valued signals or three-dimensional vectors
naturally and demonstrated to have the inherent properties such as the abilities to learn 2D or 3D affine transfor-
mations [2, 7, 5, 8, 9, 10]. Particularly, the Complex-BP [2, 5] and the 3DV-BP [3] have been successfully applied
to computer vision [11]. We can find some other applications of the complex-valued neural networks to various
fields such as optical processing and image processing in the literature [12, 13, 14].

Quaternary neural networks were proposed by Arena and Nitta independently in the mid-1990s [15, 16].
The quaternary neural network is an extension of the classical real-valued neural network to quaternions, whose
weights, threshold values, input and output signals are all quaternions where a quaternion is a four-dimensional
number and was invented by W. R. Hamilton in 1843 [17]. It is expected that the quaternary neural network
can be effectively used in the fields such as robotics and computer vision in which quaternions have been found
useful. Actually, it was shown in [18] that the quaternary neural network can solve several problems such as the
interpolation of the electric field generated by two charges located in a 3D space, the classification problem of three
species of the Iris flower, the chaotic time series prediction, and the attitude control of a rigid body in a 3D space
with fewer neurons and connections than the classical real-valued neural network. Isokawa et al. successfully
applied a quaternary neural network which calculated a rotation to a color image compression problem [19].

This letter will clarify the fundamental properties of a quaternary neuron. The main results are summarized
as follows. The decision boundary of the quaternary neuron consists of four hypersurfaces which intersect orthog-
onally each other, and divides a decision region into24(= 16) equal sections. The 4-bit parity problem which
cannot be solved with a single real-valued neuron, can be solved by a single quaternary neuron with the orthogonal
decision boundary, resulting in the highest generalization ability, which reveals a potent computational power of
the quaternary neuron.
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2. The Quaternary Neuron

There appear to be several approaches for extending the standard neuron to higher dimensions. One approach
is to extend the number field, i.e., from real numbersx (1 dimension), to complex numbersz = x + yi (2
dimensions), to quaternionsq = a + bi + cj + dk (4 dimensions), to octaves (8 dimensions), to sedenions (16
dimensions),· · · . Another approach is to extend the dimensionality of the weights and threshold values from
1 dimension ton dimensions usingn-dimensional real valued vectors. Moreover, the latter approach has two
varieties : (a) weights aren-dimensional matrices [3], (b) weights aren-dimensional vectors [4]. In this letter we
deal with the quaternary neuron, which is an extension of the real-valued neuron to 4 dimensions in the former
approach.

A quaternary neuron is defined as follows [16]. The input signals, weights, thresholds and output signals are
all quaternions. The activityAn (analogous to the real activity in the standard neuron) of neuronn is defined to be:

An =
∑
m

WnmSm + Tn, (1)

whereSm is the quaternary input signal coming from the output of neuronm, Wnm is the quaternary weight
connecting the neuronsm andn, andTn is the quaternary threshold value of the neuronn. To obtain the quaternary
output signal, convert the activity valueAn into its four parts as follows:

An = x1 + x2i + x3j + x4k = x, (2)

wherei2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i andki = −ik = j. The output signal1Q(x) is defined
to be

1Q(x) = 1R(x1) + 1R(x2)i + 1R(x3)j + 1R(x4)k, (3)

where1R is a real-valued step function defined onR, that is,1R(u) = 1 (if u ≥ 0), 1R(u) = 0 (otherwise) for any
u ∈ R ( R denotes the set of real numbers).

The multiplicationWnmSm in Eq. (1) should be carefully treated, because the equationWnmSm =
SmWnm does not hold (the non-commutative property of quaternions on multiplication), which produces two
kinds of quaternary neurons: one is callednormal quaternary neuronwhich calculatesAn =

∑
m WnmSm + Tn,

the other is calledinverse quaternary neuronwhich calculatesAn =
∑

m SmWnm + Tn.

3. Orthogonality of Decision Boundary in the Quaternary Neuron

We can find that the decision boundary of a quaternary neuron consists of four hyperplanes which intersect
orthogonally each other, and divides a decision region into24(= 16) equal sections as that of a complex-valued
neuron case [8]. We show this property below only in the case of a normal quaternary neuron. An inverse quater-
nary neuron case can be easily shown in a similar manner. The net inputU to a normal quaternary neuron withM
inputs can be rewritten as:

U =
M∑

l=1

wlxl + θ

=
M∑

l=1

(w(1)
l + w

(2)
l i + w

(3)
l j + w

(4)
l k) · (x(1)

l + x
(2)
l i + x

(3)
l j + x

(4)
l k)

+(θ(1) + θ(2)i + θ(3)j + θ(4)k)

=
{

[tw(1) −tw(2) −tw(3) −tw(4)] · t[tx(1) tx(2) tx(3) tx(4)] + θ(1)
}

+
{

[tw(2) tw(1) −tw(4) tw(3)] · t[tx(1) tx(2) tx(3) tx(4)] + θ(2)
}

i

+
{

[tw(3) tw(4) tw(1) −tw(2)] · t[tx(1) tx(2) tx(3) tx(4)] + θ(3)
}

j

+
{

[tw(4) −tw(3) tw(2) tw(1)] · t[tx(1) tx(2) tx(3) tx(4)] + θ(4)
}

k,

(4)
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wherex(s) = t[x(s)
1 · · · x

(s)
M ] andw(s) = t[w(s)

1 · · · w
(s)
M ] (s = 1, 2, 3, 4). Thus, the decision boundary of the

normal quaternary neuron withM inputs consists of the four equations obtained by letting each term of Eq.(4) be
equal to zero. For example,

Q(x1, · · · , xM )
= [tw(1) −tw(2) −tw(3) −tw(4)] · t[tx(1) tx(2) tx(3) tx(4)] + θ(1) = 0 (5)

is the decision boundary for the real part of an output of the normal quaternary neuron withM inputs. That is, input
signalst[x1 · · · xM ] ∈ HM are classified into two decision regions{t[x1 · · · xM ] ∈ HM |Q(x1, · · · , xM ) ≥ 0}
and{t[x1 · · · xM ] ∈ HM | Q(x1, · · · , xM ) < 0} by the hyperplane given by Eq.(5) (H denotes the set of
quaternions). We can find that the inner product of the two normal vectors of any two distinct decision boundaries
is zero. For example, the inner product of the normal vectors of the decision boundaries for thej-part andk-part
is calculated as follows:

[tw(3) tw(4) tw(1) −tw(2)] · t[tw(4) −tw(3) tw(2) tw(1)] = 0. (6)

Thus, the decision boundary of a normal quaternary neuron consists of four hyperplanes which intersect orthogo-
nally each other.

4. Solving the 4-bit Parity Problem by a Single Quaternary Neuron

We will find a solution to the 4-bit parity problem, using a single normal quaternary neuron with the orthogo-
nal decision boundary with the highest generalization ability. Minsky and Papert clarified the limitations of a single
real-valued neuron: in a large number of interesting cases, a single real-valued neuron is incapable of solving the
problems [20]. The most difficult problem among them is the parity problem, in which the output required is 1 if
the input pattern contains an odd number of 1s and 0 otherwise.

Rumelhart, Hinton and Williams showed that the3-layeredreal-valued neural network (i.e., with one hidden
layer) can solve theN -bit parity problem (N = 2, · · · , 8) [21]. As described above, theN -bit parity problem
cannot be solved with a single real-valued neuron (N ≥ 2). Then, it will be proved that the 4-bit parity problem
can be solved by a single normal quaternary neuron with the orthogonal decision boundary (i.e.,N = 4). Rumel-
hart, Hinton and Williams showed that increasing the number of layers made the computational power of neural
networks high. We will show that extending the dimensionality of neural networks to 4 dimensions originates the
similar effect on neural networks.

In this connection, the exclusive-or (XOR) problem and the detection of symmetry problem which cannot
be solved with a single real-valued neuron [20], can be solved with a single complex-valued neuron with the
orthogonal decision boundaries [9, 10].

The input-output mapping in the 4-bit parity problem is shown in Table 1(a). In order to solve the 4-bit parity
problem with a normal quaternary neuron, the input-output mapping is encoded as shown in Table 1(b) where the
outputs0, j +k, i+k, i+ j, 1+ k, 1+ j, 1+ i and1+ i+ j +k are interpreted to be 0, andk, j, i, 1, i+ j +k, 1+
j + k, 1 + i + k and1 + i + j are interpreted to be 1 of the original 4-bit parity problem (Table 1(a)), respectively.
We use a single normal quaternary neuron with only one input and a weightw = w1 +w2i+w3j +w4k ∈ H (we
assume that it has no threshold parameters). The decision boundary of the normal quaternary neuron described
above consists of the following four hyperplanes which intersect orthogonally each other:

[w1 −w2 −w3 −w4] · t[x1 x2 x3 x4] = 0, (7)

[w2 w1 w4 −w3] · t[x1 x2 x3 x4] = 0, (8)

[w3 −w4 w1 w2] · t[x1 x2 x3 x4] = 0, (9)

[w4 w3 −w2 w1] · t[x1 x2 x3 x4] = 0 (10)

for any input signalx = x1 + x2i + x3j + x4k ∈ H. Lettingw1 = 1 andw2 = w3 = w4 = 0 (i.e., the weight
w = 1), we can find that the normal quaternary neuron implements the input-output mapping shown in Table 1(b),
the decision boundary of which consists of the four orthogonal hyperplanes

xs = 0 (1 ≤ s ≤ 4) (11)
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and divides the input space (the decision region) into24 equal sections, and has the highest generalization ability
for the 4-bit parity problem.

There exist some neural network models that can solve theN -bit parity problem. The comparison between
our result and the previous works for the 4-bit parity problem is shown in Table 2. The number of neurons, the
number of parameters, and the number of layers of the normal quaternary neuron are the least. In addition, as
described above the generalization ability is the highest. Thus, we conclude that the normal quaternary neuron is
the best totally. It should be emphasized here that the number of neurons needed for the normal quaternary neuron
is only one (i.e., a single neuron).

Table 1(a). The 4-bit Parity Problem.

Input Output
x1 x2 x3 x4 y

0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 1 0 0 1
1 0 0 0 1
0 0 1 1 0
0 1 0 1 0
0 1 1 0 0
1 0 0 1 0
1 0 1 0 0
1 1 0 0 0
0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

Table 1(b). An Encoded 4-bit Parity Problem.

Input Output
x1 x2 x3 x4 y

-1 -1 -1 -1 0
-1 -1 -1 1 k
-1 -1 1 - 1 j
-1 1 -1 - 1 i
1 -1 -1 - 1 1
-1 -1 1 1 j + k
-1 1 -1 1 i + k
-1 1 1 - 1 i + j
1 -1 -1 1 1 + k
1 -1 1 - 1 1 + j
1 1 -1 - 1 1 + i
-1 1 1 1 i + j + k
1 -1 1 1 1 + j + k
1 1 -1 1 1 + i + k
1 1 1 -1 1 + i + j
1 1 1 1 1 + i + j + k
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Table 2. The Comparison between Our Result and the Previous Works for the 4-bit Parity Problem.The number
of layersincludes an input layer; it is 3 if the network has one hidden layer.Direct link means that there are at least
one direct link between the input layer and the output layer in the neural network with at least one hidden layer.
Note that the number of parameters in Aizenberg’s work in the table is the estimated one by the author because
Aizenberg et al. solved only the 3, 8 and 9-bit parity problems with a single complex-valued neuron.

The number The number The number Direct Activation
of neurons of parameters of layers link function

Ours 1 4 2 No Step
function

Setiono 8 or more 16 or more 3 No Sigmoidal
[22] function
Stork and 7 12 3 No Considerably
Allen [23] complicated
Minor [24] 7 or more 9 3 Yes Sigmoidal

function
Lavretsky 3 7 3 Yes Sigmoidal
[25] function
Liu et al. 7 or more 14 or more 3 Yes Step
[26] function
Aizenberg et al. 1 10 2 No Somewhat
[27] special

5. Conclusions

We have found that a single quaternary neuron has the orthogonal decision boundary and can solve the 4-bit
parity problem with the highest generalization ability, which suggests that making the dimensionality of neural
networks high (from one to four dimensions with the algebraic structure in this letter) is a new directionality for
enhancing the ability of neural networks, and that it is worth researching the neural networks with high dimensional
parameters. We will apply the quaternary neuron to fields suitable for the orthogonal decision boundary in a future.
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