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(a) The title of the article
An Extension of the Back-Propagation Algorithm to Complex Numbers

(b) Abstract

This paper presents a complex-valued version of the back-propagation algorithm (called
Complex-BP), which can be applied to multi-layered neural networks whose weights,
threshold values, input and output signals are all complex numbers. Some inherent prop-
erties of this new algorithm are studied. The results may be summarized as follows. The
updating rule of the Complex-BP is such that the probability for a standstill in learning
is reduced. The average convergence speed is superior to that of the real-valued back-
propagation, whereas the generalization performance remains unchanged. In addition,
the number of weights and thresholds needed is only about the half of real-valued back-
propagation, where a complex-valued parameter z = x + iy (where i = /—1) is counted
as two because it consists of a real part z and an imaginary part y. The Complex-
BP can transform geometric figures, e.g. rotation, similarity transformation and parallel
displacement of straight lines, circles, etc., whereas the real-valued back-propagation can-
not. Mathematical analysis indicates that a Complex-BP network which has learned a
transformation, has the ability to generalize that transformation with an error which is
represented by the sine. It is interesting that the above characteristics appear only by

extending neural networks to complex numbers.

(c) Key words
Neural networks, Learning, Back-Propagation, Convergence, Complex number, Figure

transformation, Pattern transformation, Pattern classification.

(d) A list of symbols



Complex-BP

the set of natural numbers

the set of real numbers

the set of nonnegative real numbers

the set of complex numbers

V-1

the real part x of a complex number z = x + iy

the imaginary part y of a complex number z = x + 1y

the conjugate complex number x — iy of a complex number z = x + iy,
that is, r + iy = = — iy

the real part of the magnitude of change of a complex-valued weight or a
complex-valued threshold z, that is, Az = Re[Az]

the imaginary part of the magnitude of change of a complex-valued weight
or a complex-valued threshold z, that is, Az’ = I'm[Az]

a gradient operator with respect to a real-valued parameter

a gradient operator with respect to a real part of a complex-valued param-
eter

a gradient operator with respect to an imaginary part of a complex-valued
parameter

the difference between the argument of a test point and that of an input
training point

a complex number which denotes the error between the actual output test
point and the expected output test point in the case of rotation

a complex number which denotes the error between the actual output
test point and the expected output test point in the case of similarity
transformation

a complex number which denotes the error between the actual output test
point and the expected output test point in the case of parallel displace-
ment

the real part of the complex number Ef(¢)

the imaginary part of the complex number E®(¢)
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1 INTRODUCTION

In recent years there has been a great deal of interest in artificial neural networks and their
applications. One of the most popular neural network models is the multi-layer network
and the related back-propagation training algorithm (called Real-BP here in the meaning
of treating real-valued signals) (Rumelhart et al., 1986). Real-BP has been applied to
various fields such as image processing and speech recognition. Examining those fields,
we can find that complex numbers are often used according to fields. This indicates
that complex-valued neural networks may be useful. In addition, in the human brain,
an action potential may have different pulse patterns, and the distance between pulses
may be different. This suggests that introducing complex numbers representing phase
and amplitude into neural networks is appropriate.

In this paper, we will present a complex-valued version of the back-propagation al-
gorithm (Complez-BP), which can be applied to multi-layered neural networks whose
weights, threshold values (called learnable parameters here), input and output signals are
all complex numbers (Nitta et al., 1991, 1993c). This new algorithm enables the network
to learn complex-valued patterns in a natural way. The learning convergence theorem
can be obtained by extending the theory of adaptive pattern classifiers (Amari, 1967) to
complex numbers. We have studied some inherent properties of the Complex-BP algo-
rithm (Nitta et al., 1991, 1993a, 1993b, 1993c, 1994a, 1994b), the results of which may
be summarized as follows: (a) The error back propagation has a structure which is con-
cerned with two-dimensional motion. A unit of learning is complex-valued signals flowing
through neural networks. The learning rule is structured to avoid a standstill in learning.
Ultimately, the average convergence speed is superior to that of the Real-BP, whereas
the generalization performance remains unchanged. In addition, the required number of
learnable parameters is only about the half of the Real-BP, where a complex-valued pa-
rameter z = x + iy (where i = \/—1) is counted as two because it consists of a real part z
and an imaginary part y. Thus it seems that the Complex-BP algorithm is well suited for
learning complex-valued patterns. (b) The Complex-BP can transform geometric figures,

e.g. rotation, similarity transformation and parallel displacement of straight lines, circles,
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etc., whereas the Real-BP cannot. Numerical experiments suggest that the behavior of
a Complex-BP network which has learned the transformation of geometric figures is re-
lated to the Identity Theorem in complex analysis. Mathematical analysis indicates that
a Complex-BP network which has learned a rotation, a similarity transformation or a
parallel displacement has the ability to generalize the transformation with an error which
is represented by the sine. It is interesting that the above characteristics appear only by
extending neural networks to complex numbers. In this connection, the Complex-BP al-
gorithm has already been applied to the interpretation of optical flow (motion vector field
calculated from images) and estimation of motion which are important tasks in computer
vision (Miyauchi et al., 1992a, 1992b, 1993; Watanabe et al., 1994).

Section 2 of this paper presents the Complex-BP algorithm. Section 3 experimen-
tally investigates the learning characteristics: the learning speed and the generalization
performance, and how the algorithm can be applied to the transformation of geometric
figures. Section 4 analyses these results of Section 3 mathematically. Section 5 discusses
the results of Sections 3 and 4. This is followed by our conclusion in Section 6. Proofs of

the technical results are contained in a appendix.

2 THE COMPLEX-BP ALGORITHM

2.1 A Complex Adaptive Pattern Classifiers Model

Real-BP is based on the Adaptive Pattern Classifiers Model, or APCM (Amari, 1967)
which guarantees that the Real-BP converges. In this section, we will formulate a complex-
valued version of the APCM (called Complex APCM) for the Complex-BP by introducing
complex numbers to the APCM, which will guarantee that the Complex-BP converges.
Let us consider two information sources of complex-valued patterns. Two complex-
valued patterns © € C" and y € C™ occur from information sources 1 and 2 with the
unknown joint probability P(x, y), respectively (C denotes the set of complex numbers).
We will assume that the number of patterns is finite. Note that the set of pairs of complex-

valued patterns {(x,y)} corresponds to the set of learning patterns in neural networks.
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The purpose of learning is to estimate a complex-valued pattern y that occurs from
information source 2 given a complex-valued pattern & that occurred from information
source 1. Let z(w, ) : C? x C" — C™ be a complex function which gives an estimate of
y where w € C? is a parameter which corresponds to all weights and thresholds in neural
networks, and z(w, x) corresponds to the actual output pattern of neural networks. Let
r(y',y) : C™ x C™ — R" be an error function which represents an error that occurs
when we give an estimate ¢’ for the true complex-valued pattern y (R* denotes the set of
nonnegative real numbers). Note that r is a nonnegative real function and not a complex

function. We will define an average error R(w) as
R(w) € 323 r(2(w,z),y) Pz, y). (1)
ry

R(w) corresponds to the error between the actual output pattern and the target output

pattern of neural networks, and the smaller R(w) is, the better the estimation.

2.2 Learning Convergence Theorem

This section will present a learning algorithm for the Complex APCM described in Section
2.1 and prove that it convergences. The algorithm is a complex-valued version of the
probabilistic-descent method (Amari, 1967).

We will introduce a parameter n for discrete time. Let (z,,y,) be a complex-valued
pattern that occurs at time n. Moreover, we will assume that the (complex-valued)
parameter w is modified by

Wy = Wy + Awn; (2)

where w,, denotes a (complex-valued) parameter at time n. Eqn (2) can be rewritten as

follows:

Re[w, 1] = Re[w,]+ Re[Aw,], (3)

Imlw,1] = Im[w,]+ Im[Aw,], (4)

where Re[z], Im[z]| denote the real and imaginary parts of a complex number z, respec-

tively. By definition we say that a parameter w is optimal if and only if the average error
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R(w) is the local or global minimum. Then, the following theorem holds.

THEOREM 1. Let A be a positive definite matriz. Then, by using the update rules

Re[Awn] = — 6AVR6T(Z(’wna mn)a yn)v (5)
Im[Aw,] = —cAV™r(z(w,,2,),9,), n=01", (6)

the (complez-valued) parameter w approaches the optimum as near as desired by choosing
a sufficiently small learning constant € > 0 (V¢ is a gradient operator with respect to

the real part of w, and V'™ with respect to the imaginary part ).

Proof. The theory of APCM (Amari, 1967) is applicable to this case. The differences are
that w € R”, * € R" and y € R™ are real-valued variables in the APCM (R denotes the
set of real numbers) while w € C?, x € C" and y € C™ are complex-valued variables in
the Complex APCM which influence z(w, ) : C?xC™ — C™, r(y',y) : C"xC™ — R"
and R(w) : C” — R'.

In one training step of the Complex APCM, the real part Re[w] € RP and the imagi-
nary part Im[w] € RP of the (complex-valued) parameter w are independently changed
according to eqns (5) and (6). Thus, the way of changing the parameter w in both models
are identical in the sense of updating reals. Hence, there is no need to take into account
the change of w from a real-valued variable to a complex-valued variable.

Next, & € C" and y € C™ appear in the functions z(w, ) and r(y’, y) which are ma-
nipulated only in the form of the mathematical expectation with respect to the complex-
valued random variables (z,y), e.g. Egy)lz(w,z)] and Egy)[r(y’,y)]. Generally, a
complex-valued random variable can be manipulated in the same manner as a real-valued
random variable. Hence, we can manipulate the functions z(w, ) and r(y',y), just as
the corresponding real functions in the APCM. Therefore, there is no need to change the

logic of the proof in Amari’s APCM theory. ]

Amari (1967) has proved that the performance of the classifier in the APCM depends

on the constant £ and the components of A (see Appendix for the learning convergence
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theorem in the APCM). Similarly, it is assumed that the constant ¢ and the components
of A influence the performance of the classifier in the Complex APCM (it should be

rigorously proved).

2.3 Learning Rule
2.3.1 Generalization of Real-BP

In this section, we will apply the theory of the Complex APCM to a multi-layer (complex-
valued) neural network.

We will first describe the Complex-BP model. Fig. 1 shows a model neuron used in
the Complex-BP algorithm. The input signals, weights, thresholds and output signals
are all complex numbers. The activity Y, (analogous to the activity in the Real-BP) of

neuron 7 is defined as:

Y, = Z Wom X + Vn; (7)

where W, is the (complex-valued) weight connecting neuron n and m, X, is the
(complex-valued) input signal from neuron m, and V,, is the (complex-valued) threshold
value of neuron n. To obtain the (complex-valued) output signal, convert the activity

value Y, into its real and imaginary parts as follows.
Y,=x+1iy=z, (8)

where 7 denotes /—1. Although various output functions of each neuron can be consid-

ered, we will use the output function defined by the following equation.

fe(z) = fr(x) +ifr(y) (9)

where fr(u) = 1/(1 + exp(—u)) and is called the sigmoid function. It is obvious that
0 < Re[fc], Im[fc] < 1 and |fo(2)| € V2. Note also that fo(z) is not holomorphic,
because the Cauchy-Riemann equation does not hold: dfc(z)/0x + idfc(z)/0y = (1 —
fr(®)) fr(x) +i(1 = fr(y))fr(y) # 0, where z = z + 1y.

For the sake of simplicity, the networks used in the analysis and experiments will have

3 layers. We will use w,,; for the weight between the input neuron [ and the hidden
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neuron m, v, for the weight between the hidden neuron m and the output neuron n,
0,, for the threshold of the hidden neuron m, and 7, for the threshold of the output
neuron n. Let I;, H,,, O, denote the output values of the input neuron [/, the hidden
neuron m, and the output neuron n, respectively. Let also U,, and S,, denote the internal
potentials of the hidden neuron m and the output neuron n, respectively. That is, U, =
Zwml[l+9ma S, —Zvan +Yn, Hp = fc(Uy) and O, = fc(S,). Let 0" =T,— 0,

denote the error between the actual pattern O,, and the target pattern 7}, of output neuron
N

n. We will define the square error for the pattern p as E, = (1/2)Y_|T,, — O,|*, where N
is the number of output neurons. "

Next, we define a learning rule for the Complex-BP model described above. For
a sufficiently small learning constant (learning rate) & > 0 and a unit matrix A, using

Theorem 1, we can show that the weights and the thresholds should be modified according

to the following equations.
0E, . 0L,

A = = & AT (10)
OF OF
A~ — — Py p 11
= B Rel]  oTmbal )
OE, OE,
Aw,y = — ; : 12
ml S S Refwm] - @I m[wo] (12)
OF, OF
Af, = je—— P 1
O = = o Relon] ~ CaTmi6,) (13)
The above eqns (10)-(13) can be expressed as:
A'Unm - ﬁmA7n7 (14)
Ay, = &(Re[8"](1 = Re[On])Re[On] + iTm[6")(1 = Tm[0,]) Im[O,]), (15)
Awpy = Term, (16)

Ab, = 5[(1—R6[Hm])Re[Hm]

> (Re[6"](1= Re[Oy]) Re[On] Re[vn] + Im[8"] (1= Im[On]) Im[Oy) Im[vnm])

—i(1 — Im[H,,]))Im[H,,]
> (Re[é”](l—Re[On])Re[On]Im[vnm]—Im[é”](1—Im[On])[m[On]Re[vnm])] ,

n

(17)
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where Z denotes the complex conjugate of a complex number z.

In this connection, the updating rule of the Real-BP are as follows:

A'Unm - HmA’%w
Ayy = (1 —0,)0.0",
Awml = [lAgma

A, = (1—Hm)HmZvnmA%,

where 6", I}, Hy,, On, Unms Yn, Wi, Om are all real numbers. Eqns (14) to (17) resemble

those of the Real-BP.

2.3.2 Discussion

We first formulated a complex-valued neuron with a holomorphic complex function

1

fo(z) = 1+ex—p(—z)’

(22)

where z = x 41y, because the holomorphy of a complex function seemed to be natural and
to produce many interesting results. Kim et al. independently proposed the complex-
valued neuron with this output function (eqn (22)) (Kim et al., 1990). However, the
complex-valued back-propagation algorithm with this holomorphic complex function never
converged in our experiments. We considered that the cause was non-boundedness of the
complex function (eqn (22)) and decided to adopt bounded functions. Here, from the
Liouville’s Theorem (e.g., Derrick, 1984), an holomorphic complex function cannot be
bounded on all of C unless it is a constant. Thus, we could not keep the holomorphy of
complex functions, because we required boundedness for complex functions. Therefore,
we adopted eqn (9) as a solution, which was bounded but non-holomorphic.

Note that there is another formulation of the complex-valued version: the output
function is a holomorphic complex function fo(z) = z, where z = z + iy, and the number

of layers is two, i.e., the network has no hidden layers (Widrow et al., 1975).
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3 EXPERIMENTS

In this section, the characteristics of the Complex-BP algorithm given in the previous

section are discussed experimentally.

3.1 Learning Speed

In this section, we study the learning speed of the Complex-BP algorithm on a number
of examples using complex-valued patterns. And we compare its performance with that
of the Real-BP.

We examine its learning speed in terms of a computational complexity perspective (i.e.,
time and space complexities). Here, time complexity means the sum of four operations
for real numbers, and space complexity the sum of learnable parameters (weights and
thresholds), where a complex-valued parameter w = w® + jw! is counted as two because
it consists of a real part w® and an imaginary part w’.

The average number of learning cycles needed to converge by the proposed technique
was compared with that of the conventional back-propagation technique. In the compari-
son, the neural network structures such that the time complexity per learning cycle of the
Complex-BP was almost equal to that of the Real-BP were used. In addition, the space
complexity was also examined.

In the experiments, the initial real and imaginary components of the weights and
thresholds were chosen to be random numbers between — 0.3 and + 0.3. The stopping

criteria used for learning was

P n=1

N
\jzz T —OP ]2 = 0.10, (23)

where TP), OP) € C denote the desired output value, the actual output value of the
neuron n for the pattern p, i.e., the left side of eqn (23) denotes the error between the
desired output pattern and the actual output pattern; N denotes the number of neurons
in the output layer. The presentation of one set of learning patterns to the neural network

was regarded as one learning cycle.
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Experiment 1

First, a set of simple (complex-valued) learning patterns shown in Table 1 was used
to compare the performance of the Complex-BP algorithm with that of the Real-BP
algorithm. We used a 1-3-1 three-layered network for the Complex-BP, and a 2-7-2 three-
layered network for the Real-BP, because their time complexities per learning cycle were
almost equal as shown in Table 2.

In the experiment with the Real-BP, the real component of a complex number was
input into the first input neuron, and the imaginary component was input into the sec-
ond input neuron. The output from the first output neuron was interpreted to be the
real component of a complex number; the output from the second output neuron was
interpreted to be the imaginary component.

The average convergence of 50 trials for each of the 6 learning rates (0.1, 0.2, ---, 0.6)
was used as the evaluation criterion. Although we stopped learning at the 50,000th
iteration, all trials succeeded in converging. The result of the experiments is shown in

Fig. 2.

Ezxperiment 2

Next, we conducted an experiment using the set of (complex-valued) learning patterns
shown in Table 3. The learning patterns were defined according to the following two
rules:- (a) the real part of Complex Number 3 (output) is 1 if Complex Number 1 (input)
is equal to Complex Number 2 (input), otherwise it is 0; (b) the imaginary part of Complex
Number 3 is 1 if Complex Number 2 is equal to either 1 or ¢, otherwise it is 0.

The experimental task was the same as in Experiment 1 except for the layered network
structure: a 2-4-1 three-layered network was used for the proposed method while a 4-9-
2 three-layered network was used for the Real-BP, because their time complexities per
learning cycle were equal as shown in Table 4.

In the experiment with the Real-BP, the real and imaginary components of Complex
Number 1 and the real and imaginary components of Complex Number 2 were input into
the first, second, third and fourth input neurons, respectively. The output from the first

output neuron was interpreted to be the real component of a complex number; the output
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from the second output neuron was interpreted to be the imaginary component.
We stopped learning at the 100,000th iteration. The results of the experiments are

shown in Fig. 3. For reference, we show the rate of convergence in Table 5.

We can conclude from these experiments that the Complex-BP exhibits the following
characteristics in learning complex-valued patterns :- the learning speed is several times
faster than that of the conventional technique (Figs. 2 and 3), while the space complexity
(i.e., the number of learnable parameters) is only about the half of Real-BP (Tables 2 and
4).

3.2 Generalization Ability

In this section, we study the generalization ability of the two sets of the Real-BP and
Complex-BP networks and the algorithms. The learning patterns and the networks for
the Fzperiments 1 and 2 in Section 3.1 were also used to test the generalization ability
on unseen data-inputs. The learning constant used in these experiments was 0.5. The

Experiments 1 and 2 in the following correspond to the ones in Section 3.1, respectively.

Experiment 1

After training (using a 1-3-1 network, and the Complex-BP) with the 4 training points
(Table 1, Figs. 4(a) and (b)), by presenting the 12 test points shown in Fig. 4(c), the
Complex-BP network generated the points as shown in Fig. 5(a). Fig. 5(b) shows the

case in which the 2-7-2 Real-BP network was used.

Ezxperiment 2

After training with the 8 training points shown in Table 3, Figs. 6(a) and (b), the 2-4-1
Complex-BP network formed the set of points as shown in Fig. 7(a) for the 8 test points
(Fig. 6(c)). The results for the 4-9-2 Real-BP network appear in Fig. 7(b). Here, we need
to know the distances between the input training points and the test points to evaluate
the generalization performance of the Real-BP and the Complex-BP. But, Figs. 6(a) and
(c) do not always express the exact distances between the input training points and the

test points. In order to clarify this, for any input training point & = (1, ;) € C? and
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test point y = (y1,42) € C?, we define a distance-measure as

? =

£
lz—yl|> = |z —yi]* + |v2 — wo

= (Re[zi —yi])* + (Im[z1 — ])* + (Re[wa — yo])* + (Imfzz — 2])” (24)

and show the distances between the input training points and the test points in Table 6
using the distance-measure (eqn (24)). For example, the closest input training point to

the test point 6 is 5 (Table 6).

The above simulation results clearly suggest that the Complex-BP algorithm has the

same degree of the generalization performance as compared to the Real-BP.

3.3 Transforming Geometric Figures

In this section, we will show that the Complex-BP can transform geometric figures in a
natural way.

We used a 1-6-1 three-layered network, which transformed a point (z, y) into (z',y')
in the complex plane. Although the Complex-BP network generates a value z within the
range 0 < Re[z], Im[z] < 1, for the sake of convenience, we will present it in the figures
given below as having a transformed value within the range —1 < Re[z], Im[z] < 1.

We also carried out some experiments with a 2-12-2 network with real-valued weights
and thresholds, to compare the Complex-BP with the Real-BP. As before, the real com-
ponent of a complex number was input into the first input neuron, and the imaginary
component was input into the second input neuron. The output from the first output
neuron was interpreted as the real component of a complex number; the output from the
second output neuron was interpreted as the imaginary component.

The learning constant used in these experiments was 0.5. The initial real and imagi-
nary components of the weights and the thresholds were chosen to be random real numbers
between 0 and 1. The experiments described in this section consisted of two parts - a

training step, followed by a test step.
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3.3.1 Some FExamples

To begin with, we will now present some examples on transformation in which the training
input and output pairs were presented 1,000 times (in the usual back-prop manner) in

the training step.

Rotation

In the first experiment (using a 1-6-1 network, and the Complex-BP), the training step
consisted of learning a set of (complex-valued) weights and thresholds, such that the
input set of (straight line) points (indicated by black circles in Fig. 8(a)) gave as output,
the (straight line) points (indicated by white circles) rotated counterclockwise over /2
radians. These complex-valued weights and thresholds were then used in a second (test)
step, in which the input points lying on two straight lines (indicated by black triangles
in Figs. 8(a) and (b)) would hopefully be mapped to an output set of points lying on the
straight lines (indicated by white triangles) rotated counterclockwise over /2 radians.
The actual output test points for the Complex-BP did, indeed, lie on the straight lines
(indicated by white squares).

It appears that the complex-valued network has learned to generaize the transforma-
tion of each point Zy(= 1 exp|ifl]) into Zj, explia](= ry expli(6 + )]), i.e., the angle of
each complex-valued point is updated by a complex-valued factor exp|ia], but the absolute
length of each input point is preserved.

To compare how a real-valued network would perform, the 2-12-2 (real-valued) network
mentioned above was trained using the linear pairs of points, i.e., the (input) black circles
and (desired output) white circles of Fig. 8. The black triangle points of Fig. 8 were then
input with this real-valued network. The outputs were the black squares. Obviously, the
Real-BP did not preserve each input point’s absolute length. All points were mapped
onto straight lines, as shown in Fig. 8.

In the above experiments, the 11 training input points lay on the line y = —z+1 (0 <
x < 1) and the 11 training output points lay on the line y = z +1 (-1 < z < 0).
The 13 test input points lay on the lines y = 0.2 (—0.9 < z < 0.3) (Fig. 8(a)) and
y=—-x+05(0<z<0.5) (Fig. 8(b)). The desired output test points should lie on the
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lines z = — 0.2 and y = z 4+ 0.5.

Next, we made an experiment on rotation of the word ISO which consisted of three
characters (Fig. 9). The training set of points was as follows: the input set of points lay
on the slanted character I (indicated by black circles in Fig. 9(a)), and the output set
of points lay on the character I which was straight up (indicated by white circles). The
angle between the input points and the output points was 7/4 radians. In a test step, we
gave the network some points (indicated by black triangles in Figs. 9(b) and (c¢)) on two
slanted characters S and O as the test input points. The Complex-BP rotated the slanted
characters S and O counterclockwise over 7/4 radians, whereas the Real-BP destroyed

them (Fig. 9).

Similarity Transformation

We examined a similarity transformation with scaling factor « = 1/2 from one circle
2?2 + y?> = 1 to another circle 2% + y*> = 0.5? (Fig. 10(a)). The training step consisted
of learning a set of (complex-valued) weights and thresholds, such that the input set of
(straight line) points (indicated by black circles in Fig. 10(a)) gave as output, the half-
scaled straight line points (indicated by white circles). In a second (test) step, the input
points lying on a circle (indicated by black triangles) would hopefully be mapped to an
output set of points (indicated by white triangles) lying on a half-scaled circle. The actual
output test points for the Complex-BP did, indeed, lie on the circle (indicated by white
squares).

It appears that the complex-valued network has learned to generalize the transforma-
tion of each point Z; (= ryexp[if]) into aZy (= argexplify]), i.e., the absolute length
of each complex-valued point is shrunk by a real-valued factor o, but the angle of each
input point is preserved.

To compare how a real-valued network would perform, the (real-valued) network was
trained using the linear pairs of points, i.e., the (input) black circles and (desired output)
white circles of Fig. 10(a). The black triangle points of Fig. 10(a) were then input with
this real-valued network. The outputs were the black squares . Obviously, the Real-BP

did not preserve each input point’s angle. All angles were mapped onto a straight line, as
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shown in Fig. 10(a).

We also made a further experiment. Fig. 10(b) shows the result of the responses of
the networks to presentation of the points on an arbitrary curved line. We can find that
the curved line was halved by the Complex-BP, holding its shape, as in the case of the
circle, whereas such a thing did not occur in the Real-BP.

In the two above experiments, the 11 training input points lay on the line y = 2 (0 <
x < 1), and the 11 training output points lay on the line y = z (0 < z < 0.5). In the case
of Fig. 10(a), the 12 test input points lay on the circle with equation z? +y* = 1, and the
desired output test points should lie on the circle with equation z? + 3% = 0.52.

In addition, we carried out an experiment on the magnification of a square. The
11 training input points (indicated by black circles in Fig. 10(c)) lay on the line y =
z (0 <z <0.3), and the training output points (indicated by white circles) lay on the
straight line y = = (0 < x < 0.99) which could be generated by magnifying the line
y =2z (0 <z <0.3) with a scale magnification factor of 3.3. For a square whose side was
0.3 (indicated by black triangles), the Complex-BP generated a square whose side was
nearly 1.0 (indicated by white squares), whereas the Real-BP generated points (indicated
by black squares) on the straight line y = z.

Parallel Displacement
Fig. 11(a) shows the results of an experiment on parallel displacement of a straight line.
The training points used in the experiment were as follows: the input set of (straight line)
points (indicated by black circles in Fig. 11(a)) gave as output, the straight line points
displaced in parallel (indicated by white circles). The distance of the parallel displacement
was 1/4/2, and the direction was a —n/4-radian angle. In a test step, the input points
lying on a straight line (indicated by black triangles in Fig. 11(a)) would hopefully be
mapped to an output set of points (indicated by white triangles) lying on a straight line
displaced in parallel. The actual output test points for the Complex-BP did, indeed, lie
on the straight line (indicated by white squares).

It appears that the complex-valued network has learned to generalize the transforma-

tion of each point 7, into Z; + a, where « is a complex number.
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To compare how a real-valued network would perform, the 2-12-2 (real-valued) network
was trained using the linear pairs of points, i.e., the (input) black circles and (desired
output) white circles of Fig. 11(a). The black triangle points of Fig. 11(a) were then
input with this real-valued network. The outputs were the black squares. Obviously, the
Real-BP did not displace them in parallel.

In the above experiments, the 11 training input points lay on the liney = z+1 (=1 <
z < 0) and the 11 training output points lay on the line y = z (—0.5 < = < 0.5). The
11 test input points lay on the straight line y = z (—0.5 < z < 0.5). The desired output
test points should lie on the straight line y =2 —1 (0 <z < 1).

We also conducted an experiment on parallel displacement of an arbitrary curved line.

As shown in Fig. 11(b), only the Complex-BP moved it in parallel.

3.3.2 Systematic Evaluation

Next, we systematically investigated the generalization ability of the Complex-BP algo-
rithm on the transformation of geometric figures.
In the experiments (using 1-1-1 and 1-6-1 networks and the Complex-BP), training

input and output pairs were as follows:

1. Rotation
The input set of (straight line) points (indicated by black circles in Fig. 12(a)) gave
as output the (straight line) points (indicated by white circles) rotated counterclock-

wise over /2 radians.

2. Similarity Transformation
The input set of (straight line) points (indicated by black circles in Fig. 12(b)) gave
as output the half-scaled straight line points (indicated by white circles).

3. Parallel Displacement
The input set of (straight line) points (indicated by black circles in Fig. 12(c)) gave
as output the straight line points displaced in parallel (indicated by white circles),
where the distance of the parallel displacement was 1/v/2, and the direction was a

—m/4-radian angle.
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Note that the purpose of the use of a 1-1-1 network is to investigate the degree of the
approximation of the results of the mathematical analysis which will be presented in
Section 5.

For each of the above three cases, the input (test) points lying on a circle (indicated by
black triangles in Fig. 12) were presented in a second (test) step. We then evaluated the
performance of the generalization ability of the Complex-BP on a rotation angle, a simil-
itude ratio and a parallel displacement vector. The evaluation results appear in Fig. 13.
The vertical line of Fig. 13 denotes the generalization performance, and the horizontal
line the difference ¢ between the argument of a test point and that of an input training
point. Error in Fig. 13 refers to the left side of eqn (23), i.e., the error between the de-
sired output patterns and the actual output patterns in the training step. As a evaluation
criteria of the generalization performance, we used |E%(¢)|, |E®(¢)| and |ET ()| which
denoted the Euclidean distances between the actual output test point and the expected
output test point (see Fig. 13). As shown in Fig. 13, the generalization error (gener-
alization performance) increased as the distance between the test point and the input
training point became larger (i.e., ¢ became larger), and it showed the maximum value
around the point which gave the largest distance (¢ ~ 180). Furthermore, it decreased
again as the test point approached the input training point. Fig. 13 also suggests that the
generalization error on the transformation of geometric figures decreases as the number
of hidden neurons increases, where only one hidden neuron was used in the three exper-
iments of Figs. 13(a)-(c) and six hidden neurons were used in the three experiments of
Figs. 13(d)-(f).

In the above experiments, the 11 training input points lay on the linex =0 (0 <y < 1)
and the 11 training output points lay on the line y = 0 (=1 < x < 0) for the rotation,
the 11 training input points lay on the line z =0 (0 < y < 1) and the 11 training output
points lay on the line z = 0 (0 < y < 0.5) for the similarity transformation, and the 11
training input points lay on the line x =0 (0 <y < 1) and the 11 training output points
lay on the line z = 0.5 (—0.5 < y < 0.5) for the parallel displacement. The 8 test input

points lay on the circle 22 + y? = 0.5? for all three cases.
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3.3.3 Discussion

As we have seen in Section 3.3.1, 1-n-1 Complex-BP networks have the ability to generalize
the transformation of geometric figures. This brings us to the second point, that is, do
the 1-n-1 Complex-BP networks have such a usual generalization ability that the Real-
BP networks have? At first sight, the Real-BP and Complex-BP algorithms appear to
have two different abilities of the generalization. In order to investigate whether this is
true or not, we tested the generalization ability of the 1-n-1 Complex-BP network for a
continuous mapping task which 2-m-2 Real-BP networks could solve, which appeared in
(Tsutsumi, 1989).

In the experiments, a set of 25 training points shown in Fig. 14 was used for a 1-6-1
Complex-BP network and a 2-12-2 Real-BP network. After the sufficient training, by
presenting the 252 test points on the 12 dotted lines shown in Fig. 15, the actual output
points formed the solid lines as shown in Figs. 15(a) and (b). Fig. 16 shows the case in
which the input training points are Fig. 14(b) and the target training points are Fig. 14(a).

It is suggested from Figs. 15 and 16 that both the 1-6-1 Complex-BP network and the

2-12-2 Real-BP network can obtain the same degree of generalization.

4 MATHEMATICAL ANALYSIS

In this section, the learning characteristics and the ability to generalize the transformation

of the Complex-BP algorithm described in the previous section are analyzed.

4.1 The Geometry of Learning

First, we investigated the structure of the learning rule of the Complex-BP algorithm,
using the three-layered (complex-valued) neural network defined in Section 2.3 as an
example.

Let Az%, Az! be the real part and the imaginary part of the magnitude of change of

a learnable parameter z, respectively; i.e., Az = Re[Az], Azl = Im[Az]. Then, the
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learning rule in eqns (14)-(17) can be expressed as:

Avgi, | Re[H,| Im[H,]||AvE| | COS By Sin By | | Ay (25)
Avl —Im[H,,] Re[Hp] || Av: | —sin B €08 B || AYE ,
(Avwn = [Hale™A5,), (26)
AyE] Ay 0 || Reor
1 e[d"] | @)
AnI J 0 B, Im[o"]
AwE | [ Reln] mmn) || aer | cosor sina N o
Aw!, —Im[I}] Re[l}] AB! —sing; cos @ AB!
AOE — B _Cm 0 5 Re[vpm] Im[ve,] | | AyE
AQTIHJ 0 Dp| n | —Imvem] Relvam] | | AL
Cn 0 COS Ppm  SIN QO || AYE
- Z|Unm| ) AR (29)
0 D,| n —Sin Ypm  COS Pum | | A,

where A, = (1—Re[O,])Re|O,], B, = (1-Im[O,])Im|0O,], C,, = (1—Re[H,,|)Re[H,,],
D,, = (1—=Im[H,])Im[H,,], B, = arctan(Im[H,,|/Re[Hy)), & = arctan(Im[];]/Rell)]),
and @y, = arctan(Im[v,,|/Re[vam]).

In eqn (25), |Hp,| is a similarity transformation (reduction, magnification), and

€08 i 51 fr is a clockwise rotation by [, radians around the origin. Thus,

—sin G, cos By,

eqn (25) performs the linear transformation called two-dimensional motion. Hence, we
find that the magnitude of change in the weight between the hidden and output neu-
rons (AvZ Awvl ) can be obtained via the above linear transformation (two-dimensional
motion) of (Ayf, Ay!) which is the magnitude of change in the threshold of the output
neuron (Fig. 17). Similarly, the magnitude of change in the threshold of the hidden neu-
ron (AGZ Af! ) can be obtained by applying the two-dimensional motion concerning v,
(the weight between the hidden and output neurons) to (AyE, AyI) which is the magni-
tude of change in the threshold of the output neuron (eqn (29)). Finally, (Awf,, Aw!,)

can be obtained by applying the two-dimensional motion concerning [; to (A§% AGL)

(eqn (28)). Thus, it seems that the error propagation in the Complex-BP is based on
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two-dimensional motion.

Next, we will contrast this with the geometry of the Real-BP. Representing the mag-
nitude of the learnable parameter updates (real number) as a point on a real line (1
dimension), we can interpret Av,,, as the product of |Av,| and H,, (eqn (18), Fig. 18).
Similarly, the product of |Av,| and vy, produces Af,, (eqn (21)), and the product of
|AB,,| and I; leads Aw,, (eqn (20)). Hence, the error propagation in the Real-BP is
based on one-dimensional motion.

Therefore, we see that extending the Real-BP to complex numbers varies the structure
of the error propagation from one to two dimensions.

The two-dimensional structure of the error propagation described above also means
that the units of learning in the Complex-BP algorithm are complex-valued signals flowing
through neural networks. For example, both Av” and Av! =~ are functions of the real
parts (Re[H,,|, Re[O,]) and the imaginary parts (Im[H,,|, Im[O,]) of the complex-valued
signals (H,,, O,) flowing through the neural networks (eqn (25)). That is, there is a
relation between AvZ ~and Av! = through (Re[H,,], Re[O,]) and (Im[H,,], Im[O,]).
Similarly, there are relations between Awf, and Awl, (eqn (28)), and between AGE and
AfG! (eqn (29)). Eqn (27) indicates no relation between AvE and Av.. However, we can

find one since Re[O,] is a function of Re[H,,| and I'm[H,,], because
Re[On] = fr(Re[Sy]), (30)

where

Re[S,] = Y (Re[vnm|Re[Hon) — Im[vam| Im[H,,]) + Re[y,). (31)

m

Similarly, Im[O,] is also a function of Re[H,,] and Im[H,,], because
Im[On] = fr(Im[Sy]), (32)

where

Im([S,) = Y (Re[vnm] Im[H] + Im[vym] Re[Hyp]) + Tmy,]. (33)

m

Thus, both AyE and Av! are functions of Re[H,,] and Im[H,,]. Hence, there is also a
relation between AvF and Av! through Re[H,,] and Im[H,,]. Therefore, in the Complex-

BP algorithm, both the real part and the imaginary part of learnable parameters are
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modified as a function of the real part and the imaginary part of complex-valued signals,
respectively (Fig. 19). From these facts, we may conclude that complex-valued signals

flowing through neural networks are the unit of learning in the Complex-BP algorithm.

4.2 Improving Learning Speed

In this section, we will show how the error propagation of the Complex-BP algorithm is
based on two-dimensional geometry and how this improves learning speed.

In the learning rule of the real-valued back-propagation (equs (18)-(21)), (1—H,,) H,€
R and (1-0,,)O,€R are the derivative (1 — fr(u)) fr(u) of the sigmoid function fr(u) =
1/(1+ exp(—u)) which is the output function of each neuron. The value of the derivative
asymptotically approaches 0 as the absolute value of the net input u to a neuron increases
(Fig. 20). Hence, as |u| increases to make the output value of a neuron exactly approach
0.0 or 1.0, the derivative (1 — fr(u)) fr(u) shows a small value, which causes a standstill
in learning. This phenomenon is called getting stuck in a local minimum if it continuously
takes place for a considerable length of time, and the error between the actual output
value and the desired output value remains large. As is generally known, this is the
mechanism of standstill in learning in the Real-BP.

On the other hand, two kinds of derivatives of the sigmoid function appear in the
learning rule of the Complex-BP algorithm (eqns (14)-(17)): one is the derivative of the
real part of an output function ((1 — Re[|O,])Re[O,], (1 — Re[H,,])Re[H,,]), the other is
that of the imaginary part ((1 — Im[O,])Im[O,], (1 —Im[Hy]|)Im[Hy,]). The learning

rule of the Complex-BP algorithm basically consists of two linear combinations of them:

a1 (1=Re[0,]) Re[O,] + B (1=Im[0,]) Im[O,)], (34)
oo (1=Re[H))Re[Hy] + Bo(1-Im[H,,]) Im[Hpy), (35)

where ay, B, € R (k=1,2). Note that eqn (34) has a very small value only when
both (1 — Re[O,])Re[O,] and (1 — Im[O,])Im]O,] are very small. Hence, eqn (34) does
not show an extremely small value even if (1 — Re[O,])Re[O,] is very small, because
(1 —Im[O,])Im][O,] is not always small in the Complex-BP algorithm (whereas the mag-

nitude of learnable parameter updates inevitably becomes quite small if (1 — O,)0,, €
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R is quite small in the Real-BP algorithm (eqns (18)-(21))). In this sense, the real
factor ((1 — Re[O,])Re[O,], (1 — Re[H,,])Re[H,,]) makes up for the imaginary factor
(1 = Im[O,]))Im[Oy]), (1 —Im[Hy])Im[H,]) showing an abnormally small value, and
vice versa. Thus, compared with the updating rule of the Real-BP, the Complex-BP is
such that the probability for a standstill in learning is reduced. This indicates that the
learning speed of the Complex-BP is faster than that of the Real-BP, which has been
confirmed by computational experiments on complex-valued patterns in Section 3.1.

We can assume that the structure of reducing standstill in learning by the linear
combinations (eqns (34) and (35)) of the real component and the imaginary component
of the derivative of an output function causes the learning speed of the Complex-BP
algorithm on a number of examples using complex-valued patterns described in Section

3.1.

4.3 Transforming Geometric Figures

This section presents a mathematical analysis of the behavior of a complex-valued neural
network which has learned the concept of rotation, similarity transformation or parallel
displacement using the Complex-BP algorithm.

We will introduce a simple 1-1-1 three-layered (complex-valued) network for the anal-
ysis. We will use wvexpliw] € C' for the weight between the input and hidden neurons,
cexplid] € C for the weight between the hidden and output neurons, sexplit] € C for
the threshold of the hidden neuron, and rexp[il] € C for the threshold of the output
neuron. Let v®exp[iw®], ®exp[id®], s°exp[it’] and r°exp[il®] denote the learned values
of the learnable parameters.

First, we investigate the behavior of the Complex-BP network which has learned ro-
tation. Learning patterns are as follows: p points with equal intervals on a straight line
which forms an angle of x radians with the real axis, are rotated counterclockwise over «
radians in the complex plane (Fig. 21). That is, there are p training points such that for

any 1 < k£ < p, an input point can be expressed as

ka explix], (36)
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and the corresponding output point as

%ka expli(z + a)] + 1 exp {Zq ; (37)

NoRRd

where k,p € N (N denotes the set of natural numbers), a, 7, € R, 0 < pa < 1 which
limits the values of learning patterns to the range from —1 to 1 in the complex plane,
and the constant a denotes the interval between points. Note that although the output
points take a value z within the range —1 < Relz], Im[z] < 1, we transformed them
as having a value z within the range 0 < Re[z], Im[z] < 1, because the Complex-BP
network generates a value z within the range 0 < Re[z], Im[z] < 1. For this reason, eqn
(37) seem to be somewhat complicated.

The following theorem will explain the qualitative properties of the generalization

ability of the Complex-BP on a rotation angle.

THEOREM 2. Fiz 1 < k < p arbitrarily. To the Complex-BP network which has learned
the training points (eqns (36) and (37)), a test point ka expli(z+ ¢)] is given which can be
obtained by a counterclockwise rotation of an input training point kaexpliz] by arbitrary

¢ radians around the origin (Fig. 21). Then, the network generates the following value:

%ka expi(z + ¢ + )] + % exp [z%” + Ef(¢) € C. (38)

The first term of eqn (38) refers to the point which can be obtained by the counterclockwise
rotation of the test point kaexpli(z + ¢)] by « radians around the origin (Fig. 21). Note
that « is the angle which the network has learned. Also, the second term E®(¢) is a
complex number which denotes the error, and the absolute value called Generalization

Error on Angle is given in the following expression:

()

where M is a constant (see Appendiz for M).

B (¢)| =M ) (39)

REMARK. The value of M differs with each learning because M depends on the values

of the learnable parameters after learning (see Appendix). That is, the value of M is a
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constant in the world after learning in which the learnable parameters are fixed. Therefore,
M is a constant, not a function of «, in Theorem 2 where a situation after one learning

with a fixed value of « is assumed.

The proof will be given in the Appendix.

The above theorem tells us that the Generalization Error on Angle |E™(¢)| increases
as the distance between the test point and the input training point increases (i.e., ¢
becomes larger), and it shows the maximum value M at the point which gives the largest
distance (¢ = 180). Furthermore, it decreases as the test point becomes closer to the
input training point.

Next, we will explain the behavior of the Complex-BP network which has learned a
simalarity transformation. We will use the following learning patterns: p points with equal
intervals a on a straight line which forms an angle of x radians with the real axis, are
transformed into the points obtained by the similarity transformation with the similitude
ratio 3 in the complex plane, respectively (Fig. 22). That is, there are p training points;

for any 1 < k£ < p, an input point can be expressed as
ka explizx], (40)
and the corresponding output point as

%kaﬁ expliz] + 1 exp [zz] : (41)

NoRd

where k,p € N, a,2,3 € R, 0 < paf8 < 1 which limits the values of learning patterns
to the range from —1 to 1 in the complex plane. Note that although the output points
take a value z within the range —1 < Re[z]|, Im[z] < 1, we transformed them as having
a value z within the range 0 < Re[z], Im[z] < 1 as in the case of rotation.

The following theorem shows the qualitative property of the generalization ability of

the Complex-BP on a similitude ratio.

THEOREM 3. Fix 1 < k < p arbitrarily. To the Complex-BP network which has learned

the training points (eqns (40) and (41)), a test point ka expli(z+ ¢)] is given which can be
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obtained by a counterclockwise rotation of an input training point kaexpliz] by arbitrary

¢ radians around the origin (Fig. 22). Then, the network generates the following value:

%kaﬁexp [i(z + )] + %exp {Z%H +E°(¢) € C. (42)

The first term of eqn (42) refers to the point which can be obtained by the similarity
transformation of the test point ka expli(x + ¢)] on the distance from the origin with the
similitude ratio (3 in the complex plane (Fig. 22). Note that [ is the similitude ratio which
the network has learned. Also, the second term E°(¢) is a complex number which denotes

the error, and the absolute value called Generalization Error on Similitude Ratio is given

()

where M is a constant (see Appendiz for M).

wn the following expression:

|E%(¢)] = M

, (43)

REMARK. For the same reason as Theorem 2, M is a constant, not a function of (3, in

Theorem 3 where a situation after one learning with a fixed value of 3 is assumed.

The proof is omitted, because it can be done in the same way as Theorem 2.

We derive from Theorem 3 that the Generalization Error on Similitude Ratio |E® ()|
increases as the distance between the test point and the input training point increases
(i.e., ¢ becomes larger), and it takes the maximum value M at the point which gives the
largest distance (¢ = 180). Furthermore, it decreases as the test point approaches the
input training point.

Finally, we will show the behavior of the Complex-BP network which has learned
parallel displacement. We will use the following learning patterns: p points with equal
intervals a on a straight line which forms an angle of x radians with the real axis, are
transformed into the points which can be obtained by the parallel displacement with a
complex number v = 7expliw] (called parallel displacement vector here) determining the
direction and distance in the complex plane, respectively (Fig. 23). That is, there are p

training points; for any 1 < k£ < p, an input point can be expressed as

ka explizx], (44)
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and the corresponding output point as

1 1
i(ka expliz] +7v) + NG exp {zﬂ , (45)
where k,p € N, a,z € R", v € C and
—1 < Re[paexpliz] + ], Im[paexpliz] +7v] <1 (46)

which limits the values of learning patterns to the range from —1 to 1 in the complex plane.
Note that although the output points take a value z within the range —1 < Re[z], Im[z] <
1, we transformed them as having a value z within the range 0 < Re[z], Im[z] <1 as in
the previous cases.

We can obtain the following theorem which clarifies the qualitative property of the

generalization ability of the Complex-BP on a parallel displacement vector.

THEOREM 4. Fiz 1 < k < p arbitrarily. To the Complex-BP network which has learned
the training points (eqns (44) and (45)), a test point ka expli(x + ¢)] is given which can be
obtained by a counterclockwise rotation of an input training point kaexpliz] by arbitrary
¢ radians around the origin (Fig. 23). Then, the network generates the following value:

.
71—

4H +EP(¢) e C. (47)

l% (kaexp [i(z +¢)] + 7) + % exp [

The first term of eqn (47) refers to the point which can be obtained by the parallel displace-
ment of the test point kaexpli(x + ¢)] with the parallel displacement vector v (Fig. 23).
Note that v is the parallel displacement vector which the network has learned. Also, the
second term ET(¢) is a complex number which denotes the error, and the absolute value
called the Generalization Error on Parallel Displacement Vector is given in the following

ETpressions:

B (¢)] = M’ ) (48)

()

where M’ is a constant (see Appendiz for M').
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REMARK. For the same reason as Theorem 2, M’ is a constant, not a function of ~, in

Theorem 4 where a situation after one learning with a fixed value of 7 is assumed.

We can obtain this theorem in the same manner as Theorem 2. Therefore the proof
is omitted.

Theorem 4 indicates that the Generalization Error on Parallel Displacement Vector
|ET(¢)| increases as the distance between the test point and the input training point
becomes larger (i.e., ¢ becomes larger), and it shows the maximum value M’ at the point
which gives the largest distance (¢ = 180). Furthermore, it decreases as the test point

approaches the input training point.

5 DISCUSSION

In this section, we will discuss the experimental results and the mathematical results
described in Sections 3 and 4 on the learning characteristics, the usual generalization

abiliby, and the ability to generalize the transformation of the Complex-BP algorithm.

We conducted the experiments on the learning characteristics using the comparatively
small number of learning patterns and the comparatively small networks and showed
the superiority of the Complex-BP algorithm in terms of a computational complexity
perspective in Section 3.1. We believe that the Complex-BP algorithm can be more
and more superior to the Real-BP algorithm when it tackles larger problems with larger
networks such as massive real world applications. Because the experiment results in
Section 3.1 suggest that the difference of the learning speed between the Complex-BP
and the Real-BP shown in Ezperiment 2 is larger than that shown in Experiment 1 where
the network size and the number of learning patterns used in Experiment 2 are larger than
those used in Ezperiment 1 (see Figs. 2 and 3, Tables 1 and 3). On the other hand, from
the experiment results in Section 3.2 one may say that the generalization performance
will not change according to the network size and the number of the learning patterns (see

Figs. 5 and 7). Systematic experiments would be needed to clarify the above statements.
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It is clear from Section 3.3 that the Complex-BP can transform geometric figures in
a way that the Real-BP cannot. We will first discuss some examples on transformation
described in Section 3.3.1. The counterclockwise rotation of a point (z,y) in the complex
plane by 6 radians around the origin corresponds to multiplying that complex number
21 = x + 1y by the complex number 2z, = expl[if], which has a radius of 1 and an argument
of # radians. That is, z;2o denotes the point generated by the counterclockwise rotation
of a point (x,y) by 6 radians around the origin. Furthermore, similarity transformations
(reduction and magnification), and parallel displacement of a point (x,y) in the complex
plane correspond respectively to:- a) multiplying a complex number z; = x+iy by the real
number «, b) adding a complex number w to z; = x + iy. We therefore believe that the
complex-valued neural network has learned the complex function ¢g(z) = zexplif], g(z) =
az or g(z) = z+ w (for rotation, similarity transformation, and translation, respectively)
in the experiments of Section 3.3.1. For example, §# = 7/2 in Fig. 8 (rotation), @ = 0.5 in
Fig. 10(a) (reduction), and w = 0.5—0.5¢ in Fig. 11(a) (parallel displacement). One should
note that the neural network has learned nothing but some points on a certain straight
line in the domain; nevertheless the domain of the complex function g is [—1, 1] x [-1, 1].
The neural network presented a sequence of some points in the domain, the responses of
the neural network to presentation of all points in the domain were nearly the values of
the learned complex function g. This behavior of complex-valued neural networks closely

resembles the Identity Theorem in complex analysis, which we will now state.

THE IDENTITY THEOREM. Let F' and G be holomorphic functions over the complex

domain D. If F(z) = G(z) on a given line in D, then F(z) = G(z) over D identically.

This theorem is indicative of a phenomenon found in complex analysis which does
not exist in real analysis. We interpret the behavior of the Complex-BP, as shown in
Section 3.3.1, in terms of the Identity Theorem. We will assume that the training points
are obtained from the points on a given (straight) line in the domain of the true complex

function F : [-1,1] x [-1,1] — [=1,1] x [=1,1]. The neural network approximates
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F on the basis of the given training points, resulting in a complex function G (where
G(z) should equal F'(z), at least on the training points). Then, for all z in the complex
domain, the neural network generates the point G(z) which is close to F(z), as though
it had satisfied the Identity Theorem. We believe that Complex-BP networks satisfy the
Identity Theorem, that is, Complex-BP networks can approximate complex functions just
by training them only over a part of the domain of the complex functions.

On the other hand, as we have seen in Section 4.3, the Generalization Error of the
Complex-BP on transformation of geometric figures can be represented by the sine of the
difference between the argument of the test point and that of the input training point.
This mathematical results agree qualitatively with the simulation results in Section 3.3.2
which state that the Generalization Error increases as the distance between the test
point and the input training point increases, and it takes the maximum value M around
the point which gives the largest distance; furthermore, it decreases as the test point
approaches the input training point. Here, we investigated the theoretical values and the
experimental values of M based on the simulation results (using 1-1-1 networks) in Section
3.3.2. Table 7 shows that there are some errors beween the theoretical values and the
experimental values of M. It is assumed that the cause of such errors is that Theorems 2, 3
and 4 are approximations, i.e., the sigmoid function in the output function of each neuron
was approximated by the piecewise linear function. Thus, we can conclude that although
there are approximation errors, Theorems 2, 3 and 4 clarify the qualitative property of
the generalization ability of the Complex-BP on the transformation of geometric figures.

The mathematical analysis in Section 4.3 is restricted to a class of transformation of
geometric figures such that the training points are lying on a line starting from the origin,
and the test points are obtained by an arbitrary counterclockwise rotation of the input
training points. Thus, Theorems 2, 3 and 4 are applicable to only Figs. 9 and 10 of the
simulation results (Figs. 8-11) presented in Section 3.3.1 (note that the training points
in Fig. 9 are not precise). Judging from the method of the analysis, it seems reasonable
to suppose that similar theorems not only for Figs. 8 and 11 but also for more general
networks such as 1 —n —1and 1 —n; —ng —--- — nx — 1 networks can be proved using

the approach of Theorems 2, 3 and 4. The following problems may, however, occur: (a)
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Unlike Theorem 2, 3 and 4, the generalization error on the transformation of geometric
figures cannot be simply represented by the sine. (b) The approximation errors increase
as the number of neurons increases, because the sigmoid function in the output function
of each neuron is approximated by piecewise linear functions. To solve these problems,

another approach would be needed.

We have discovered that the Complex-BP has the ability to transform geometric figures
in a way that the Real-BP cannot as its inherent property. On the other hand, we have
experimentally clarified in Sections 3.2 and 3.3.3 that the Complex-BP algorithm has the
same degree of the usual generalization performance as compared to the Real-BP. The
question now arises: while the Complex-BP has the inherent generalization ability such as
the ability to transform geometric figures, why can the Complex-BP have the same degree
of the usual generalization performance as compared to the Real-BP? Our answer to this
question is given below. The learning patterns used in the experiments on transforming
geometric figures in Sections 3.3.1 and 3.3.2 were all very peculiar in the meaning that
some 10 learning patterns with narrow intervals (i.e., high density) massed on part of the
plane (see Figs. 8-12). On the other hand, the learning patterns used in the experiments
on the learning speed and the usual generalization ability in Sections 3.2 and 3.3.3 all had

only low peculiarity. That is,

1. Only four learning patterns with wide intervals (i.e., low density) were scattered on
the plane in the Ezperiment 1 of Section 3.2, that is, only a few learning patterns

were used and the distances between the learning patterns were large (see Table 1,

Figs. 4(a)(b)).

2. The learning patterns were evenly distributed on the plane, although many learning

patterns with high density were used in the experiment of Section 3.3.3 (see Fig. 14).

And we cannot discuss the reason why the Complex-BP could have the same degree of
the usual generalization performance as compared to the Real-BP in the Ezperiment 2
of Section 3.2 bacause the 2-4-1 Complex-BP network was used in the Ezperiment 2 of

Section 3.2, which was substantially different from the 1-n-1 Complex-BP network used
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for transforming geometric figures. We can be fairly certain that the inherent general-
ization ability to transform geometric figures is unique to the 1-n-1 network structure.
Thus we believe that the structures of the network and the learning patterns caused the
experimental results that the Complex-BP could have the same degree of the usual gen-
eralization performance as compared to the Real-BP, in other words, the use of the very
peculiar learning patterns in the particular 1-n-1 network made the inherent ability to
generalize emerge.

The search for other various tasks in which the behavior of the Complex-BP network
is dramatically different from that of the Real-BP network (for example, the Real-BP
can do, whereas the Complex-BP cannot) is a future research topic, which will strongly
open the complex-valued neural network world. And it should be noted here that we
cannot always say that other inherent abilities of the Complex-BP algorithm which will be
probably discovered in a future are superior to that of the Real-BP because the superiority
of the Complex-BP as compared to the Real-BP depends on which problems and how the
algorithms will be applied to.

6 CONCLUSIONS

We have proposed a complex-valued version of the back-propagation learning algorithm,
where the input signals, weights, thresholds, and output signals are all complex numbers.
Furthermore, we have investigated the fundamental characteristics of the Complex-BP
algorithm and found that this new algorithm had some inherent properties. The error
back propagation has a structure which is concerned with two-dimensional motion. A
unit of learning is complex-valued signals flowing through the neural network. Compared
with the updating rule of the Real-BP, the Complex-BP updating rule is such that it
reduces the probability for a standstill in learning. As a result, the average convergence
speed is superior to that of the Real-BP (whereas the generalization performance remains
unchanged). In addition, the number of learnable parameters needed is almost half of the
Real-BP, where a complex-valued parameter z = x + iy was counted as two because it

consisted of a real part x and an imaginary part y. Thus it seems that the Complex-BP
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algorithm is well suited for learning complex-valued patterns. We must emphasize the
point that the Complex-BP can transform geometric figures in a way that the Real-BP
cannot. Numerical experiments suggest that the behavior of a Complex-BP network which
has learned the transformation of geometric figures is related to the Identity Theorem in
complex analysis. Mathematical analysis indicates that a Complex-BP network which
has learned a transformation, has the ability to generalize that transformation with an
error which is represented by the sine of the difference between the argument of the
test point and that of the training point. This mathematical result agrees qualitatively
with simulation results. Futhermore, we experimentally confirmed that the 1-n-1 type
Complex-BP network which had the ability to transform geometric figures, could also
solve a continuous mapping task on the usual generalization ability very well which the
2-m-2 type Real-BP network could. We believe that the structure of the learning patterns
caused the successful experimental result that the 1-n-1 type Complex-BP network could
solve the continuous mapping task.

It is interesting that such characteristics appear only by extending neural networks to
complex numbers. We feel that the work presented in this paper is probably only scratch-
ing the surface of what might be possible by extending the back-propagation algorithm
to the complex number domain. We expect that this new algorithm will demonstrate its

real ability in the areas dealing with complex numbers.
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APPENDIX
Convergence Theorem (APCM)

We describe below the learning convergence theorem in APCM (Amari, 1967) whose
parameters and functions take on real values: ¢ € R", y € R", w € RF, z(w,x) :

RPxR"—+R" r(y,y): R"xR" - R" and R(w) : R — R".

CONVERGENCE THEOREM (APCM). Let A be a positive definite matriz. Then, by

using the update rule
Awn:—SAVT(Z(wnawn)ayn)7 n=0,1,--, (A_l)

the (real-valued) parameter w approaches the optimum as near as desired by choosing a

sufficiently small learning constant ¢ >0 (V is a gradient operator with respect to w).

Proof of Theorem 2

We will define the following constants:

1 kac® VsY c®
K = , G:77 A:77 B=—, C = 0,
(14++/2)c0+270 2(kav®+s0) 2(kav®+ ) V2 "

Hp = Acos(t*+d°)+ B cos <d0+%> +C cos(1°),
H; = Asin(t°+d")+ Bsin <d0+%> +C'sin(1°),

M =2K\/H? + H2,

M' = 2\/K2{A2+BQ+C'2+2AB cos <t0—£> +2AC cos (t%4d°—1°)+2BC cos (do—i-%—loﬂ

2
+TZ—TK

A cos(t94d°—w)+ B cos <d0+% - w) +C cos(I° — w)] (A—2)
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In order to prove Theorem 2, a technical result is needed:

LEMMA. For any 1<k <p, the following approximate equations hold:

1
K[Gcos(x+w0+d0)+HR]+ :§kacos(x+a)+ , (A—3)

L L
2 2

1 1 1
K[Gsin(m—i—wo—l—do)—i—Hl}+§:§kasin(x+a)+§. (A—4)

Proof. For any 1<k<p, by computing the output value of the Complex-BP network for
the input training point ka exp[iz], we find that the real part of the output value is equal
to the left side of eqn (A-3), and the imaginary part the left side of eqn (A-4). In the
above computations, the sigmoid function in the output function (eqn (9)) of each neuron

was approximated by the following piecewise linear functions:

mx +3 (—(kav® + s°) <z < kav® + $0)
gl@) =11 (kav® + 5° < x) (A—5)
0 (r < —(kav® + s%))

for the hidden neuron, and

mx +3 (_ 1+2\/§C0 +rf)<z< 14_2\/560 + 700)
hz) =14 1 (1+2\/ico +r0 <z (A —6)
0 (x < (1+2\/§Co + 7"0))

for the output neuron. On the other hand, the real part and the imaginary part of the
output value of the complex-valued neural network for the input training point should be
equal to the real part and the imaginary part of the output training point (1/2)ka exp[i(z+
a)] + (1/v/2) exp [i(7/4)], respectively. This concludes the proof of Lemma. u

Proof of Theorem 2. Theorem 2 will be proved according to the following policy: us-
ing eqns (A-3) and (A-4) in the previous Lemma, we compute the output value of

the Complex-BP network for the test point kaexpli(z + ¢)], and transform it into [
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The point generated by the counterclockwise rotation over « radians of the test point
kaexpli(x + ¢ + a)] | + | The error |.

First, we compute the real part of the output value when the test point ka exp[i(z+¢)]
is fed into the Complex-BP network. Using the equation

cosf — Asinf = 1+ A2 cos(f + ¢) (A—=T)
for any 6, where A\ = tan ¢, and by computing [ eqn (A-3) | — A-[ eqn (A-4) |, we get

K[Gcos(m+¢)+w0+d0)+HR] +%: Ekacos(m—i—qﬁﬂLa)—l—%] + EE(¢9), (A-28)

where
EJ(¢) = 2K sin (g) : [Asin (to +d° + g) + Bsin (do + g + g) + C'sin (l“ + g)] .
(A-9)

Note that the left side of eqn (A-8) refers to the real part of the output value of the
Complex-BP network for the test point, and the first term of the right side of eqn (A-8)
to the real part of the point generated by the counterclockwise rotation over a radians of
the test point kaexpli(r + ¢ + «)]. Finally, EE(¢) refers to the real part of a complex
number which denotes the error.

Similarly, using the equation
Acosf +sinf = V1 + A%sin(0 + ¢) (A —10)
for any 0, and by computing \-[ eqn (A-3) | + [ eqn (A-4) ], we get

1 1 1
K[Gsin(:c+¢+w°+d°)+Hf]+§: 5kasin(x+¢+a)+§]+Ef;(¢), (A—11)

where

Bl (¢) = —2K sin (g) . lAcos (to +d° + g) + B cos (do + g + g) + C cos (lo + g)] :

(A —12)
Note that the left side of eqn (A-11) refers to the imaginary part of the output value of
the Complex-BP network for the test point, and the first term of the right side of eqn

(A-11) to the imaginary part of the point generated by the counterclockwise rotation over
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« radians of the test point kaexpli(x + ¢ + «)]. Finally, EE (¢) refers to the imaginary
part of a complex number which denotes the error.
Hence, it follows from eqns (A-8) and (A-11) that the output value of the Complex-BP

network for the test point can be expressed as

%kaexp[i(x—l—qﬁ—l—a)] + %exp {Z%H + E%(¢), (A —13)
where
E"(¢) € EJL(0) +iBf,(#). (A—14)

That is, the Complex-BP network rotates the test point ka exp[i(x 4+ ¢)] counterclockwise
over a radians with the error E®(¢). And eqn (39) follows from eqns (A-9) and (A-12).
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Learning Patterns [Experiment 1]

Table 1

Input Pattern | Output Pattern
0 0
i 1
1 141
1+ i

Table 2

Complex-BP

Computational Complexity of the Complex-BP and the Real-BP

[Experiment 1]

Time Complexity

Space Complexity

Network
x and <+ | + and — | Sum | Weights | Thresholds | Sum
Complex-BP 1-3-1 78 52 130 12 8 20
Real-BP 2-7-2 90 46 136 28 9 37

Time complexity means the sum of the four operations performed per learning cycle.
Space complexity means the sum of the parameters (weights and thresholds), where a

complex-valued parameter z = x + iy (where i = y/—1) is counted as two because it

consists of a real part x and an imaginary part y.

41
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Table 3

Learning Patterns [Experiment 2]

Input Pattern Output Pattern
Complex Number 1 | Complex Number 2 | Complex Number 3
0 0 1
0 0 0
0 0 1+
1 1 1
1 1 141
1 0 0
141 141 1
141 0 i

Table 4
Computational Complexity of the Complex-BP and the Real-BP
[Experiment 2]

Time Complexity Space Complexity
Network
x and <+ | + and — | Sum | Weights | Thresholds | Sum
Complex-BP 2-4-1 134 92 226 24 10 34
Real-BP 4-9-2 150 76 226 54 11 65

Time complexity means the sum of the four operations performed per learning cycle.
Space complexity means the sum of the parameters (weights and thresholds), where a
complex-valued parameter z = x + iy (where i = y/—1) is counted as two because it

consists of a real part x and an imaginary part y.



Complex-BP

Table 5

Rate of Convergence [Experiment 2]

Learning Rate

01102]03[04]05] 0.6

Network

Complex-BP 2-4-1 || 100 | 96 | 88 | 92 | 90 | 98
Real-BP 4-9-2 0 | 22|64 | 78 | 90 | 100

Table 6
Distances between the Input Training Points and the Test Points

Test Point Input Training Point

112(3/4(5]6]7|8
1 1j1(1121212(2]3
2 211121231212
3 1121|1112 (3]3
4 31211113 (2]1]|1
bt 21211121 11]1]|2
6 213121211232
7 313(112]2(2]2]|1
8 3121212 (1]2]|1

The distance-measure ||z — y||? is used for an input training point & € C? and a test

point y € C?, which is defined in eqn (24).
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Table 7
Comparison of the Theoretical Values and

the Experimental Values of M (and M')

Type of Transformation | Theoretical Value | Experimenal Value
Rotation 0.19 0.35
Similarity Transformation 0.02 0.03
Parallel Displacement 0.49 0.27

Learning was stopped when the error between the desired output pattern and the actual
output pattern was equal to 0.06 in the case of rotation, 0.02 in the cases of similarity

transformation and parallel displacement.



