Published in Proceedings of IEEFE International Conference on Neural Networks,
ICNN’95-Perth, Nov. 27-Dec. 1, Vol.5, pp.2753-2756 (1995).

(a) The title of the article
A Quaternary Version of the Back-propagation Algorithm

(b) The authors’ full names
Tohru Nitta

(c) Current Affiliations

Neuroscience Research Institute,

National Institute of Advanced Industrial Science and Technology (AIST),

AIST Tsukuba Central 2, 1-1-1 Umezono, Tsukuba-shi, Ibaraki, 305-8568 Japan.
E-mail: tohru-nitta@aist.go.jp



A Quaternary Version of the Back-propagation
Algorithm

Tohru Nitta
Electrotechnical Laboratory
1-1-4 Umezono, Tsukuba Science City, Ibaraki, 305 Japan
Email: tnitta@etl.go.jp

ABSTRACT

A quaternary version of the back-propagation algorithm is proposed for multi-layered neu-
ral networks whose weights, threshold values, input and output signals are all quaternions.
This new algorithm can be used to learn patterns consisted of quaternions in a natural
way. An example was used to successfully test the new formulation.

1 INTRODUCTION

Recently several neural network models with two- (complex-valued) or three-dimensional
parameters have been proposed [4, 6, 7, 8, 9] and demonstrated to have the inherent
properties such as the abilities to learn 2D or 3D affine transformations [6, 8, 10, 11, 12],
and particularly the Complex-BP [6, 8] and the 3DV-BP [7] have been successfully applied
to computer vision [5, 14].

This paper presents a quaternary (four-dimensional) version of the back-propagation
algorithm (called “Quaternary-BP”), which can be applied to multi-layered neural net-
works whose weights, threshold values, input and output signals are all quaternions, where
a quaternion is a four-dimensional number and was invented by W. R. Hamilton in 1843
[2]. We expect that Quaternary-BP can be effectively used in the fields such as robotics
and computer vision in which quaternions have been found useful [1, 3]. This new algo-
rithm was applied to a simulated example on quaternary patterns. Results suggest that
the new method is superior to standard BP [13].

Section 2 presents the new Quaternary-BP algorithm. The rest of the paper presents
experimental results.

2 THE “QUATERNARY-BP” ALGORITHM

2.1 A Quaternary Neuron

There appear to be several approaches for extending the standard neural networks to
higher dimensions. One approach is to extend the number field, i.e. from real numbers
x (1 dimension), to complex numbers z = x + yi (2 dimensions; [4, 6, 8]), to quaternions
q=a+bi+cj+dk (4 dimensions), to octaves (8 dimensions), to sedenions (16 dimensions),



-+ -. Another approach is to extend the dimensionality of the weights and threshold values
from 1 dimension to n dimensions using n-dimensinal real valued vectors. Moreover, the
latter approach has two varieties : (a) weights are n-dimensional matrices [7], (b) weights
are n-dimensional vectors [9]. In this paper we use quaternions in the former approach to
extend neural networks to 4 dimensions.

A model neuron used in the Quaternary-BP algorithm is as follows. The input signals,
weights, thresholds and output signals are all quaternions. The activity A,, (analogous to
the real activity in the standard BP) of neuron n is defined to be :

A, = Z SuWam + Tn; (1)

where S,, is the quaternary input signal coming from the output of neuron m, W,,, is
the quaternary weight connecting neuron m and n, 7T, is the quaternary threshold value
of neuron n. To obtain the quaternary output signal, convert the activity value A4,, into
its four parts as follows.

A, =21+ 291 + 237 + 14k =, (2)

where 2 = 2=k = —1, ij = —ji =k, jk = —kj=1i, ki = —ik = .
The output signal f4(x) is defined to be

fa(z) = f(21) + f(@2)i + f(23)] + f(z4)E,

1
where f(fL'l) = HTP(—Q)Z)

(3)

The multiplication S,,W,,, in eqn (1) should be carefully treated, because the equa-
tion Sy Wam = WS does not hold (the non-commutative property of quternions on
multiplication), which produces two kinds of quaternary neurons: one is called “normal
quaternary neuron” which calculates A, = Y, SuWym + 15, the other is called “inverse
quaternary neuron” which calculates A, = >, WnnSm + T,.

2.2 A Quaternary Neural Network

In this subsection, we introduce the network used in the Quaternary-BP algorithm. It
has 3 layers and consists of only “normal quaternary neurons”, for the sake of simplicity.

We use wyy = wl, + wl,i + wt,j + whk € H for the weight between the input
neuron [ and the hidden neuron m (where H denotes the set of quaternions), v, =
ve 4+l i+ S j+vl k€ H for the weight between the hidden neuron m and the
output neuron n, 6, = 0% + 0%i+ 07+ 0%k € H for the threshold of the hidden
neuron m, Y, = 7%+ i + 55 + %k € H for the threshold of the output neuron n.
Let I, = I + I}i + Ifj + Ik € H denote the input signal to the input neuron [, and
let H, = H: + HYi+ H.j+ H'k € H and O, = 0% + 0% + O%j + Ok € H denote
the output signals of the hidden neuron m, and the output neuron n, respectively. Let
A, =AY+ AP+ ACj+Alk =T, —0, € H denote the error between O,, and the target

n

output signal T, = T +T% +T¢j + Tk € H of the pattern to be learned for the output
N

neuron n. We define the square error for the pattern p as E, = (1/2)Y_ | T,,—O,|*, where
3 n=1



N is the number of output neurons, |z|% \/m%+x§+x§+xi, r = z+ari+tasjt+ask € H.

2.3 The Learning Algorithm

Next, we define a learning rule for the Quaternary-BP model described above. For a
sufficiently small learning constant £ > 0, and using a steepest descent method, we can
show that the weights and the thresholds should be modified according to the following
equations.

Avpm défAv“ + AW i AV Ak
B <8E oE, . 0FE, . OF, k)

1+

doe o ' oue T oud

Avp & Ay AL+ AYE G+ Ak
(0B, +8E i OBy . OB,
oy "o T oy o

n

Awyy & Aw® +Awb i+ Aw,j+Aw? k
_ <8E+8Ep. 8Ep_ 0E, k)

14

ows,  ow?, 8w7§1‘7 owd,
(6)

A, % AGE + NG i+ A G+ A K
__ (9B, 0F, +8E 8Ek

— “\ o6, aeg,f a0: 7 9o

(7)

where Az denotes the amount of the correction of a parameter x. The above equations
(4) — (7) can be expressed as:
Avpy, = FmA7na (8)
Ay, = e{A%(1 - 0O + Al (1 — O2)Obi
+AS(1— 0905 + A(1 - 0HOUk},

Awpy = A0, (10)
Ab,, = (1— H;;)H;‘,L-Re[Z(mn@nm)]

+(1 — H. ) H? Im’[z (AYnVnm) ]

+(1 = HE ) Hp, T | 32 (MY Tom) |

[

+(1 - H)H? - Im" Z Afynvnm}

3

(11)

where T % 1 — 200 — 23] — 24k, Re[z] & 21, Imi [z] & f 2o, Imi[z ]d—f r3 and ImF[x ]d:ef Ty



for a quaternion x = x1 + 2ot + x3j + x4k € H.

3 SIMULATION

An example on quaternary patterns was used to compare the performance of the new
Quaternary-BP algorithm with the standard back-propagation algorithm.

We used a 1-2-1 three-layered network for the Quaternary-BP, and a 4-9-4 three-
layered network for the standard BP. Table 1 shows that their time complexities per
learning cycle are almost equal. The learning constant used in the experiment was 0.5.
The initial first, second, third and fourth parts of the weights and the thresholds were
chosen to be random real numbers between — 0.3 and + 0.3. The input data were
presented in sequence, together with the desired output, to the net as shown in Table 2.

The results of the simulation are plotted in Fig.1. The new algorithm converged in 400
iterations, whereas the original algorithm required 600. Furthermore, the space complexity
(i.e. the number of parameters) is almost one-third of that of the standard BP, as seen
in Table 1.

4 CONCLUSIONS

We have proposed a quaternary version of the back-propagation learning algorithm, where
the input signals, weights, thresholds, and output signals are all quaternions. An simple
example was used to test the presented method and it showed excellent performance.
We expect that this new algorithm has the inherent properties such as the abilities of
the Complex-BP to learn “2D affine transformation” [6, 8] and the 3DV-BP “3D affine
transformation”[12], and will demonstrate its real ability in the areas dealing with quater-
nions. The extension of the Quaternary-BP algorithm to fully connected neural networks
will be presented in a future paper.

ACKNOWLEDGEMENTS

The author expresses his thanks to Dr.K.Ohta, Director of the Computer Science Division,
and Dr.T.Higuchi, Chief of the Computational Models Section, for having an opportunity
to do this study and their continual encouragement. He is also grateful to the anonymous
reviewers for many helpful suggestions.

References

[1] Canny, J. F. (1988). The Complezity of Robot Motion Planning, MIT Press.

(2] Ebbinghaus, H.-D. etl al. (Eds.). (1988). Zahlen, Springer-Verlag Berlin Heidelderg
(in German).

[3] Faugeras, O. (1993). Three-Dimensional Computer Vision, MIT Press.

[4] Kim, M. S. and Guest, C. C. (1990). Modification of Backpropagation Networks
for Complex-valued Signal Processing in Frequency Domain. Proc. IEEE/INNS In-
ternational Joint Conference on Neural Networks, IJCNN’90-SanDiego, June, Vol.3,
pp-27-31.

[5] Miyauchi, M., Seki, M., Watanabe, A. and Miyauchi, A. (1993). Interpretation of
Optical Flow through Complex Neura]5NetW0rk. Proc. International Workshop on



9]

[10]

[11]

[12]

[13]
[14]

Artificial Neural Networks, IWANN’93-Barcelona, Lecture Notes in Computer Sci-
ence, Vol.686, Springer-Verlag, pp.645-650.

Nitta, T. and Furuya, T. (1991). A Complex Back-propagation Learning. Transac-
tions of Information Processing Society of Japan, Vol. 32, No. 10, pp.1319-1329 (in
Japanese).

Nitta, T. and deGaris, H. (1992). A 3D Vector Version of the Back-propagation
Algorithm. Proc. IEEE/INNS International Joint Conference on Neural Networks,
[JCNN’92-Beijing, Nov.3-6, Vol.2, pp.511-516.

Nitta, T. (1993). A Complex Numbered Version of the Back-propagation Algorithm.
Proc. INNS World Congress on Neural Networks, WCNN’93-Portland, Vol. 3, pp.
576-579.

Nitta, T. (1993). A Back-propagation Algorithm for Neural Networks Based on 3D
Vector Product. Proc. IEEE/INNS International Joint Conference on Neural Net-
works, IJCNN’93-Nagoya, Oct. 25-29, Vol.1, pp.589-592.

Nitta, T. (1994). Structure of Learning in the Complex Numbered Back-propagation
Network. Proc. IEEE International Conference on Neural Networks, ICNN’94-
Orlando, June 28-July 2, Vol.1, pp.269-274.

Nitta, T. (1994). An Analysis on Decision Boundaries in the Complex Back-
propagation Network. Proc. IEEE International Conference on Neural Networks,
ICNN’94-Orlando, June 28-July 2, Vol.2, pp.934-939.

Nitta, T. (1994). Generalization Ability of the Three-dimensional Back-propagation
Network. Proc. IEEE International Conference on Neural Networks, ICNN’94-
Orlando, June 28-July 2, Vol.5, pp.2895-2900.

Rumelhart, D. E. et al. (1986). Parallel Distributed Processing, Vol. 1, MIT press.

Watanabe, A., Yazawa, N., Miyauchi, A. and Miyauchi, M. (1994). A Method to
Interpret 3D Motions Using Neural Networks. IEICE Transactions on Fundamentals

of Electronics, Communications and Computer Sciences, Vol.E77-A, No.8, pp.1363—
1370.



Figure 1: Learning Curves for the Simulation.

Error
1.90

1.80
1.70
1.60
1.50
1.40
1.30
1.20

=] Real-BP 4-9-4
_| Quaternary-BP 1-2-1

1.10
1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00

fterations 105

Bime mﬁmplexbt%o oleo Sipace cmgnplexity

x and + | + and — | Sum | Weights | Thresholds | Sum

Quaternary-BP 1-2-1 185 152 337 16 12 28
Standard BP 4-9-4 210 116 326 72 13 85

Network

Table 1 : The Computational Complexity of the Quaternary-BP and the Standard BP.
Time complexity means the sum of the four operations performed per learning cycle.
Space complexity means the sum of the parameters (weights and thresholds).

‘ Input ‘Output‘
14+i4+j+k 1
1+2i+j 42k i
24+14+25+k J
24+20+25 + 2k k

Table 2 : The Input Patterns and the Corresponding Desired Output Patterns for
the Simulation. The first component of a quaternion is given to the first component of
the input/output neuron 1, the second is the second component, the third is the third
component, and the fourth is the fourth component in the Quaternary-BP network. The
first component of a quaternion is given to the input/output neuron 1, the second is the
neuron 2, the third is the neuron 3, and the fourth is the neuron 4 in the standard BP
network.



