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Abstract. This paper presents some results of an analysis on the decision bound-
aries of complex-valued neurons. The main results may be summarized as follows. (a)
Weight parameters of a complex-valued neuron have a restriction which is concerned
with two-dimensional motion. (b) The decision boundary of a complex-valued neuron
consists of two hypersurfaces which intersect orthogonally, and divides a decision
region into four equal sections.
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1. Introduction

Complex-valued neural networks have been proposed by several re-
searchers in recent years [1, 2, 3, 4, 6, 7, 8], which are the extensions
of usual real-valued neural networks to complex numbers. In partic-
ular, the Complez-BP algorithm is a complex-valued version of the
usual real-valued back-propagation algorithm (called here, Real-BP)
[9], which was proposed by several researchers independently in the
early 1990’s [1, 2, 4, 6, 7, 8]. This algorithm enables the network to
learn complex-valued patterns naturally, and has the ability to learn
2D motion as its inherent property [6, 7, 8].

This paper makes clear the differences between the real-valued neu-
ron used in the Real-BP and the complez-valued neuron used in the
Complex-BP [6, 7, 8] by analyzing their fundamental properties from
the view of architectures. The main results may be summarized as
follows. (a) Weight parameters of a complex-valued neuron have a
restriction which is concerned with two-dimensional motion, and learn-
ing proceeds under this restriction. (b) The decision boundary of a
complex-valued neuron consists of two hypersurfaces which intersect
orthogonally, and divides a decision region into four equal sections.
It seems that the complex-valued neural network using such complex-
valued neurons and the related Complex-BP algorithm are natural for
learning of complex-valued patterns for the above reasons.
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2. The Complex-valued Neuron

This section briefly describes the complex-valued neuron used in the
Complex-BP algorithm [6, 7, 8]. The weights and threshold values of
a complex-valued neuron are all complex numbers, and the output
function fo of a complex-valued neuron is defined to be

fc(z) = fr(z) +ifr(y), (1)

where z = x+1y is a complex-valued input signal to the complex-valued
neuron, i denotes v/—1 and fr(u) = 1/(1 + exp(—u)), that is, the real
and imaginary parts of the complex-valued output of a complex-valued
neuron mean the sigmoid functions of the real part x and imaginary
part y of the net input z to neuron, respectively.

3. The Fundamental Structure of the Complex-valued
Neuron

In this section, we analyze the properties of decision boundaries of the
complex-valued neuron described in the previous section.

3.1. WEIGHT PARAMETERS OF A REAL-VALUED NEURON

We first examine the basic structures of weights of a real-valued neuron.
Consider a real-valued neuron with n-inputs, weights wy € R (1 <
kE < n), and a threshold value # € R, where R denotes the set of
real numbers. Let an output function fr : R — R of the neuron be
fr(u) =1/(1 + exp(—u)). Then, for n input signals zy € R (1<k<n),
the real-valued neuron generates fr(>.;_, wyzi+0) as an output. This
may be interpreted as follows: a real-valued neuron moves a point xj
on a real line (1 dimension) to another point wyxy whose distance from
the origin is wy times as long as that of the point zp (1 < k < n),
and regarding wyxy,...,w,x, as vectors wixy,...,wW,x,, the real-
valued neuron adds them, resulting in a 1-dimensional real-valued vec-
tor > ;'_, wixy, and finally, moves the end point of the vector > ;_, wixy
to another point (3°,;_, wyzy)+6 (Fig. 1). The output value of the real-
valued neuron can be obtained by applying a nonlinear transformation
[r to the value (3 _, wrzi) + 0. Thus, a real-valued neuron basically
administers the movement of points on a real line (1 dimension), and
its weight parameters wy,...,w, are completely independent of one
another.
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4 Tohru Nitta
3.2. WEIGHT PARAMETERS OF A COMPLEX-VALUED NEURON

Next, we examine the basic structures of weights of a complex-valued
neuron. Consider a complex-valued neuron with n-inputs, weights wy =
wh +iwt € C (1 <k < n), and a threshold value 6 = 0" + " € C,
where C denotes the set of complex numbers. Then, for n input signals
xg + iyr € C (1 < k < n), the complex-valued neuron generates

XY = o i) ontive) + (074
k=1

= fr <Z(w£$k_w§cyk)+or> +ifr (Z(wiﬂﬂkerZyk)Jroi)
k=1 k=1
(2)

as an output. Hence, a complex-valued neuron with n-inputs is equiva-
lent to two real-valued neurons with 2n-inputs in Fig. 2. We shall refer
to a real-valued neuron corresponding to the real part X of an output
of a complex-valued neuron as a Real-part Neuron, and a real-valued
neuron corresponding to the imaginary part Y as an Imaginary-part
Neuron.

Note here that

x1
X wl —w? wr —w? g or
— F 1 1 n n : +
[Y] [ T owl ‘wfl wy - [9’]
Tn
Yn

F (|’LU1| |:COSC¥1 —s1n041] |:I1 4o

sinay;  cosar| |y
cos oy, —Ssinag| |ZTn "

+ |wn [sinan coS an] [yn] + [9’]) - ()
where, F('[z y)) ='[fn() fr(y)], op = arctan(uwl/wf) (1 <k <n).
In equation (3), |wg| means reduction or magnification of the dis-
tance between a point (2, y;) and the origin in the complex plane,
[ cosop — SiLQy ] the counterclockwise rotation by «; radians about

sinag  cosay
the origin, and ![" '] translation. Thus, we find that a complex-valued
neuron with n-inputs applies a linear transformation called 2D motion

to each input signal (complex number), that is, equation (3) basically
involves 2D motion (Fig. 3).
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Fundamental Structure of Complex-valued Neuron 5

As seen in the previous section, a real-valued neuron basically ad-
ministers the movement of points on a real line (1 dimension), and its
weight parameters are completely independent of one another. On the
other hand, as we have seen, a complex-valued neuron basically admin-
isters 2D motion on the complex plane, and we may also interpret that
the learning means adjusting 2D motion. This structure imposes the
following restrictions on a set of weight parameters of a complex-valued
neuron (Fig. 2).

(Weight for the real part xj of an input signal to Real-part
Neuron)

= (Weight for the imaginary part y; of an input signal to
Imaginary-part Neuron), (4)
(Weight for the imaginary part y; of an input signal to
Real-part Neuron)

= — (Weight for the real part zj of an input signal to
Imaginary-part Neuron). (5)

Learning is carried out under these restrictions. From a different angle,
we can see that Real-part Neuron and Imaginary-part Neuron influence
each other via their weights.

Thus, we find that extending the real-valued neuron to complex
numbers has varied the structure from 1 dimension to 2 dimensions.
The structures of weight parameters described above will appear as
orthogonality of decision boundaries in the next section.

3.3. DECISION BOUNDARIES IN A COMPLEX-VALUED NEURON

The decision boundary is a border by which pattern classifiers such as
the Real-BP classify patterns, and generally consists of hypersurfaces.
Decision boundaries of neural networks of real-valued neurons were
examined empirically by Lippmann [5]. This section mathematically
analyzes decision boundaries of complex-valued neurons.

Let the weights denote w = ‘[wy - - - w,,] = w"+iw?, w" = w] ---w’],
w' = w} ---w?], and let the threshold denote § = 6" + i#’. Then, for
n input signals (complex numbers) z = Y[z;---2,] = ¢ + iy, © =
Hay -+ n], y = y1 - - yn], the complex-valued neuron generates

X +iV=fg ([tw’" — L] [‘;] +9’"> +ifr ([twi hw" [Z] +0i>(6)

main.tex; 9/03/2004; 12:19; p.5



6 Tohru Nitta

as an output. Here, for any two constants C%,C! € (0,1), let
A M R B
Vi) = ol ]| 5] o) <o ®)

X(z,y)

Note here that expression (7) is the decision boundary for the real
part of an output of the complex-valued neuron with n-inputs. That
is, input signals (x,y) € R?" are classified into two decision regions
{(.,y) € R*|X(z,y) > C7} and {(z,y) € R*"|X(z,y) < C*} by
the hypersurface given by expression (7). Similarly, expression (8) is the
decision boundary for the imaginary part. The normal vectors H(z, y)
and H!(z,y) of the decision boundaries ((7), (8)) are given by

ok - (= ... il
(m’y) <(9:E1 O0xy 8yl 8yn

R (e M R B!

0X 0X 0X 0X )

(9)

Hilo.y) - (ay oy oy ay)

— f}l{([th t,wr] |:z:| +91> _[t,wi t,wr]. (10)

Noting that the inner product of expressions (9) and (10) is zero, we
can find that the decision boundary for the real part of an output
of a complex-valued neuron and that for the imaginary part intersect
orthogonally. Therefore, the following theorem can be obtained.

THEOREM 1. The decision boundaries for the real and imaginary
parts of a complex-valued neuron intersect orthogonally.

It can be easily shown that Theorem 1 also holds true for the other
types of complex-valued neurons proposed in [1, 2, 4]. It should be
noted here that there seems to be a problem on learning convergence in
the formulation in [4]; the complex-valued back-propagation algorithm
with the output function fco(z) = 1/(1 + exp(—=2)),z = z + iy never
converged in our experiments.

Generally, a real-valued neuron classifies input real-valued signals
into two classes (0, 1). On the other hand, a complex-valued neuron
classifies input complex-valued signals into four classes (0, 1, i, 141).
As described above, the decision boundary of a complex-valued neuron
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consists of two hypersurfaces which intersect orthogonally, and divides a
decision region into four equal sections. Thus, a complex-valued neuron
used in [1, 2, 4, 6, 7, 8] can be considered to have a natural decision
boundary for complex-valued patterns.

For example, the fading equalization technology is an application
domain suitable for the complex-valued neurons. Channel equalization
in a digital communication system can be viewed as a pattern classifica-
tion problem. The digital communication system receives a transmitted
signal sequence with additive noise, and tries to estimate the true trans-
mitted sequence. A transmitted signal can take one of the following four
possible complex values: —1 —4, —1 44,1 —4 and 144 (i = v/—1), that
is, the estimate of the transmitted signal should be classified into four
classes. Thus, the complex-valued neurons with orthogonal decision
boundaries would be suitable for this domain.

4. Conclusions

We have clarified the differences between the real-valued neuron and
the complex-valued neuron through theoretical analyses of their funda-
mental properties. In particular, we discovered that the complex-valued
neuron had some inherent properties on decision boundary. The orthog-
onality property of decision boundary is well suited to the classification
of complex-valued patterns into four classes 0, 1, 4, and 1+i. We believe
that the Complex-BP algorithm employing such complex-valued neu-
rons is a natural method to learn complex-valued patterns in this sense,
and will be effectively used in fields dealing with complex numbers.
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