ALMA, ATCA Observations of the gamma-ray binary PSRB 1259-63/ LS2883



### Akiko KAWACHI (Tokai University) ... Y. Fujita, T. Akahori, H. Nagai & M. Yamaguchi

Variable Galactic Gamma-Ray Sources V, Sep.6<sup>th</sup> (2019)

#### Outline

- PSR B1259-63/ LS2883 binary .. Parameters and nonthermal emissions
- ATCA 3mm observations ALMA 3mm and sub-mm observations and results

Discussions

"First detection of PSR B1259-63/ LS 2883 in

the millimeter and sub-millimeter wavelengths with ALMA",

Fujita+, PASJ in printing

arXiv: 1904.08429



÷

3

Pulse eclipse at periastron passage
& unpulsed Emissions



 Non-thermal multi-wavelength emissions around periastron

~two-peak flare similar feature among the bands.

Pulsar wind + Stellar wind / circumstellar disk

→ accelerated electron injected ..



Chernyakova+14

### GeV flare discovered at different orbital phase

No association w/ the other Energy bands ??



Chernyakova+14



Chernyakova+15

Motivation for mm/sub-mm radio observations

#### Yet unexplored band

- Link from low-v radio to X-ray
- association with the GeV flare ?
- Sub-millimeter band may get the circumstellar disk

← Contamination of Pulse ?Estimated to be negligible

←Good weather preferable

### Australian Telescope Compact Array Observations (2014 cycle)





- 22-m antennas (5 of 6 w/ 3mm receiver)
- Dual IF .. Mean freq. 94.0 GHz
- Several 10-min--~hour effective obs. time.
- Moderate weather conditions.
- Pulsar binning mode not applied.

# ATCA (2014) Results .. U.L. ~a few mJy



# ATCA U.L. suggests Slightly soft spectrum around 2<sup>nd</sup> peak



<u>A</u>tacama <u>Large</u> <u>M</u>illimeter/submillimeter <u>A</u>rray Observations (2017 cycle)

- [Band3] .. 97 GHz
- [Band7] .. 343 GHz
- 12-m antenna x 42—47
- ~5 min. effective obs. Time
- Beam shape
- ~0".4 sq. for Band3
- ~0".05 sq. for Band7





### ALMA (2017) Results .. a <u>compact</u> single source detected.



No variation betweenτ+71d and 84d

→No association with the GeV flare.

 Different emission origins

for Band3 and Band7 are proposed.

### Band3 Results .. ~Smooth power-law extrapolation from low-v



Smooth Extrapolation
v<sup>{-0.5}</sup> from ATCA low-v
Radio emission ~

Synchrotron emission

### Band3 Results .. ~Smooth power-law extrapolation from low-ν



 Variation among orbital cycles

& daily changes



Synchrotron loss after electron injection (assumed as  $\tau$ +20d, ~2<sup>nd</sup> pulsar crossing of the disk) till  $\tau$ +84d detection,

we constrain the synchrotron parameters for emission at 97 GHz as

magnetic field  $B \le \sim 0.6 \text{ G} \& \gamma > \sim 360$ 

 $\rightarrow$  Emission is likely to extend ~ X-ray

## Band 7 result .. circumstellar disk radiation in the radio band ?



Broadband emission model of LS 2883
Be disk : van Soelen & Meintjes (2011)



### Band 7 Result .. detection of circumstellar disk at sub-millimeter





## Radio Structure detectable in these bands ?

Moldon+11 shows ~50mas (120 au) extended and variable radio structure, located off-center (25 —45 mas) @2.3GHz

### Our results

- ★ Band3: 97GHz : cannot be resolved by ALMA
- ★ Band7: 343GHz : U.L. on the extended source

### Future prospects

<-> Band6: ~200GHz promising

### ÷

Let's add mm/sub-mm bands in the campaign !

### Summary

- We have performed mm, sub-mm observations of this gamma-ray binary for the first time.
- ALMA detected a compact source at 97GHz and 343 GHz in postperiastron phase in 2017 orbital cycle. The GeV flare coincided with the former observation.
- Different origins for these emissions of two frequencies are proposed and discussed. The Be circumstellar disk contributes to the sub-mm signal.
- Temporal change of the disk size may be related with the GeV flare.
  Quiescent phase observations using ALMA are in schedule.



÷

### Backup

23

### + ATCA observation summary

#### Table 2. The calibrators and observed fluxes for the ATCA observations in 2014

| Date   | Day                 | Observing Time | Calibrators  |         |                  | Residual RMS $(1\sigma)$ |
|--------|---------------------|----------------|--------------|---------|------------------|--------------------------|
|        | (from $t_{\rm p}$ ) | (min)          | Bandpass     | Flux    | Gain/Phase       | (mJy)                    |
| Apr 4  | -29.9               | 20             | PKS 1253-055 | Mars    | PKS 1305-668     | 3.58                     |
| Apr 6  | -27.8               | 286            | PKS 0537-441 | Jupiter | $PKS \ 1305-668$ | 0.853                    |
| May 19 | +15.4               | 82             | PKS 1921-293 | Uranus  | $PKS \ 1305-668$ | 1.550                    |
| May 27 | +23.3               | 68             | PKS 1253-055 | Uranus  | PMN J1326-5256   | 0.704                    |
| Jun 15 | +42.2               | 74             | PKS 1921-293 | Saturn  | PMN J1326-5256   | 0.466                    |
| Jun 29 | +56.1               | 71             | PKS 1253-055 | Mars    | PMN J1326-5256   | 0.139                    |
| Sep 26 | +145.6              | 58             | PKS 0537-441 | Jupiter | PMN J1326-5256   | 1.43                     |

### + ALMA Observation Summary

#### Table 1. Angular resolution, image rms, and observed fluxes for the ALMA observations in 2017

| Band        | Date   | Day                 | Beam Shape                          | Image RMS                    | Observed Flux |
|-------------|--------|---------------------|-------------------------------------|------------------------------|---------------|
|             |        | (from $t_{\rm p}$ ) |                                     | $(\mu Jy \text{ beam}^{-1})$ | (mJy)         |
| 3 (97 GHz)  | Dec 2  | +71                 | $0.35"\times 0.21"$ at $78^\circ$   | 41                           | $1.1\pm0.1$   |
| 3 (97 GHz)  | Dec 15 | +84                 | $0.42"\times 0.36"$ at $-52^\circ$  | 36                           | $0.97\pm0.09$ |
| 7 (343 GHz) | Nov 30 | +69                 | $0.056"\times 0.043"$ at $-8^\circ$ | 87                           | $2.3\pm0.4$   |