

Interaction between the pulsar wind and the circumstellar environment in the gamma-ray binary PSR J2032+4127/MT 91 213

Atsuo Okazaki (Hokkai-Gakuen University, Japan)

Talk outline

- Gamma-ray binary PSR J2032+4127
 1.1. System parameters
 1.2. Observed features
- 2. Dynamic modeling of PSR J2032+4127
- 3. Concluding remarks

Gamma-ray binary PSR J2032+4127 1.1. System parameters 1.2. Observed features

- 2. Dynamic modeling of PSR J2032+4127
- 3. Concluding remarks

System parameters

Orbit

- Gamma-ray binary PSR J2032+4127
 1.1. System parameters
 1.2. Observed features
- 2. Dynamic modeling of PSR J2032+4127
- 3. Concluding remarks

X-ray light curve

Periastron

(Coe, Okazaki+ 2019)

X-ray and radio fluxes

- X-ray: gradual increase
 dia fan 20 d
 - ⇒ dip for ~30d⇒ flare
 - ⇒ gradual decline
- Radio: pulsed flux disappeared for ~20d
- Simultaneous Xray and radio flares

Red: Chandra Blue: XMM Newton +NuSTAR Grey: Swift

Color: VLA Grey: pulsed flux

Optical variability: EW

 EW(Halpha): Rapid decrease before periastron
 rapid recovery after periastron

Figure 6. (Top panel) Equivalent widths of H α (the red solid circles), He I 6678 Å (the green stars), and He I 7065 Å (the blue crosses) versus MJD. The vertical (orange) line indicates the date of periastron. The lower three panels show the correlation of all three equivalent widths.

((

Optical variability: Line asymmetry

- Halpha line profile changed from B<R to B>R before periastron
- Velocity of each peak increased during this period

Typical feature of precessing m=1 density wave in Be disk B: blue-peak intensity, R: red-peak intensity

- Gamma-ray binary PSR J2032+4127
 1.1. System parameters
 1.2. Observed features
- 2. Dynamic modeling of PSR J2032+4127
- 3. Concluding remarks

Numerical setup (1) Hydrodynamic model

- 3D SPH simulations with optically-thin radiative cooling
- Spherically symmetric stellar and pulsar winds
- Relativistic pulsar wind (PW) is modeled by a high-velocity (10⁴ km/s), non-relativistic wind with the same momentum flux.
- Be star: M=14.5 M_{sun}, R=8.8 R_{sun}, T_{eff}=35,900 K
- Be wind: Mdot(wind)= 10^{-8} M_{sun}/yr, v_{wind}=2,000 km/s
- Misaligned Be disk: initial base density=10⁻¹¹ g/cm³, initial T_{disk}=0.6 T_{eff}, initial radius r_{disk}=16R_{OB}, Mdot(disk)=10⁻⁸ M_{sun}/yr
- Pulsar: M=1.4M_{sun}, Lsd=1.5x10³⁵ erg/s

Numerical setup (2) Radiation model

Synchrotron emission is calculated by applying the following scheme to SPH data (Takata, Okazaki+ 2012).

- Particle acceleration takes place in PW shocks
- Maximum Lorentz factor is determined by balancing the acceleration timescale with the synchrotron loss (or dynamical) timescale (γ_{min}=5x10⁵, γ_{max}~10⁸).
- Power index, p, of the shocked particles with p = 2.01
- P_{mag}/P_{tot}=0.5 in PW shocks

Interaction of PW with Be disk and wind

Model X-ray light curve

• X-ray flux goes down when pulsar is in Be-disk shadow

Model X-ray light curve

X-ray light curve is sensitive to disk orientation
 Info on disk orientation from X-ray LC

Model vs. observed X-ray light curves

Model explains global feature of observed X-ray light curve
But, poor similarity for post-periastron X-ray brightening

Obscuration of radio pulses by Be disk

Obscuration of radio pulses by Be disk

 Model explains observed disappearance of radio pulses after periastron

Talk outline

- Gamma-ray binary PSR J2032+4127
 1.1. System parameters
 1.2. Observed features
- 2. Dynamic modeling of PSR J2032+4127
- 3. Concluding remarks

Concluding remarks

- Dynamic modeling is important to probe properties/physics of complicated systems such as gamma-ray binaries with Be stars.
- Two types of X-ray LCs in Be/gamma-ray binaries:
 - Peak at disk transit for high density disk
 - > Dip at disk transit for low density disk
- PSR J2032+4127 is bright in X-ray when PW collides with stellar wind, while it is dim when pulsar is in disk shadow.
- Be disk of PSR J2032+4127 has typical density and misaligned with orbital plane by $\beta \sim 30^\circ, \ \gamma \sim 45^\circ$
- It is possible that optical variability is due to dynamical effect of PW on Be disk