Evidence for recent GeV brightening of the SN 1987A region

VGGRS(V); 05.09.2019, D. Malyshev, G. Pühlhofer, A. Santangelo, J. Vink
Introduction

- Type II SN occurred 23rd Feb. 1987 in LMC (∼50 kpc)
- peak optical magnitude ∼ 3
- progenitor – a blue supergiant Sanduleak -69 202

Explosion detected in

- Neutrinos (Kamiokande II: 12 antineutrinos; IMB: 8; Baksan: 5) in ∼10 s burst (core collapse)
- 2–3 h later in optics (blast wave reached the surface)
- NO detection in hard X-rays (0.3–9 MeV, SMM/GRS, effective area ∼ 100 cm2)
Introduction

Now the remnant develops in a complex hour-glass shape cavity bounded by a dense ring in equatorial plane. The evolution of the central ring is clearly traced in optics(HST) and X-rays(Chandra)
Introduction

Recent (2016) hints that the blast wave is leaving the dense equatorial ring.

Recent (2016) hints that the blast wave is leaving the dense equatorial ring.

SN explosion event and SNR evolution become a laboratory for

- SN explosion modelling
- SNR expansion modelling
- particle acceleration on the shock (DSA) modelling
- Axion and sterile neutrino studies

2 - 10 keV

| 5978 | 7445 | 8796 | 10433 |

(c) : 1608.02160
Predictions from DSA models

Within DSA models GeV-TeV emission from SNR 1987A is expected:

- The emission is hadronic (cosmic ray protons are accelerated on the shock)
- Emission is variable (variable density of the medium + acceleration timescale)
Predictions from DSA models

Within DSA models GeV-TeV emission from SNR 1987A is expected:

- Maximum of the emission expected 2007 – 2017

No GeV-TeV emission detected in GeV (1509.06903) and TeV (1501.06578) till \(\sim 2015 \ldots \)
During last 2–4 years Fermi/LAT data indicate gradual brightening of SN 1987A region

- Brightening is more significant if analysis is performed with P8R3 data calibration released few months ago
- The signal is seen only at $\gtrsim 1$ GeV energies and is comparable to predicted by DSA models
Possible counterparts

The region is crowded and includes several potential counterparts:

- SN 1987 A
- 30 Dor C
- Honeycomb nebula
- RX J0536.9-6913/Transient
Possible counterparts

None of these sources demonstrate a clear increase of X-ray flux.

Potential origin of GeV emission:
Possible counterparts

None of these sources demonstrate a clear increase of X-ray flux.

Potential origin of GeV emission:

- **SN 1987A**: GeV-TeV brightening is expected; hints of X-ray flux increase
Possible counterparts

None of these sources demonstrate a clear increase of X-ray flux.

Potential origin of GeV emission:

- **SN 1987A**: GeV-TeV brightening is expected; hints of X-ray flux increase
- **30 Dor C**: superbubble; GeVs from individual SNR? Filament detected by HESS in TeVs (1501.06578)?
Possible counterparts

None of these sources demonstrate a clear increase of X-ray flux.

Potential origin of GeV emission:

- **SN 1987A**: GeV-TeV brightening is expected; hints of X-ray flux increase
- **30 Dor C**: superbubble; GeVs from individual SNR? Filament detected by HESS in TeVs (1501.06578)?
- **Honeycomb nebula**: origin not clear; SNR developing in a shell of material of an older explosion? Microquasar?
Possible counterparts

None of these sources demonstrate a clear increase of X-ray flux.

Potential origin of GeV emission:

- **SN 1987A**: GeV-TeV brightening is expected; hints of X-ray flux increase
- **30 Dor C**: superbubble; GeVs from individual SNR? Filament detected by HESS in TeVs (1501.06578)?
- **Honeycomb nebula**: origin not clear; SNR developing in a shell of material of an older explosion? Microquasar?
- **RX J0536.9-6913/Extragalactic transient...**
Conclusions

- $\sim 4\sigma$ excess seen by Fermi/LAT from SN 1987A position during last 2–4 years
- Flux increase is long-expected by DSA models but not seen previously in GeV/TeV
- Poor localization allows several other counterparts (30 Dor C; Honeycomb nebula; transient)
- No clear variability in X-rays – a hint for hadronic emission from SN 1987A?
- Joint HESS/XMM proposal accepted. More results by the end of 2019.
- MeerKAT (radio) observations may take place (under discussion)
- Stay tuned!
Danke.

Kontakt:

Mathematisch-Naturwissenschaftliche Fakultät
Institute für Astronomie und Astrophysik
Musterstrasse 00, 72074 Tübingen
Telefon: +49 7071 29-0000
Telefax: +49 7071 29-00
beispiel@uni-tuebingen.de