

The influence of the stellar wind on the jets of high-mass microquasars

Edgar Molina Universitat de Barcelona - ICCUB

> Variable Galactic Gamma-Ray Sources V Barcelona - 5 September 2019

Physical scenario

- High-mass microquasar in which a strong stellar wind interacts with the jets in a number of ways:
 - Recollimation shock
 - Bending
 - Large scale helical structure

• Numerical and analytical studies predict the formation of a recollimation shock at the binary scales

3D relativistic simulations by Perucho et al. 2010

• For low jet powers, jets may be disrupted at very small scales

• No recollimation for high jet powers:

Bosch-Ramon & Barkov 2016

$$L_{\rm j} \gtrsim 2.4 \times 10^{37} \left(\frac{\dot{M}_{\rm w}}{10^{-6} {\rm M}_{\odot} {\rm yr}^{-1}} \right) \left(\frac{v_{\rm w}}{2 \times 10^8 {\rm cm s}^{-1}} \right) \frac{\gamma_{\rm j} (\gamma_{\rm j} - 1)}{\beta_{\rm j}} {\rm ~erg~s}^{-1}$$

Yoon et al. 2016

• Jets are also bent due to the wind impact on them. For small enough bending angles ($\phi \leq 30 \text{ deg}$): Bosch-Ramon & Barkov 2016

$$\phi \approx 17 \left(\frac{L_{\rm j}}{10^{37} {\rm erg \, s^{-1}}}\right)^{-1} \left(\frac{\theta_{\rm j}}{0.1 \ {\rm rad}}\right) \left(\frac{\dot{M}_{\rm w}}{10^{-6} {\rm M}_{\odot} \ {\rm yr^{-1}}}\right) \left(\frac{\nu_{\rm w}}{2 \times 10^8 {\rm cm \, s^{-1}}}\right) \frac{(\gamma_{\rm j} - 1)}{\gamma_{\rm j} \beta_{\rm j}} \ {\rm deg}$$

- Bending combined with orbital motion could lead to a helical pattern if the jet is not disrupted before and $\phi > \theta_{\rm j}$
- Significant mixing of wind and jet material is expected already within the binary scales

Perucho et al. 2010, 2012

Cygnus X-3

Mioduszewski et al. 2001

Miller-Jones et al. 2004

Cygnus X-1?

Stirling et al. 2001

Helical jet model: dynamics

- Jet trajectory is computed from momentum transfer by an isotropic stellar wind
- Within the binary system scales, the jet is bent away from the normal to the orbital plane
- At larger scales, orbital motion makes the jet move towards a helix-like trajectory

Mass-loss rate	$\dot{M}_{ m w}$	$10^{-6}~{ m M}_{\odot}~{ m yr}^{-1}$
Terminal wind speed	\mathcal{V}_{∞}	$2 \times 10^8 \text{ cm s}^{-1}$
Jet luminosity	L_{j}	$5 \times 10^{36} \text{ erg s}^{-1}$
Orbital separation	a	$3 \times 10^{12} \text{ cm}$

- Nonthermal electrons are injected at the recollimation shock with a power of $0.1L_j$
- Particle distribution computed at each point along the jet
- Cooling:
 - Adiabatic
 - Synchrotron
 - Inverse Compton
- Emission:
 - Synchrotron
 - Inverse Compton
- Absorption:
 - Free-free absorption by wind ions (radio)
 - Gamma-gamma absorption by stellar photons (VHE γ -rays)

- For higher γ_j , the change in the Doppler boosting does not compensate for the increased energy losses, except for very small inclinations
- The helical structure enhances absorption and affects the IC emission

Molina et al. 2019

11

Simulated radio maps at 5 GHz

Molina & Bosch-Ramon 2018

Simulated radio maps at 5 GHz

Molina & Bosch-Ramon 2018

Summary

- Jet-wind interaction must be considered when studying HMMQ jets
- Dynamical effects:
 - Jet bending
 - Recollimation shock
 - Jet disruption
 - Helical structure at larger scales
- Non-thermal radiation:
 - Angle dependent quantities affected by the presence of a helical jet structure (IC, γγ, Doppler boosting)
 - Light curve asymmetry owing to helical structure
 - Highly concentrated emission reduces this effect
 - Radio is absorbed at small scales, but could be used to trace the helical structure at larger scales

Backup slides

Simulations parameters

Parameter	Perucho+ 2008	Perucho+ 2010	Perucho+ 2012	Yoon+ 2016
Orbital separation	3×10 ¹² cm	2×10 ¹² cm	2×10 ¹² cm	3×10 ¹² cm
Initial jet speed	10 ¹⁰ cm/s	1.7×10 ¹⁰ cm/s	10 ¹⁰ cm/s	3×10 ⁹ cm/s
Wind mass loss rate	$10^{-6} \mathrm{M}_{\odot}/\mathrm{yr}$	$10^{-6} \mathrm{M}_{\odot}/\mathrm{yr}$	$10^{-6} \mathrm{M}_{\odot}/\mathrm{yr}$	$10^{-5} { m M}_{\odot}/{ m yr}$
Wind speed	2×10 ⁸ cm/s	2×10 ⁸ cm/s	2×10 ⁸ cm/s	2.5×10 ⁸ cm/s

Clumpy wind

• Clumpy winds make disruption more likely to occur

Ζ

Perucho & Bosch-Ramon 2012

Clumpy wind

Initial conditions

Model parameters

Parameter		Value
Stellar temperature	T_{\star}	$4 \times 10^4 \text{ K}$
Stellar luminosity	L_{\star}	$10^{39} \text{ erg s}^{-1}$
Mass-loss rate	$\dot{M}_{ m w}$	$10^{-6} \ { m M}_{\odot} \ { m yr}^{-1}$
Terminal wind speed	v_{∞}	2×10^8 cm s ⁻¹
β -law exponent	β	0.8
Jet luminosity	L_{i}	$5 \times 10^{36} \text{ erg s}^{-1}$
Non-thermal energy fraction	$\eta_{ m NT}$	0.1
Acceleration efficiency	$\eta_{ m acc}$	0.1
Jet half-opening angle	$ heta_{\mathrm{j}}$	0.1 rad
Orbital separation	a	$3 \times 10^{12} \text{ cm}$
Orbital period	Т	4 days
Distance to the observer	d	3 kpc
Jet Lorentz factor	γ_{i}	1.2,3
Magnetic pressure fraction	$\eta_B^{"}$	10^{-4} , 10^{-2} , 1
System inclination	i	0° , 30° , 60°

Energy losses

Particle distribution

SEDs

SEDs

i = 30°

Effect of the energy fraction

Molina & Bosch-Ramon 2018