

Jet evolution and energy dissipation in binaries

Manel Perucho DAA/OAUV Universitat de València

VGGRS V, Barcelona, September 2019

Gamma-rays from jets: AGN versus μ -quasars

AGN

- At the jet base/formation region:
 - SSC EC (Poutanen, Ghisellini...)
 - Accretion disc + BLR
 - Synchrotron photons
 - magnetic field reconnection (Giannios, Nalewajko,...)
- At pc-scales
 - jet-star interaction (Barkov, Khangulyan, Bosch-Ramon,...)
 - recollimation shocks (shock-shock interaction, Marscher, Gómez, Agudo...)
 - Hints of shocks close to the radio cores.
- Diffuse emission
 - turbulent/shear particle acceleration (Rieger, Stawarz,...)
 - growing instabilities, entrainment.

- At the jet base/formation region:
 - SSC EC
 - Disc+ Star (e.g., Malyshev et al. '13, Zanin et al. '16, Cygnus X-1; Zdziarski et al. '18, Cygnus X-3, Khangulyan et al. '18)
 - Synchrotron photons (e.g., Zdziarski et al. '17, Cygnus X-1)
 - magnetic field reconnection (?)
- At compact-scales
 - jet-clump interaction
 - Inhomogeneous winds in massive stars. (e.g., Perucho & Bosch-Ramon '12, de la Cita et al. '17).
 - recollimation shocks (shock-shock interaction)
 - Numerical simulations (Perucho et al. '10, Yoon et al. '16).
- Diffuse emission
 - turbulent/shear particle acceleration
 - growing instabilities, entrainment.

Simulations of wind-jet interaction in X-ray binaries

- Hydrodynamic-cold flow particle dominated.
 - reasonable at certain distances to the compact object ($B_{\parallel} \alpha r^{-2}$) and taking dissipation into account. Excepting at strong shocks.
 - $T_j \ll m_p c^2/k_B$

• Stellar wind from a massive O-type star (dM/dt = 10⁻⁶ M_{sun} yr⁻¹).

- continuous in the simulation time-scales (100 -1000s).
- compact object at the same orbital position during the simulation time-scales (100-1000s vs T > 100,000 s).
- homogeneous (constant density up to R_{orb}).

	WIND	JET 1	JET 2	
Power (erg/s)		10 ³⁵	10 ³⁷	Perucho, Bosch- Ramon & Khangulyan (2010) Perucho & Bosch- Ramon (2008)
Velocity (cm/s)	2 10 ⁸	1.7 10 ¹⁰	1.7 10 ¹⁰	
Density (g·cm ⁻³)	2.8 10 ⁻¹⁵	0.088 ρ _w	8.8 ρ _w	
Temperature (K)	10 ⁴	10 ¹⁰	10 ¹⁰	
Mach number	220	16.6	16.6	
Pressure (dyn · cm ⁻²)	1.5 10 ⁻³	7.1	7.1 10 ³	

Inhomogeneous wind. $P_i = 3 \ 10^{36} \text{erg/s}$

Inhomogeneous wind. $P_i = 10^{37} erg/s$

Perucho, Bosch-Ramon & Barkov (A&A, 2017)

Long-term evolution

Bordas, Bosch-Ramon, Paredes, Perucho 2009. Bosch-Ramon, Perucho, Bordas 2011.

Evolution: AGN versus µ-quasars

AGN

• BLR – NLR (sub-pc – 1 kpc)

- (Inhomogeneous?) wind (10¹⁰-10¹⁸ cm)
- ISM IGM pressure gradient (1 kpc – 100 kpc)
- Fairly homogeneous IGM (> 50 - 100 kpc)

- Shocked wind/Supernova remnant/ISM (10¹⁸-10¹⁹ cm)
- ISM (> 10¹⁹ cm)

Evolution: AGN versus µ-quasars

AGN

- BLR NLR (sub-pc 1 kpc)
 - Mass-load and dissipation:
 - Interactions with clouds and stars.
 - Instabilities.
 - Recollimation shocks.

- (Inhomogeneous?) wind (10¹⁰-10¹⁸ cm)
 - Mass-load and dissipation:
 - Interactions with the wind and clumps (≤10¹³ cm).
 - Instabilities.
 - Recollimation shocks.
 - Coriolis.
 - Expansion (reacceleration?)

- Fast variability
 - Compact regions or smallscale interactions.
- FRI / FRII dichotomy starts at 100 pc – 1 kpc.

- Fast variability
 - Compact regions or smallscale interactions.
- Are there any FRI μ -quasars?

Evolution: µ-quasars

- There are strong interactions in the evolution of jets in massive binaries:
 - Recollimation shocks within the cocoon, but also within the wind region. These shocks are generated in the binary region if (see Perucho & Bosch-Ramon 2008):

Fulfilled for supersonic, mildly relativistic jets.

- These strong shocks are candidate locations for particle acceleration and high-energy emission.
 - gamma-rays produced at such height above the orbital plane may suffer less absorption by interaction with stellar photons.
- Instabilities develop in the outer layers and propagate to the whole jet (in the form of surface or first body helical modes) after the strong recollimation shock: This can destroy the jet and generate turbulent regions.

Evolution: AGN versus µ-quasars

AGN

- ISM IGM pressure gradient.
 - FRIIs: Recollimation shocks.
 - FRIs: turbulent mixing, strongly decelerated.

- Fairly homogeneous IGM (> 50 - 100 kpc).
 - Hot-spot + bow-shock.
 - Turbulent mixing and dissipation.
 - Gamma-rays from lobes (no short variability)

- Shocked wind / Supernova remnant / ISM
 - Jet collimation by overpressured, shocked external gas.
 - Collimation shocks.
- ISM (> 10¹⁸-10¹⁹ cm).
 - Hot-spot + bow-shock.
 - Are there any large-scale FRI μ-quasars?

Evolution: µ-quasars

- Only powerful jets (P_j > 10³⁷ erg/s) in massive binaries may be able to propagate collimated out of the binary region.
- Bow shocks and reverse shocks at jet/ISM interaction can accelerate particles to VHE (e.g., Bordas et al. '09).
- Frustrated jets may not be observed in radio at large distances, but still be gamma-ray bright due to strong dissipation (FRI μ-quasars?).
- The luminosity function derived by Grimm et al (2003) predicts 3 HMXBs with $L_x=10^{35}$ erg/s.
 - Following Fender et al. (2005), in HMXB with a 10 M_{sun} black hole, the jet could have a kinetic power between 10^{35} and 10^{38} erg/s.
 - − We deduce that there is room for a few (~10) FRI μ-quasars from HMXBs, with $L_x \le 10^{35}$ erg/s, in our Galaxy.

Summary

- Gamma-rays can be produced in a wide range of scales and scenarios in microquasar jets.
 - Faster variability:
 - Jet-wind clump interactions.
 - Recollimation shocks.
 - IC of stellar photons by relativistic electrons.
 - Instabilities.
 - Slower variability:
 - turbulent mixing at parsec-scales.
- The evolution of AGN jets and microquasar jets can be very different, as influenced by very different environments (beware of comparisons).
 - Where are the microquasar FRIs?

AGN jet- cloud interaction

Bosch-Ramon, Perucho & Barkov (A&A, 2012) Perucho, Bosch-Ramon & Barkov (A&A, 2017)

3D simulation of a stellar-wind entering the jet at z \approx 100 pc.

Shock propagating towards the jet axis. Upstream wave in the shear layer.