Variable Galactic Gamma-Ray Sources V

Barcelona, 4-6 September 2019

Searching for new gamma-ray binaries using Gaia DR2

Marc Ribó (mribo@ub.edu)
\section*{Iria Ayan-Míguez, Ana Fiallos}

$\boldsymbol{I} \in \in \boldsymbol{C}^{9}$

OUTLINE

1. Introduction
2. Gaia DR2 and gamma-ray binaries
3. The GOSC and BeSS catalogs
4. The search for new gamma-ray binaries
5. Conclusions

Binary systems. X-ray binaries (microquasars) vs. gamma-ray binaries.

Cygnus X-3, Cygnus X-1

Kicks during SN explosion (from Podsiadlowski).
Asymmetric Explosion

- orbit increases
- spin + orbit remain aligned
- disruption if more than half the mass is lost

- orbit increases or decreases
- spin/orbit misalignment (retrograde orbits possible)
- system can remain bound that could not otherwise

Note: if kick along spin axis \rightarrow retrograde orbits impossible

Kicks during SN explosion (from Podsiadlowski).

Kicks and Binary Orbits

Blaauw Kick

- only due to supernova mass loss

- disruption if more than half the mass is lost

- orbit increases or decreases
- spin/orbit misalignment (retrograde orbits possible)
- system can remain bound that could not otherwise

Note: if kick along spin axis \rightarrow retrograde orbits impossible

Gaia DR2.

2nd Data Release of the astrometric mission Gaia.

Gaia DR2.

\rightarrow HOW MANY STARS WILL THERE BE IN THE SECOND GAIA DATA RELEASE?

Gaia DR2.

\rightarrow HOW MANY STARS WILL THERE BE IN THE SECOND GAIA DATA RELEASE?

cesa

Gaia DR2.

$$
\begin{aligned}
\chi^{2} & =\text { astrometric_chi2_al } \\
N & =\text { astrometric_n_good_obs_al } \\
G & =\text { phot_g_mean_mag } \\
C & =\text { bp_rp } \quad \text { (if available) }
\end{aligned}
$$

Astrometric indicators:
$>$ Goodness of the fit (GOF):

$$
\text { astrometric_gof_al }=\left(\frac{9 \nu}{2}\right)^{1 / 2}\left[\left(\frac{\chi^{2}}{\nu}\right)^{1 / 3}+\frac{2}{9 \nu}-1\right]
$$

$$
\nu=N-5
$$

$>$ Unit Weight Error (UWE):

$$
\mathrm{UWE}=\sqrt{\frac{\chi^{2}}{N-5}}
$$

$>$ Renormalized unit weight error RUWE $=\mathrm{UWE} / u_{0}(G, C)$, where $u_{0}(G, C)$ is an empirical correction factor

Gaia DR2 results on gamma-ray binaries. PSR B1259-63 (Miller-Jones et al. 2018).

	Parameter	Symbol	Value
VLBI	Reference position in R.A. (J2000) Reference position in Dec. (J2000) Proper motion in R.A. (${\text { mas } \mathrm{yr}^{-1} \text {) }}^{-1}$ Proper motion in Dec. (mas yr ${ }^{-1}$) Parallax (mas) Inclination angle (${ }^{\circ}$) Longitude of the ascending node (${ }^{\circ} \mathrm{E}$ of N)	$\begin{gathered} \alpha_{0} \\ \delta_{0} \\ \mu_{\alpha} \cos \delta \\ \mu_{\delta} \\ \pi \\ i \\ \Omega \end{gathered}$	$\begin{gathered} 13^{\mathrm{h}} 02^{\mathrm{m}} 47^{\mathrm{s}} 6383337^{\mathrm{s}} \pm 0.000012 \\ -63^{\circ} 50^{\prime} 8.628585^{\prime \prime} \pm 0.000008 \\ -7.010 \pm 0.030 \\ -0.532_{-0.032}^{+0.033} \\ 0.387_{-0.047^{+0.042}} \\ 1533^{\circ}+3_{-3.2}^{+3.0} \\ 189^{\circ} .2 \pm 1.7 \end{gathered}$
Pulsar timing	Orbital period (days) Epoch of periastron (MJD) Eccentricity Projected semi-major axis (lt-s) Argument of periastron	$\begin{gathered} P \\ T_{0} \\ e \\ a \sin i \\ \omega \end{gathered}$	$\begin{gathered} 1236.724526 \pm 0.000006 \\ 53071.2447290 \pm 0.0000007 \\ 0.86987970 \pm 0.00000006 \\ 1296.27448 \pm 0.00014 \\ 138.665013 \pm 0.000011 \end{gathered}$

(Miller-Jones et al. 2018)

	Parameter	Symbol	Value
VLBI	Reference position in R.A. (J2000) Reference position in Dec. (J2000) Proper motion in R.A. (${\text { mas } \mathrm{yr}^{-1} \text {) }}^{-1}$ Proper motion in Dec. (mas yr ${ }^{-1}$) Parallax (mas) Inclination angle (${ }^{\circ}$) Longitude of the ascending node (${ }^{\circ} \mathrm{E}$ of N)	$\begin{gathered} \alpha_{0} \\ \delta_{0} \\ \mu_{\alpha} \cos \delta \\ \mu_{\delta} \\ \pi \\ i \\ \Omega \end{gathered}$	$\begin{gathered} 13^{\mathrm{h}} 02^{\mathrm{m}} 47^{\mathrm{s}} 638337^{\mathrm{s}} \pm 0.000012 \\ -63^{\circ} 50^{\prime} 8.628585^{\prime \prime} \pm 0.000008 \\ -7.010 \pm 0.030 \\ -0.532_{-0.032}^{+0.033} \\ 0.387_{-0.049}^{+0.047^{+}} \\ 1533^{\circ}+3.2 \\ 189^{\circ} 2_{-3.0} \pm 1.7 \end{gathered}$
Pulsar timing	Orbital period (days) Epoch of periastron (MJD) Eccentricity Projected semi-major axis (lt-s) Argument of periastron	$\begin{gathered} P \\ T_{0} \\ e \\ a \sin i \\ \omega \end{gathered}$	$\begin{gathered} 1236.724526 \pm 0.000006 \\ 53071.2447290 \pm 0.0000007 \\ 0.86987970 \pm 0.00000006 \\ 1296.27448 \pm 0.00014 \\ 138.665013 \pm 0.000011 \end{gathered}$

(Miller-Jones et al. 2018)

	Parameter	Symbol	Value
VLBI	Reference position in R.A. (J2000) Reference position in Dec. (J2000) Proper motion in R.A. (${\text { mas } \mathrm{yr}^{-1} \text {) }}^{-1}$ Proper motion in Dec. (mas yr ${ }^{-1}$) Parallax (mas) Inclination angle (${ }^{\circ}$) Longitude of the ascending node (${ }^{\circ} \mathrm{E}$ of N)	$\begin{gathered} \alpha_{0} \\ \delta_{0} \\ \mu_{\alpha} \cos \delta \\ \mu_{\delta} \\ \pi \\ i \\ \Omega \end{gathered}$	
Pulsar timing	Orbital period (days) Epoch of periastron (MJD) Eccentricity Projected semi-major axis (lt-s) Argument of periastron	$\begin{gathered} P \\ T_{0} \\ e \\ a \sin i \\ \omega \end{gathered}$	$\begin{gathered} 1236.724526 \pm 0.000006 \\ 53071.2447290 \pm 0.0000007 \\ 0.86987970 \pm 0.00000006 \\ 1296.27448 \pm 0.00014 \\ 138.665013 \pm 0.000011 \end{gathered}$

(Miller-Jones et al. 2018)

	Parameter	Symbol	Value	
VLBI	Reference position in R.A. (J2000) Reference position in Dec. (J2000) Proper motion in R.A. (${\text { mas } \mathrm{yr}^{-1} \text {) }}^{-1}$ Proper motion in Dec. (mas yr ${ }^{-1}$) Parallax (mas) Inclination angle (${ }^{\circ}$) Longitude of the ascending node (${ }^{\circ} \mathrm{E}$ of N)	$\begin{gathered} \alpha_{0} \\ \delta_{0} \\ \mu_{\alpha} \cos \delta \\ \mu_{\delta} \\ \pi \\ i \\ \Omega \end{gathered}$	$\begin{gathered} 13^{\mathrm{h}} 02^{\mathrm{m}} 47^{\mathrm{s}} 638337^{\mathrm{s}} \pm 0.000012 \\ -63^{\circ} 50^{\prime} 8.628585^{\prime \prime} \pm 0.000008 \\ -7.010 \pm 0.030 \\ -0.532_{-0.032}^{+0.033} \\ 0.387_{-0.049}^{+0.047} \\ 153_{0}^{\circ} 3_{-3.02}^{+3.2} \\ 189^{\circ} .2 \pm 1.7 \end{gathered}$	Gaia DR2: $\begin{aligned} & -6.986+/-0.043 \mathrm{mas} / \mathrm{yr} \\ & -0.416+/-0.044 \mathrm{mas} / \mathrm{yr} \\ & -/-0.0308 \end{aligned}$ GOF of 8, bad !!
Pulsar timing	Orbital period (days) Epoch of periastron (MJD) Eccentricity Projected semi-major axis (lt-s) Argument of periastron	$\begin{gathered} P \\ T_{0} \\ e \\ a \sin i \\ \omega \end{gathered}$	1236.724526 ± 0.000006 $53071.2447290 \pm 0.0000007$ $0.86987970 \pm 0.00000006$ 1296.27448 ± 0.00014 138.665013 ± 0.000011	

(Miller-Jones et al. 2018)

	Parameter	Symbol	Value	
VLBI	Reference position in R.A. (J2000) Reference position in Dec. (J2000) Proper motion in R.A. (${\text { mas } \mathrm{yr}^{-1} \text {) }}^{-1}$ Proper motion in Dec. (mas yr ${ }^{-1}$) Parallax (mas) Inclination angle (${ }^{\circ}$) Longitude of the ascending node (${ }^{\circ} \mathrm{E}$ of N)	$\begin{gathered} \alpha_{0} \\ \delta_{0} \\ \mu_{\alpha} \cos \delta \\ \mu_{\delta} \\ \pi \\ i \\ \Omega \end{gathered}$	$\begin{gathered} 13^{\mathrm{h}} 02^{\mathrm{m}} 47^{\mathrm{s}} 638337^{\mathrm{s}} \pm 0.000012 \\ -63^{\circ} 50^{\prime} 8.628585^{\prime \prime} \pm 0.000008 \\ -7.010 \pm 0.030 \\ -0.532_{-0.032}^{+0.033} \\ 0.387_{-0.049}^{+0.047^{+}} \\ 1533^{\circ} 3_{-3.2}^{3^{\circ} .2} \\ 189^{\circ} 2^{\circ} \pm 1.7 \end{gathered}$	Gaia DR2: $\begin{aligned} & -6.986+/-0.043 \mathrm{mas} / \mathrm{yr} \\ & -0.416+/-0.044 \mathrm{mas} / \mathrm{yr} \\ & \text { Differences in pm: } \\ & 0.024+/-0.052 \mathrm{mas} / \mathrm{yr} \\ & 0.116+/-0.055 \mathrm{mas} / \mathrm{yr} \end{aligned}$
Pulsar timing	Orbital period (days) Epoch of periastron (MJD) Eccentricity Projected semi-major axis (lt-s) Argument of periastron	$\begin{gathered} P \\ T_{0} \\ e \\ a \sin i \\ \omega \end{gathered}$	$\begin{gathered} 1236.724526 \pm 0.000006 \\ 53071.2447290 \pm 0.0000007 \\ 0.86987970 \pm 0.00000006 \\ 1296.27448 \pm 0.00014 \\ 138.665013 \pm 0.000011 \end{gathered}$	Measuring a* allows obtaining NS mass Potential new targets for CTA, etc.

(Miller-Jones et al. 2018)

GOF, UWE and RUWE for gamma-ray binaries:

Most of the sources had a bad GOF $>3 \rightarrow$ Promising discriminator !!

After applying the recommended routines by Lindegren et al. (2018), all of them turned out to have "normal" values of UWE and RUWE around 1 !!!

Gamma-ray Binary System	Spectral Type	Orbital Period (days)	G	$G_{B P}-G_{R P}$	$G O F$	$U W E$	$R U W E$	Peculiar Velocity $\left(\mathrm{km} \mathrm{s}^{-1}\right)$
LS 5039	O6.5V	3.9	10.8	1.5	-2.64	0.85	0.69	$142 \pm 40(1)$
1FGL J1018.6-5856	O6V	16.58	12.3	1.4	0.10	1.00	0.94	$45_{-9}^{+30}(2)$
LS I +61 303	B0Ve	26.49	10.4	1.3	3.30	1.13	0.91	$16(3)$
HESS J0632+057	B0Vpe	315	8.9	0.9	3.15	1.19	0.88	-
PSR B1259-63	O9.5Ve	1236.7	9.6	1.2	7.87	1.33	1.11	$26 \pm 8(4)$
MT91 213	Be	8578	11.4	1.6	9.26	1.48	1.05	-

(1) Moldón et al. 2012, (2) Marcote et al. 2012, (3) Wu et al. 2017, (4) Millor-Jones et al. 2018.

Gaia DR2 results on gamma-ray binaries. 1FGL J1018.6-5856 (Marcote et al. 2018).

It is a runaway binary escaping from the Galactic Plane.

Similar to LS 5039
(Ribó et al. 2002, Moldón et al. 2012).

Goal:

$>$ Search for new gamma-ray binaries using O and Be star catalogues

Methodology:

$>$ Use Gaia DR2 on these stars to:

1. Search for bad-behaved astrometric solutions
2. Search for runaway stars

GOSC.

> Galactic O-Star Catalog (Maíz Apellániz et al. 2004, 2013, 2018).
> Available at http://gosc.cab.inta-csic.es
$>$ It contains 618 O and B0 stars.
$>$ These authors detected 76 runaway stars (some of them not in GOSC).

BeSS.

$>$ Catalog of Be stars.
> Available at http://basebe.obspm.fr/basebe/
> It contains 2251 classical Be stars.

Filters applied in Gaia DR2 data.

$>G$ magnitude >6 to avoid saturation.
>5 parameters solutions: position, proper motion and parallax.
> Parallax over error > 5 to have distance uncertainties smaller than 20%.
$>$ Visibility periods >10 to avoid bad solutions or large uncertainties.

GOSC.

> Galactic O-Star Catalog (Maíz Apellániz et al. 2004, 2013, 2018).
> Available at http://gosc.cab.inta-csic.es
$>$ It contains 618 O and B0 stars.
$>$ These authors detected 76 runaway stars (some of them not in GOSC).
$>$ After several filters we work with an O-Gaia DR2 catalog of 370 objects.

BeSS.

> Catalog of Be stars.
> Available at http://basebe.obspm.fr/basebe/
$>$ It contains 2251 classical Be stars.
> After several filters we work with a BeSS-Gaia DR2 catalog of 1399 objects.

Astrometric goodness-of-fits.

GOSC.

36 stars ($\sim 10 \%$) with "badbehaved solutions"
($R U W E>1.15$).
Gamma-ray binary candidates.

BeSS.
144 stars ($\sim 10 \%$) with "badbehaved solutions"
($R U W E>1.12$).
Gamma-ray binary candidates.

The Local Standard of Rest and the Regional Standard of Rest.

Galactic velocities: U towards the GC. V towards Galactic rotation W towards the North Galactic Pole

We use the Galactic rotation model of Reid et al. (2014).

Lack of radial velocity.

We estimate the radial velocity of the RSR, which provides minimum V_{Pec}

The new velocities $V_{\text {RAD }}$ and $V_{\text {TAN }}$.
Galactic velocities:
$V_{\text {RAD }}$ is not relevant $V_{\text {TAN }}$ is relevant W towards the North Galactic Pole

We use the Galactic rotation model of Reid et al. (2014).

Runaways in GOSC.

Runaways in GOSC.

- Field Stars
- Runaway Stars
(this work)
Runaway Stars
- (this work and M-A 2018)
- Pec. Velocities: $28-132.5 \mathrm{~km} \mathrm{~s}^{-1}$
- Runaway stars: 74
- Located in the OFSR in the last $10^{5} \mathrm{yr}$: $\mathbf{6 1}$
- H.E.S.S. Galactic Plane survey : $24 \uparrow$
- Coincident with sources in the $4^{\text {th }}$ Fermi-LAT source catalog: $2 \uparrow$

Runaways in GOSC.

Runaways in BeSS.

Runaways in BeSS.

Gamma-ray binary candidates.

GOSC.

$>$ Galactic O-Star Catalog (Maíz Apellániz et al. 2004, 2013, 2018).
$>$ Available at http://gosc.cab.inta-csic.es
$>$ It contains 618 O and B0 stars.
$>$ These authors detected 76 runaway stars (some of them not in GOSC).
$>$ After several filters we work with an O-Gaia DR2 catalog of 370 objects.
>36 stars $(\sim 10 \%)$ with "bad-behaved solutions" ($R U W E>1.15$).
$>$ We have found 76 runaways, 42 more than Maíz Apellániz et al. (2018).
>24 are in positions covered by the HESS GPS, 2 are $4^{\text {th }}$ Fermi-LAT sources.

BeSS.

$>$ Catalog of Be stars.
$>$ Available at http://basebe.obspm.fr/basebe/
$>$ It contains 2251 classical Be stars.
$>$ After several filters we work with a BeSS-Gaia DR2 catalog of 1399 objects.
>144 stars $(\sim 10 \%)$ with "bad-behaved solutions" ($R U W E>1.12$).
$>$ We have found 54 new runaway stars.
$>$ Only 5 are in positions covered by the HESS GPS.

Future work.

$>$ Make deep searches in MW catalogues.
$>$ Conduct radial velocity studies to constrain 3-D velocities and search for binarity!
$>$ Conduct a systematic search for bow shocks around the stars.

Conclusions

> Gamma-ray binaries are unique laboratories to test particle acceleration and radiation and absorption mechanisms in repeatable geometric configurations.
> Available models do not fully explain the observations available so far.
$>$ We only know a very reduced population of 8 sources (4 O stars, 4 Be stars), with only 2 with confirmed young non-accreting pulsars with Be stars.
> Enlarging the population could allow us to to disentangle between the typical behavior and deviations from it in particular sources.
$>$ A search for new gamma-ray binaries using astrometric data from Gaia DR2 reveals 42 new runaway \mathbf{O} stars and 54 new runaway Be stars.
> Spectroscopic observations needed to unveil their possible binary nature.
$>$ These are targets for future studies with IACTs.

