Variable Galactic Gamma-Ray Sources V

Barcelona, 4-6 September 2019

Searching for new gamma-ray binaries using Gaia DR2

Marc Ribó (mribo@ub.edu)

Iria Ayan-Míguez, Ana Fiallos

- 1. Introduction
- 2. Gaia DR2 and gamma-ray binaries
- 3. The GOSC and BeSS catalogs
- 4. The search for new gamma-ray binaries
- 5. Conclusions

Binary systems. X-ray binaries (microquasars) vs. gamma-ray binaries.

Cygnus X-3, Cygnus X-1

LS 5039 ? PSR B1259-63 LS I +61 303 ? PSR J2032+4127 HESS J0632+057 ? 1FGL J1018.6-5856 ? 4FGL J1405.1-6119 ? LMC P3 ?

Kicks during SN explosion (from Podsiadlowski).

Asymmetric Explosion orbit spin kick

- orbit increases or decreases
- spin/orbit misalignment (retrograde orbits possible)
- system can remain bound that could not otherwise

Note: if kick along spin axis \rightarrow retrograde orbits impossible

Blaauw Kick

• only due to supernova mass loss

Kicks and Binary Orbits

- orbit increases
- \bullet spin + orbit remain aligned
- disruption if more than half the mass is lost

- disruption if more than half the mass is lost
- Note: if kick along spin axis \rightarrow retrograde orbits impossible

not otherwise

Gaia DR2.2nd Data Release of the astrometric mission Gaia.

Gaia DR2.

→ HOW MANY STARS WILL THERE BE IN THE SECOND GAIA DATA RELEASE?

position & brightness on the sky

1 692 919 135

550 737 variable sources radial velocity

7 224 631

surface temperature 161 497 595

red colour **1 383 551 713**

blue colour 1 381 964 755

parallax and proper motion

1 331 909 727

release of ESA's Gaia mission is scheduled for publication on 25 April 2018

76 956 778

radius & luminosity

amount of dust along the line of sight 87 733 672

14 099

Solar System objects

European Space Agency

Gaia DR2.

→ HOW MANY STARS WILL THERE BE IN THE SECOND GAIA DATA RELEASE?

9

surface tempe

161

position & brightness on the sky

1 692 919 17

per motion

amount of dust along the line of sight 87 733 672 radius & luminosity
76 956 778

564 755

14 099 Solar System objects

> 550 variable s

eS-

esa

Gaia DR2. Astrometric indicators:

Goodness of the fit (GOF): \geq

$$\texttt{astrometric_gof_al} = \left(\frac{9\nu}{2}\right)^{1/2} \left[\left(\frac{\chi^2}{\nu}\right)^{1/3} + \frac{2}{9\nu} - 1 \right] \qquad \qquad \nu \ = \ N - 5$$

$$\text{UWE} = \sqrt{\frac{\chi^2}{N-5}}$$

Renormalized unit weight \succ error RUWE = UWE/ $u_0(G, C)$, where $u_0(G, C)$ is an empirical correction factor

 $\chi^2 = \text{astrometric_chi2_al}$

 $G = \text{phot}_g_{mean_mag}$

 $C = bp_rp$ (if available)

 $N = \texttt{astrometric_n_good_obs_al}$

Gaia DR2 results on gamma-ray binaries. PSR B1259-63 (Miller-Jones et al. 2018).

	Parameter	Symbol	Value
	Reference position in R.A. (J2000)	$lpha_0$	$13^{h}02^{m}47.638337^{s} \pm 0.000012$
	Reference position in Dec. (J2000)	δ_0	$-63^{\circ}50'8.628585'' \pm 0.000008$
	Proper motion in R.A. $(\max yr^{-1})$	$\mu_{\alpha}\cos\delta$	-7.010 ± 0.030
VLBI \prec	Proper motion in Dec. $(mas yr^{-1})$	μ_{δ}	$-0.532^{+0.033}_{-0.032}$
	Parallax (mas)	π	$0.387_{-0.047}^{+0.047}$
	Inclination angle (°)	i	$153^{\circ}3^{+3^{\circ}2}_{-3^{\circ}0}$
	Longitude of the ascending node (° E of N)	Ω	189.2 ± 1.7
	Orbital period (days)	Р	1236.724526 ± 0.000006
Pulsar	Epoch of periastron (MJD)	T_0	$53071.2447290 \pm 0.0000007$
timing	Eccentricity	e	$0.86987970 \pm 0.00000006$
	Projected semi-major axis (lt-s)	a sin i	1296.27448 ± 0.00014
	Argument of periastron	ω	138.665013 ± 0.000011

(Miller-Jones et al. 2018)

	Parameter	Symbol	Value
	Reference position in R.A. (J2000)	$lpha_0$	$13^{h}02^{m}47.638337^{s} \pm 0.000012$
	Reference position in Dec. (J2000)	δ_0	$-63^{\circ}50'8.628585'' \pm 0.000008$
	Proper motion in R.A. $(\max yr^{-1})$	$\mu_{\alpha} \cos \delta$	-7.010 ± 0.030
VLBI \prec	Proper motion in Dec. $(mas yr^{-1})$	μ_{δ}	$-0.532^{+0.033}_{-0.032}$
	Parallax (mas)	π	$0.387^{+0.047}_{-0.049}$
	Inclination angle (°)	i	$153^{\circ}3^{+3^{\circ}2}_{-3^{\circ}0}$
	Longitude of the ascending node (° E of N)	Ω	189.2 ± 1.7
	Orbital period (days)	Р	1236.724526 ± 0.000006
Pulsar	Epoch of periastron (MJD)	T_0	$53071.2447290 \pm 0.0000007$
~	Eccentricity	e	$0.86987970 \pm 0.00000006$
timing	Projected semi-major axis (lt-s)	a sin i	1296.27448 ± 0.00014
U	Argument of periastron	ω	138.665013 ± 0.000011

(Miller-Jones et al. 2018)

	Parameter	Symbol	Value
VLBI -	Reference position in R.A. (J2000) Reference position in Dec. (J2000) Proper motion in R.A. (mas yr ⁻¹) Proper motion in Dec. (mas yr ⁻¹) Parallax (mas) Inclination angle (°) Longitude of the ascending node (° E of N)	$lpha_0 \ \delta_0 \ \mu_lpha \cos \delta \ \mu_\delta \ \pi \ i \ \Omega$	$\begin{array}{c} 13^{h}02^{m}47^{s}.638337^{s}\pm0.000012\\ -63^{\circ}50'8.628585''\pm0.000008 \ \ \textbf{Gaia DR2:}\\ -7.010\pm0.030 \ -6.986\ +/-\ 0.043\ \textbf{mas/yr}\\ -0.532^{+0.033}_{-0.032} \ -0.416\ +/-\ 0.044\ \textbf{mas/yr}\\ 0.387^{+0.047}_{-0.049}\ 0.4181 +/-0.0308\\ 153^{\circ}.3^{+3^{\circ}.2}_{-3^{\circ}.0}\\ 189^{\circ}.2\pm1.7\end{array}$
Pulsar timing	Orbital period (days) Epoch of periastron (MJD) Eccentricity Projected semi-major axis (lt-s) Argument of periastron	$P \\ T_0 \\ e \\ a \sin i \\ \omega$	1236.724526 ± 0.000006 $53071.2447290 \pm 0.0000007$ $0.86987970 \pm 0.00000006$ 1296.27448 ± 0.00014 $138^{\circ}665013 \pm 0^{\circ}000011$

0.6

(Miller-Jones et al. 2018)

	Parameter	Symbol	Value
VLBI	Reference position in R.A. (J2000) Reference position in Dec. (J2000) Proper motion in R.A. (mas yr ⁻¹) Proper motion in Dec. (mas yr ⁻¹) Parallax (mas) Inclination angle (°) Longitude of the ascending node (° E of N)	$lpha_0 \ \delta_0 \ \mu_lpha \cos \delta \ \mu_\delta \ \pi \ i \ \Omega$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Pulsar timing	Orbital period (days) Epoch of periastron (MJD) Eccentricity Projected semi-major axis (lt-s) Argument of periastron	$P \\ T_0 \\ e \\ a \sin i \\ \omega$	1236.724526 ± 0.000006 $53071.2447290 \pm 0.0000007$ 0.86987970 ± 0.0000006 1296.27448 ± 0.00014 $138^{\circ}665013 \pm 0^{\circ}000011$

0.6

(Miller-Jones et al. 2018)

	Parameter	Symbol	Value	
VLBI	Reference position in R.A. (J2000) Reference position in Dec. (J2000) Proper motion in R.A. (mas yr ⁻¹) Proper motion in Dec. (mas yr ⁻¹) Parallax (mas) Inclination angle (°) Longitude of the ascending node (° E of N)	$lpha_0 \ \delta_0 \ \mu_lpha \cos \delta \ \mu_\delta \ \pi \ i \ \Omega$	$\begin{array}{c} 13^{h}02^{m}47^{s}638337^{s}\pm0.000012\\-63^{\circ}50'8.628585''\pm0.000008\\-7.010\pm0.030\\-0.532^{+0.033}_{-0.032}\\0.387^{+0.047}_{-0.049}\\153^{\circ}3^{+3^{\circ}2}_{-3^{\circ}0}\\189^{\circ}2\pm1.7\end{array}$	
Pulsar timing	Orbital period (days) Epoch of periastron (MJD) Eccentricity Projected semi-major axis (lt-s) Argument of periastron	$P \\ T_0 \\ e \\ a \sin i \\ \omega$	1236.724526 ± 0.000006 $53071.2447290 \pm 0.0000007$ 0.86987970 ± 0.0000006 1296.27448 ± 0.00014 $138^{\circ}665013 \pm 0^{\circ}000011$	Measuring a* allows obtaining NS mass Potential new targets for CTA, etc.

0.6

(Miller-Jones et al. 2018)

GOF, UWE and RUWE for gamma-ray binaries:

Most of the sources had a **bad GOF** $> 3 \rightarrow$ **Promising discriminator** !!

After applying the recommended routines by Lindegren et al. (2018), all of them turned out to have "normal" values of UWE and RUWE around 1 !!!

Gamma-ray Binary System	Spectral Type	Orbital Period (days)	G	$G_{BP} - G_{RP}$	GOF	UWE	RUWE	Peculiar Velocity $(\rm km~s^{-1})$
LS 5039	O6.5V	3.9	10.8	1.5	-2.64	0.85	0.69	$142 \pm 40 (1)$
1FGL J1018.6-5856	O6V	16.58	12.3	1.4	0.10	1.00	0.94	$45^{+30}_{-9}(2)$
LS I +61 303	B0Ve	26.49	10.4	1.3	3.30	1.13	0.91	16 (3)
HESS J0632+057	B0Vpe	315	8.9	0.9	3.15	1.19	0.88	_
PSR B1259-63	O9.5Ve	1236.7	9.6	1.2	7.87	1.33	1.11	$26 \pm 8 (4)$
MT91 213	Be	8578	11.4	1.6	9.26	1.48	1.05	_

(1) Moldón et al. 2012, (2) Marcote et al. 2012, (3) Wu et al. 2017, (4) Millor-Jones et al. 2018.

Gaia DR2 results on gamma-ray binaries. 1FGL J1018.6-5856 (Marcote et al. 2018).

It is a runaway binary escaping from the Galactic Plane.

Similar to LS 5039 (Ribó et al. 2002, Moldón et al. 2012).

Goal:

Search for new gamma-ray binaries using O and Be star catalogues

Methodology:

- ➢ Use Gaia DR2 on these stars to:
- 1. Search for **bad-behaved astrometric solutions**
- 2. Search for **runaway stars**

GOSC.

- ➢ Galactic O-Star Catalog (Maíz Apellániz et al. 2004, 2013, 2018).
- Available at http://gosc.cab.inta-csic.es
- ▶ It contains 618 O and B0 stars.
- ➤ These authors detected 76 runaway stars (some of them not in GOSC).

BeSS.

- > Catalog of Be stars.
- > Available at http://basebe.obspm.fr/basebe/
- ➢ It contains 2251 classical Be stars.

Filters applied in Gaia DR2 data.

- \succ *G* magnitude > 6 to avoid saturation.
- 5 parameters solutions: position, proper motion and parallax.
- Parallax over error > 5 to have distance uncertainties smaller than 20%.
- Visibility periods > 10 to avoid bad solutions or large uncertainties.

GOSC.

- ➢ Galactic O-Star Catalog (Maíz Apellániz et al. 2004, 2013, 2018).
- Available at http://gosc.cab.inta-csic.es
- ▶ It contains 618 O and B0 stars.
- ➤ These authors detected 76 runaway stars (some of them not in GOSC).
- > After several filters we work with an O-Gaia DR2 catalog of 370 objects.

BeSS.

- > Catalog of Be stars.
- Available at http://basebe.obspm.fr/basebe/
- ➢ It contains 2251 classical Be stars.
- ➤ After several filters we work with a BeSS-Gaia DR2 catalog of **1399** objects.

Astrometric goodness-of-fits.

GOSC.

36 stars (~10%) with "badbehaved solutions" (*RUWE*>1.15). Gamma-ray binary candidates.

BeSS.

144 stars (~10%) with "badbehaved solutions"(*RUWE*>1.12).Gamma-ray binary candidates.

The Local Standard of Rest and the Regional Standard of Rest.

Lack of radial velocity.

We estimate the radial velocity of the RSR, which provides minimum V_{Pec}

The new velocities V_{RAD} and V_{TAN} .

Runaways in GOSC.

Runaways in GOSC.

Field Stars
 Runaway Stars

 (this work)
 Runaway Stars
 (this work and M-A 2018)

- Pec. Velocities: 28 132.5 km s⁻¹
- Runaway stars: 74 🛧
 - Located in the OFSR in the last 10⁵ yr: 61 1
 - H.E.S.S. Galactic Plane survey : 24 1/2
 - Coincident with sources in the 4th Fermi-LAT source catalog: 2 1/2

Runaways in GOSC.

Runaways in BeSS.

Runaways in BeSS.

Gamma-ray binary candidates.

GOSC.

- ➢ Galactic O-Star Catalog (Maíz Apellániz et al. 2004, 2013, 2018).
- Available at http://gosc.cab.inta-csic.es
- ▶ It contains 618 O and B0 stars.
- ➤ These authors detected 76 runaway stars (some of them not in GOSC).
- > After several filters we work with an O-Gaia DR2 catalog of 370 objects.
- > 36 stars (~10%) with "bad-behaved solutions" (RUWE > 1.15).
- ➢ We have found 76 runaways, 42 more than Maíz Apellániz et al. (2018).
- > 24 are in positions covered by the HESS GPS, 2 are 4^{th} *Fermi*-LAT sources.

BeSS.

- Catalog of Be stars.
- Available at http://basebe.obspm.fr/basebe/
- ➢ It contains 2251 classical Be stars.
- ▶ After several filters we work with a BeSS-Gaia DR2 catalog of 1399 objects.
- > 144 stars (~10%) with "bad-behaved solutions" (RUWE>1.12).
- ➢ We have found 54 new runaway stars.
- > Only 5 are in positions covered by the HESS GPS.

Future work.

- ➤ Make deep searches in MW catalogues.
- Conduct radial velocity studies to constrain 3-D velocities and search for binarity!
- Conduct a systematic search for bow shocks around the stars.

- Gamma-ray binaries are unique laboratories to test particle acceleration and radiation and absorption mechanisms in repeatable geometric configurations.
- > Available models do not fully explain the observations available so far.
- ➤ We only know a very reduced population of 8 sources (4 O stars, 4 Be stars), with only 2 with confirmed young non-accreting pulsars with Be stars.
- Enlarging the population could allow us to to disentangle between the typical behavior and deviations from it in particular sources.
- A search for new gamma-ray binaries using astrometric data from Gaia DR2 reveals 42 new runaway O stars and 54 new runaway Be stars.
- > Spectroscopic observations needed to unveil their **possible binary nature**.
- > These are targets for **future studies with IACTs**.