Probing the Properties of the Pulsar Wind in the Gamma-Ray Binary HESS J0632+057 with NuSTAR and VERITAS Observations

Submitted to ApJ PoS(ICRC2019)767 [arXiv:1908.03083]

Raul R. Prado^{*1}, for the VERITAS Collaboration[†] Charles Hailey², Shifra Mandel², Kaya Mori² (NuSTAR Collaboration[‡])

Variable Galactic Gamma-Ray Sources V, Barcelona, Sept. 4th – 6th, 2019

* raul.prado@desy.de

¹Deutsches Elektronen-Synchrotron (DESY), Platanenallee 6, 15738 Zeuthen, Germany

²Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027, USA

[†] https://veritas.sao.arizona.edu [‡] https://www.nustar.caltech.edu

Overview

HESS J0632+057

- P_{orb} ~ 315 320 days
- d = 1.1 1.7 kpc
- Companion star MWC 148: B0ep
- Unknown nature of compact object
- Weak MeV GeV detection Li et al. 2017

Two orbital solutions available

Casares et al. 2012; Moritani et al. 2018

See also Daniela's talk

Outline

Observations and Data Analysis

- Combined observations by NuSTAR and VERITAS
- Nov. and Dec. 2017
- X-rays timing analysis
- TeV and X-rays spectral analysis

System Parameters and Orbital Solutions

• Two orbital solutions, one of which is marginally compatible with the pulsar scenario.

Modeling

- SED model fitting
- Probing the pulsar scenario: non-thermal emission from electron pair accelerated at the pulsar-wind termination shock.
- Observation well described by the model
- Constraints on pulsar wind magnetization

NuSTAR

- Spectral resolution of 400 eV FWHM
- Absolute (relative) timing accuracy of 3 msec (10 µsec)
- Energy range: 3 79 keV
- Little to no dependence with $N_{_{\rm H}}$

VERITAS

- Array of four 12m-diameter IACTs
- Energy range: 85 GeV to 30 TeV
- Field of view ~3.5°
- Angular resolution ~0.08° at 1 TeV
- Sensitivity of 1% Crab in < 25h

Observations summary

	NuSTAR		VERITAS	
	date	exposure	date	exposure
Nov. 2017	22^{th}	49.7 ks	$16^{\text{th}}-26^{\text{th}}$	7.4 hrs
Dec. 2017	14 th	49.6 ks	$14^{\text{th}}-16^{\text{th}}$	6.0 hrs

NuSTAR's Legacy VERITAS' LTP Program

X-ray Timing Analysis

No evidence of red noise or pulsation was found.

6

D. Malyshev et al. 2019

	Casares et al. 2012	Moritani et al. 2018	
e	0.83 ± 0.08	0.64 ± 0.29	
ω (°)	129 ± 17	271 ± 29	
$f~(M_{\odot})$	0.01	0.0024	
i (°)	69.5 ± 10.5	37 ± 5	
$a_2 (AU)$	$3.90\substack{+0.13 \\ -0.22}$	$2.13_{-0.17}^{+0.14}$	
$P_{\rm orb}$ (d)	315 ± 2		
$M_{\rm psr}~(M_{\odot})$	1.4		
$M_{\rm Be}~(M_{\odot})$	13.2 - 19.0		
$R_{ m Be}~(R_{\odot})$	7.8		
$T_{\rm Be}$ (K)	30000		
$v_{\rm w}~({\rm km/s})$	1500		
$\dot{M}_{ m w}~(M_{\odot}/{ m yr})$	$10^{8.5\pm0.5}$		

	Casares et al. 2012	Moritani et al. 2018	
e	0.83 ± 0.08	0.64 ± 0.29	
ω (°)	129 ± 17	271 ± 29	
$f~(M_{\odot})$	0.01	0.0024	
i (°)	69.5 ± 10.5	37 ± 5	
a_2 (AU)	$3.90\substack{+0.13 \\ -0.22}$	$2.13\substack{+0.14 \\ -0.17}$	
$P_{\rm orb}$ (d)	315 ± 2		
$M_{\rm psr}~(M_{\odot})$	1.4		
$M_{\rm Be}~(M_{\odot})$	13.2 - 19.0		
$R_{ m Be}~(R_{\odot})$	7.8		
$T_{\rm Be}$ (K)	30000		
$v_{\rm w} \ (\rm km/s)$	1500		
$\dot{M}_{ m w}~(M_{\odot}/{ m yr})$	$10^{8.5\pm0.5}$		

MWC 148 (HD= 259440)

Aragona et al. 2010

	Casares et al. 2012	Moritani et al. 2018	
e	0.83 ± 0.08	0.64 ± 0.29	
ω (°)	129 ± 17	271 ± 29	
$f~(M_{\odot})$	0.01	0.0024	
i (°)	69.5 ± 10.5	37 ± 5	
$a_2 (AU)$	$3.90\substack{+0.13 \\ -0.22}$	$2.13\substack{+0.14 \\ -0.17}$	
$P_{\rm orb}$ (d)	315 ± 2		
$M_{\rm psr}~(M_{\odot})$	1.4		
$M_{ m Be}~(M_{\odot})$	13.2 - 19.0		
$R_{ m Be}~(R_{\odot})$	7.8		
$T_{\rm Be}$ (K)	30000		
$v_{\rm w} \ (\rm km/s)$	1500		
$\dot{M}_{ m w}~(M_{\odot}/{ m yr})$	$10^{8.5\pm0.5}$		

	Casares et al. 2012	Moritani et al. 2018	
e	0.83 ± 0.08	0.64 ± 0.29	
ω (°)	129 ± 17	271 ± 29	
$f~(M_{\odot})$	0.01	0.0024	
i (°)	69.5 ± 10.5	37 ± 5	
$a_2 (AU)$	$3.90\substack{+0.13 \\ -0.22}$	$2.13\substack{+0.14 \\ -0.17}$	orbita
$P_{\rm orb}$ (d)	$ \begin{array}{r} 315 \pm 2 \\ 1.4 \\ 13.2 - 19.0 \\ 7.8 \end{array} $		Aliu et
$M_{\rm psr}~(M_{\odot})$			(VERIIA
$M_{ m Be}~(M_{\odot})$			
$R_{ m Be}~(R_{\odot})$			
$T_{\rm Be}$ (K)	30000		
$v_{\rm w} \ (\rm km/s)$	15		
$\dot{M}_{ m w}~(M_{\odot}/{ m yr})$	10^{8}		

orbital period

Aliu et al. 2014 (VERITAS+HESS)

			7
	Casares et al. 2012	Moritani et al. 2018	
e	0.83 ± 0.08	0.64 ± 0.29	
ω (°)	129 ± 17	271 ± 29	
$f (M_{\odot})$	0.01	0.0024	
<i>i</i> (°)	69.5 ± 10.5	37 ± 5	
a_2 (AU)	$3.90\substack{+0.13 \\ -0.22}$	$2.13\substack{+0.14 \\ -0.17}$	
$P_{\rm orb}$ (d)	315 ± 2		compact object
$M_{\rm psr}~(M_{\odot})$	1	1.4	
$M_{\rm Be}~(M_{\odot})$	13.2	13.2 - 19.0	
$R_{ m Be}~(R_{\odot})$	7	7.8	
$T_{\rm Be}$ (K)	30	000	
$v_{\rm w} \ (\rm km/s)$	15	500	
$\dot{M}_{\rm w} (M_{\odot}/{\rm yr})$	$10^{8.}$	5 ± 0.5	

orbital solutions Casares et al. 2012 Moritani et al. 2018 0.64 ± 0.29 0.83 ± 0.08 e ω (°) 129 ± 17 271 ± 29 $f(M_{\odot})$ 0.010.0024 $i (^{\circ})$ 69.5 ± 10.5 37 ± 5 $3.90^{+0.13}_{-0.22}$ $2.13_{-0.17}^{+0.14}$ a_2 (AU) $P_{\rm orb}$ (d) 315 ± 2 $M_{\rm psr}~(M_{\odot})$ 1.4 $M_{\rm Be} (M_{\odot})$ 13.2 - 19.0 $R_{\rm Be} (R_{\odot})$ 7.8 $T_{\rm Be}$ (K) 30000 $v_{\rm w} \ (\rm km/s)$ 1500 $10^{8.5\pm0.5}$ $M_{\rm w} (M_{\odot}/{\rm yr})$

Main idea: Pulsar and stellar wind collide and are terminated. Electron pairs from the pulsar wind are accelerated at the **pulsar-wind termination shock** and emit though **synchrotron** and **inverse Compton scattering (ICS)**, producing the observed X-rays and TeV gamma-rays. Stellar photons provide the low energy photons for the ICS.

Tavani & Arons 1997 (PSR B1259-63) Ball & Kirk 2000 Sierpowska-Bartosik & Torres 2008 (LS 5039) Takata & Taam 2009 (PSR B1259-63) Kong et al. 2012 (PSR B1259-63) Takata et al. 2017 (PSR J2032+4127)

Shock Formation and the Pulsar-Wind Magnetization

From the balance between pulsar and stellar wind pressures:

Magnetic field upstream the shock:

Energy Spectrum of the High-Energy Electron Population

$$\mathrm{d}N_e/\mathrm{d}E_e = N_e \left(E_e/1 \mathrm{~TeV}\right)^{\Gamma}$$

Single power-law in the range 0.1 – 5 TeV. (Large overlap at the electron energies responsible for hard X-rays and TeV gamma-rays)

No feature is assumed. A break may exist at < 0.1 TeV and a cut-off may exist at > 5 TeV.

Two free parameters to be fitted (N_e and Γ). Injected spectrum and energy losses are not modeled explicitly.

Radiative Processes

- \rightarrow X-rays produced by synchrotron
- \rightarrow Gamma-rays produced by ICS
 - photon field from stellar thermal emission
 - pair-production absorption

dependence on orbital solutions (geometry)

Model Fitting

 \rightarrow Combined fit of both periods.

(Nov \rightarrow index 0, Dec. \rightarrow index 1)

 $\rightarrow \sigma$ scale with R_{sh} as a power law, with $\alpha = 1$

$$\sigma_1 = \sigma_0 \left(\frac{R_{\mathrm{sh},0}}{R_{\mathrm{sh},1}} \right)^o$$

 \rightarrow Slope of electron spectra computed from X-rays

SED fit of single power law.

 \rightarrow 4 free parameters: L_{sd}, σ , N_{e.0} and N_{e.1}

 $\rightarrow \chi^2$ minimization method

Fitted SEDs for the best fit solution

Casares et al. 2012 Moritani et al 2018

24

Summary and Conclusions

Observations

- Two sets of combined observations by VERITAS and NuSTAR
- First observations in hard X-rays
- No evidence of red noise or pulsation in X-rays

Modeling

- SED data properly described within the pulsar scenario
- Model with minimum assumptions
- Constraints on the pulsar-wind magnetization

Future

Combined NuSTAR + VERITAS observations in the 2019/2020 cycle

Thank you!

