Bridging accretion and rotationpowered neutron stars, the case of transitional millisecond pulsars

INAF
ISTITUTO NAZIONALE
DI ASTROFISICA
NATIONAL INSTITUTE
FOR ASTROPHYSICS



Alessandro Papitto VGRSS VI Innsbruck 14.4.2023



### **Rotation-powered Pulsars**

Rotation of the e.m. field

- $\rightarrow$  particle acceleration
- $\rightarrow$  pulses from the radio to the gamma-rays



### **Accretion-powered Pulsars**

Matter lost by a companion star channeled by the NS magnetic field  $\rightarrow$  X-ray emitting hotspots/columns

### Can rotation and accretion power coexist?

Transitional millisecond pulsars

Optical/UV millisecond pulsars



### Millisecond pulsars are recycled Low mass X-ray binaries

Bisnovatyi-Kogan & Komberg 1974, Alpar+1982, Radhakrishnan+ 1982



# Swings between rotation and accretion power in binary transitional millisecond pulsars

Archibald+ 2009; Papitto+ 2013; Bassa+ 2014

#### See review by Papitto & de Martino 2022







Mass in-flow rate

Low mass in-flow rate Pulsar wind dominates Rotation-powered (radio) PSR

High mass in-flow rate Gravity dominates Accretion-powered (X-ray) PSR



### **Transitional Millisecond Pulsars**



### **Transitional Millisecond Pulsars**



### An enigmatic sub-luminous disk state



# **Accretion-power features**

Accretion Disk



# **Accretion-power features**

Accretion Disk

X-ray variable emission

X-ray pulsations



Archibald+, Bogdanov+ 2015, Papitto+ 2015

# **Accretion-power features**

Accretion Disk

X-ray variable emission

X-ray pulsations

Bright radio jets



# **Rotation-power features**

#### Fermi LAT light curve



#### Low-mass γ-ray binaries

Stappers+ 2013, Torres+ 2017 see the review by Torres & Li 2022

# **Rotation-power features**

#### Fermi LAT spectra



#### Low-mass γ-ray binaries

Stappers+ 2013, Torres+ 2017 see the review by Torres & Li 2022

### How to identify a transitional MSP?

 $L(X-ray)/L(\gamma-ray) \approx 0.25-0.5$ X-ray high/low modes (also flaring states) Flat-spectrum variable radio counterpart Optical orbital modulation & lines



1 arcmin

| TMSPs                 | v (Hz) | $P_{orb}$ (hr) | $\tilde{M}_d \; (M_\odot)$ | Donor Type | Obs. states |
|-----------------------|--------|----------------|----------------------------|------------|-------------|
| PSR J1023+0038        | 592    | 4.75           | 0.16                       | MS         | RP,SLD      |
| XSS J12270-4859       | 592    | 6.91           | 0.25                       | MS         | RP,SLD      |
| IGR J18245–2452       | 254    | 11.0           | 0.21                       | MS         | RP,SLD,OUT  |
|                       |        |                |                            |            |             |
| Candidate TMSPs       | v (Hz) | $P_{orb}$ (hr) | Modes                      | Gamma-rays | Obs. states |
| RXS J154439.4–112820  | -      | 5.8            | yes                        | yes        | SLD         |
| CXOU J110926.4-650224 | -      |                | yes                        | yes        | SLD         |
| 4FGL J0407.7-5702     | -      | -              | ?                          | yes        | SLD         |
| 3FGL J0427.9-6704     | -      | 8.8            | flares                     | yes        | SLD         |
| 4FGL J0540.0-7552     | -      | -              | flares                     | yes        | RP(?),SLD   |

See Papitto & de Martino 2020 & references therein

# **Rotation-power features**



Low-mass γ-ray binaries Radio pulsar spin-down

Jaodand+ 2016, Burtovoi+ 2021

### What powers the sub-luminous disk state emission?

- Enshrouded rotation-pwd pulsar [Coti Zelati+ 2014, Takata+ 2015]

- Propellering pulsar [Papitto+ 2014, Papitto & Torres 2015]
- Mode switching → changes of state [Linares+ 2014, Campana+2016]



### The enigma of optical/UV millisecond pulsars



### High time resolution optical astronomy







nature astronomy LETTERS

# Optical pulsations from a transitional millisecond pulsar

F. Ambrosino<sup>1,2</sup>, A. Papitto<sup>13\*</sup>, L. Stella<sup>3</sup>, F. Meddi<sup>1</sup>, P. Cretaro<sup>4</sup>, L. Burderi<sup>5</sup>, T. Di Salvo<sup>6</sup> A. Ghedina<sup>7</sup>, L. Di Fabrizio<sup>7</sup> and L. Riverol<sup>7</sup>

#### PSR J1023+0038

Count rate ~ 10000 c/s (V  $\approx$  16.5 mag) Pulse amplitude ~ 1%  $L_{pulsed}$  ~ few x 10<sup>31</sup> erg/s  $\approx$  0.03%  $L_{SpinDown}$ 



### Stunningly bright optical pulsations

**PSR J1023** L = (1-2) X 10<sup>31</sup> erg/s

Accretion power?

 $E_{cyclotron} = 1 (B/10^8 G) eV$ 

$$L_{\rm cyc} = A_{\rm spot} \int_{\nu_l}^{\nu_h} (2\pi kT_e\nu^2/3c^2)d\nu$$
  
= 2.9 × 10<sup>29</sup>  $\left(\frac{A_{\rm spot}}{10^{12}\,{\rm cm}^2}\right) \left(\frac{kT_e}{100\,{\rm keV}}\right) {\rm erg~s^{-1}},$ 

50 x beaming required



### Stunningly bright optical pulsations

**PSR J1023** 
$$L = (1-2) \times 10^{31} \text{ erg/s}$$
  
= 2×10<sup>-4</sup> L<sub>sd</sub>  
Rotation power?

Known isolated pulsars L=10<sup>-5</sup>-10<sup>-8</sup> Lsd

**Spin powered MSPs** L < 10<sup>-5</sup> Lsd



Updated from Ambrosino, Papitto+ 2017

### Accretion, rotation power, or both?



Pulsar wind terminated by the accretion disk at r≈100 km [Papitto+ 2019, Veledina+ 2019]

> Synchrotron  $\rightarrow$  Optical/X-rays Inverse Compton  $\rightarrow$  Gamma-rays



### Accretion, rotation power, or both?





Pulsar wind terminated by the accretion disk [Papitto+ 2019, Veledina+ 2019]

Optical and X-ray pulses from the interaction between the **pulsar striped wind** and the termination shock



Cerutti & Beloborodov 2017

### Pulsating in unison at optical and X-ray energies



#### Optical and X-ray pulses compatible with a non-thermal process



### Optical pulse lags X-ray pulse by ~ 100-200 µs



Illiano, Papitto+ 2023a

# Optical and ultraviolet pulsed emission from an accreting millisecond pulsar

F. Ambrosino<sup>1,2,3,22</sup>, A. Miraval Zanon<sup>4,5,22</sup>, A. Papitto<sup>1</sup>, F. Coti Zelati<sup>5,6,7</sup>, S. Campana<sup>5</sup>, P. D'Avanzo<sup>5</sup>, L. Stella<sup>1</sup>, T. Di Salvo<sup>8</sup>, L. Burderi<sup>9</sup>, P. Casella<sup>1</sup>, A. Sanna<sup>9</sup>, D. de Martino<sup>10</sup>,

See also Illiano, Papitto+ 2023a; Miraval Zanon+ in prep.





### **Optical/UV pulsations from an accreting ms pulsar**



Do accretion and rotation power coexist?

Does **accretion** produce optical pulsations much brighter than expected?



### Summary

The sub-luminous state of transitional millisecond pulsars in the disk state probe the balancing of accretion and rotation power.

Optical/UV pulses suggest coexistence of rotation and accretion power

Quest for a common model to explain their properties in rotation/accretion/transitional millisecond pulsars