MAGIC recent discoveries of gamma-ray binaries

Urs Leutenegger

Resiliencia

This work is part of the Project RYC2021-032991-I, funded by MICIN/AEI/10.13039/501100011033, and the European Union "NextGenerationEU"/RTRP.

Alicia López-Oramas (IAC) for the MAGIC collaboration Variable Galactic Gamma-Ray Sources (VI), Innsbruck, April 2023

The MAGIC telescopes

Two Imaging Air Cherenkov telescopes of 17 m of diameter

Roque de los Muchachos observatory (La Palma, Canary Islands, Spain); 2200 m a.s.l.

Energy: ~30 GeV - 100 TeV

Outline

Gamma-ray binaries

•Adams et al, (VERITAS, MAGIC and H.E.S.S. collaborations), "Observation of the gamma-ray binary HESS J0632+057 with the H.E.S.S., MAGIC and VERITAS Telescopes", 2021, ApJ, 923 241

•Molina, López-Oramas, D. Hadasch and J. Hoang for the MAGIC Collaboration, **Recent MAGIC results** on Galactic binaries, Pos(ICRC2021)

• Abe et al. (H.E.S.S., MAGIC and VERITAS), 2022, "Gamma-ray observations of MAXI J1820+070 during the 2018 outburst ", MNRAS, 517, 4736

Microquasars

Novae

•Acciari et al. (the MAGIC collaboration), "Proton acceleration in thermonuclear nova explosions revealed by gamma rays", Nature Astronomy, 2022, 6, 689–697

HESS J0632+057 at VHE: joint effort

- VHE: 450 h of data over 15 years: 18 orbits
- X-rays: Swift- XRT, XMM-Newton, Chandra and NuSTAR, also from Malyshev et al. (2019)
- **Optical**: HIDES (188 cm telescope at Okayama Astrophysical Observatory (OAO)) and ESPaDOnS (Canada-France-Hawaii Telescope) spectrographs

Orbital period at TeV and lightcurve

•We determine **for the first time**, the **orbital period at TeV**:

316.7 ± 4.4(stat) ± 2.5(sys) days

•In agreement with the 317.3 ± 0.7 -day X-ray period

•Phase-averaged luminosity >1 TeV is $\approx 10^{32}$ erg s⁻¹:

one of the faintest gamma-ray binaries known

5

SEDs and correlations

- VHE gamma-ray emission **extends beyond several TeV**
- No sings of spectral variability: spectral indices in the range 2.3–2.6
- Only VERITAS during the phases 0.2–0.4 favors a PWEC at 1.75 TeV

SEDs and correlations

- VHE gamma- ray emission extends beyond several TeV
- No sings of spectral variability: spectral indices in the range 2.3–2.6
- Only VERITAS during the phases 0.2–0.4 favors a PWEC at 1.75 TeV

- Strong correlation between X-ray and gamma rays
 - Gamma-to-xray ratio= 3 -> slight dominance of gamma-rays
 - Emission in both bands is produced by the same population of particles
- No time lag is observed (although not probing time lags $\tau \leq 10$ days)
- No optical-Xray / optical-gamma-rays correlations found
 - Optical data obtained during five orbital periods (orbits 12–16)

1A 0535+262

- Be X-ray binary: massive Be star + pulsar (period:103.469 s)
- Giant outburst on November 2020 (Mandal et al. 2020, Nakajima et al. 2020)
 - Brighest X-ray flare: 11 Crab level in the 15-50 KeV band
 - vs 8 Crab previous years
 - Likely super-critical accretion (Jaisawal et al. 2020)
 - First time non-thermal radio detection (J. van den Eijnden et al. 2020)
 - Coupled with X-ray
 - Reactivation on Feb 2021 (Mandal et al. 2021)
- MAGIC observations: November 17 December 19, 2020
 - No detection (overal significance: 1.3σ)
 - Integral flux UL (E>100 GeV): 5.0×10⁻¹² cm⁻² s⁻¹

Collaboration, Pos(ICRC2021)

MAXI J1820+070

- Black-hole low-mass X-ray binary, discovered in 2018 when undergoing an outburst:
 - ~4 Crabs (Del Santo & Segreto 2018; Shidatsu et al. 2019)
 - Radio emission throughout the whole outburst provides evidence for the **presence of jets**
 - Population of non-thermal particles (electrons and possibly positrons) emitting via the synchrotron mechanism.
 - Observed by MAGIC for 45 h (22.5h) between March and September 2018
 - Hard state, state transitions
 - Joint campaign with H.E.S.S. and VERITAS
 - ~ 60 h of observations
 - Covering full HS-SS-HS cycle
 - No detection...

see: Edgar Molina The 2018 flare of MAXI J1820+070: gamma rays and physical constraint April 12, 12:20 h

Source state	Experiment	Time (h)	Zenith angle (media
Hard State	H.E.S.S.	17.9	30-61 (33)
	MAGIC	14.2	21-58 (34)
	VERITAS	10.7	20-39 (28)
$HS \rightarrow SS$	H.E.S.S.	4.0	30-38 (32)
	MAGIC	4.9	21-48 (27)
Soft State	H.E.S.S.	2.6	30–34 (31)
$SS \rightarrow HS$	H.E.S.S.	1.8	37-53 (43)
	MAGIC	3.4	28-56 (41)
TOTAL	H.E.S.S.	26.3	30-61 (33)
	MAGIC	22.5	21 - 58 (32)
	VERITAS	10.7	20-39 (28)

Abe et al. (H.E.S.S., MAGIC and **VERITAS), 2022, MNRAS, 517, 4736**

an) (

10

- Classification depening on the donor star:
 - Symbiotic binary: the donor star is a red giant (RG). The WD is immersed in the RG wind
 - Classical novae: the donor is a low-mass star
- Novae outbursts usually last from weeks to months
- Some novae show repeated outbursts within a human lifetime: recurrent novae (RN)

see: Arnau Aguasca-Cabot Novae at very-high-energy gamma rays: present and future April 12, 12 h

• Novae are thermonuclear explosions caused by accumulation of material from donor star on a surface of a white dwarf (WD)

Credit: ESO / M. Kornmesser

11

Novae: sources of HE gamma rays

- The first nova to be detected by *Fermi-LAT* was the **symbiotic** system V407 Cyg (*Fermi*-LAT, Science, 2010)
- Novae established as HE emitters (HE, E>100 MeV)

Fermi-LAT, Science, 2010

Novae: sources of HE gamma rays

- The first nova to be detected by Fermi-LAT was the **symbiotic** system V407 Cyg (*Fermi*-LAT, Science, 2010)
- Novae established as HE emitters (HE, E>100 MeV)
- **Classical** novae (WD+low-mass star) are also sources of HE gamma rays (Fermi-LAT, Science, 2014)
- Emission could be explained with either **pp interaction** or **leptonic models** (IC+Brems.)
- SED measured up to 6 10 GeV

й

Are novae very-high-energy (VHE, E>100 GeV) emitters?

Searching for VHE emission

- HE data alone is not enough to disentangle electron and proton acceleration models ullet
- Particles are accelerated in nova shock, **non-thermal processes** are at work \bullet
- Protons can reach much higher energies due to lower energy losses and thus possibly produce a second component • detectable by IACTs
- IACTs had searched for a VHE component in novae for more than a decade (Aliu et al. 2012, Ahnen et al. 2015)

RS Ophiuchi

- RS Oph is a recurrent symbiotic nova which displays major outbursts every ~15 years
 - WD + MO-2 III RG star
 - M_{WD} = and M_{RG} = 0.68–0.80M $_{\odot}$
 - Distance: 2.45 pc (Rupen et. al. 2008)
 - Recent Gaia DR3: parallax distance of 2.69 ± 0.18 kpc
 - Nine eruptions between 1898 and 2021
 - Latest outburst: August 2021
- GeV emitter candidate:
 - 2006 outburst of RS Oph detected by Swift/BAT could not be accounted by the decay of radioactive isotopes
 - Emission could be explained **via the** • production of non-thermal particles by diffuse shock acceleration (Tatischeff et al. 2007)

MAGIC VHE detection

- Astronomy, 2022)
 - 34 h observed, 21.4 h after quality cuts (zenith angle range: 36° 60°)
 - Energy threshold of the analysis: ~60 GeV •
- **Decrease** below the VHE detection limit **two weeks later**
- Novae established as a new type of source of VHE emission

• The first four days of MAGIC observations (August 09-12) yield a VHE signal with a significance of 13.2σ (Acciari et al. Nat.

<u>https://doi.org/10.1038/s41550-022-01640-z</u>

MWL view

- The MAGIC observations reveal VHE emission contemporaneous to the Fermi-LAT and optical maxima
- Emission peaked at optical and MeV, but **VHE emission is** consistent with being **constant over the first 4 days**
- First nova detected in the VHE regime

Novae established as a new type of source of VHE gamma rays

- Fermi-LAT: 1-day and 3-day LC (E: 0.1-.1000 GeV)
 - 1-day LC: exponential decay with halving time of (2.20 ± 0.18) days

Optical

- During the nova outburst the photospheric emission creates the dominant radiation field
- Photometry
 - TJO and ANS
 - The emission*can be described by the photosphere temperature dropping from Tph = 10800 K to 7680 K and radius $Rph = 200 R_{\odot}$
 - Similar to those from 2006 outburst
- Spectroscopy:
 - Varese 0.84 m and Catania 0.91 m telescopes
 - 4500 \pm 250 km s–1 for the ejecta expansion at the earliest stage*
 - * during first 4 days

What's going on?

- Protons: pp interaction on nova ejecta (with some contribution from RG wind)
- Electrons: IC on thermal radiation of the WD photosphere
- during the acceleration time (protons)

• Modeling: particles are injected and either cool down completely (electrons) or we gather their emission

MWL flux evolution

• VHE rougly flat, while HE decays faster: can be explained as hardening of the emission during its decay

Protons are favored

• IC emission should decay faster (due to increase of distance to photosphere)

Acciari et al. Nat. Astronomy, 2022

HE and optical emission show similar decay:
not compatible with IC model

Gamma-ray modelling

- Joint Fermi-LAT +MAGIC spectrum can be from 50 MeV to 250 GeV
- Hadronic scenario is favored

Joint Fermi-LAT +MAGIC spectrum can be described as a single, smooth component spanning

Gamma-ray modelling: daily proton acceleration

Daily SED

- Hadronic scenario favored
- Increase of the cut-off energy with time: hint of spectral hardening
 - In line with the expectations from the cooling and acceleration timescales
 - Hadronic scenario favored

23

Supporting a hadronic scenario

- Protons have slow cooling, Emax determined by acceleration time
- Electrons show fast cooling on IC:
- Protons are favored

• Two orders of magnitude stronger acceleration and larger B needed to reach the same energies

Comparison with other novae

- RS Oph is the nova with the highest flux and brightest nova
 - Almost two orders of magnitude larger than previously-detected eruptions

• Comparison does not reveal any peculiarity in the emission of RS Oph, except for its brightness

Galactic novae and cosmic rays

- Accelerated protons will eventually escape the nova shock carrying away most of their obtained energy. Such protons can contribute to the Galactic Cosmic Ray sea
- Using the CR energetic derived for RS Oph (~ 4.4×10^{43} erg): • <0.2% of the contribution from supernovae
- Despite the small contribution to the overall CR sea, **novae would** \bullet significantly increase the CR density in its close environment: $E_density(nova) > E_density(CR)$
- In the case of recurrent novae, protons will accumulate in a ~10 pc bubble with enhanced CR density

Extracted from Dulgig, Science 2020

1 particle/(m² s¹)

Ankle

1 particle/(km² yr¹)

9 10 11 12 13 14 15 16 17 18 19 20

log Energy (eV)

Galactic

influence

dominates

Solar

influence

dominates

-15

<u>ල</u>-18

-21

-24

-27

Knee

1 particle/(m² yr¹)

Summary

- HESS J0632+057:

 - For the first time, the orbital period at TeV energies was determined, yielding a value of 316.7 ± 4.4 days.
 - Detailed lightcurve studies, flux variability in <20 days.
 - No spectral variability
 - Strong correlation between X-rays and gamma-rays: a common origin of the radiation
 - Lack of correlation between H α and X-rays or gamma-rays
- **1 A 0535+262**: brightest X-ray flare in 2020
 - MAGIC observations did not reveal any VHE signal
- MAXI J1820+070:
 - Joint campaing H.E.S.S., MAGIC, and VERITAS
 - Covering full HS-SS-HS cycle: no VHE detection
- RS Ophiuchi:

 - Hadronic scenario (proton acceleration) is favored by MAGIC+Fermi-LAT gamma-ray observations
 - neighborhood creating bubbles of increased density (<10 pc)
 - RS Oph is the **brightest and most luminous nova**

• Deepest study at TeV energies with H.E.S.S., MAGIC, and VERITAS, comprising a total of 450 hr of data spanning almost 15 years

• The August 2021 outburst of RS Oph introduces a new class of sources as VHE gamma-ray emitters: (recurrent symbiotic) novae • Galactic cosmic ray budget: protons can escape the nova shock and contribute to the cosmic ray sea in their close

MAGIC recent discoveries of gamma-ray binaries

nanes

alicia.lopez@iac.es

Urs Leutenegger

Alicia López-Oramas (IAC) D. Green, V. Fallah Ramazani, E. Molina, F. Leone, R. López-Coto, J. Sitarek for the MAGIC collaboration Variable Galactic Gamma-Ray Sources (VI), Innsbruck, April 2023

Resiliencia

This work is part of the Project RYC2021-032991-I, funded by MICIN/AEI/10.13039/501100011033, and the European Union "NextGenerationEU"/RTRP.