Radio observations of gamma-ray binaries

Benito Marcote

marcote@jive.eu

JIVE Joint Institute for VLBI ERIC

Variable Galactic Gamma-Ray Sources VI — 14 April 2023 (Innsbruck)

This is not a talk with results...

just on-going or planned analyses

...but a Roadmap

for the coming 1-2 years at radio frequencies

Colliding Wind Binaries

HD 93129A (Benaglia, Marcote et al. 2015), Apep (Marcote et al. 2021), ...

RS Oph outburst in 2021

Radio campaign (EVN + eMerlin) from 14 to 320 days after the outburst.

Early results in (Munari, Giroletti, Marcote et al. 2022).

Expansion velocity of \sim 4 070 (East) and 3 470 $\rm km~s^{-1}$ (West)

Gamma-ray binaries (γ Bs)

Only nine systems discovered to date:

System	Main star	P _{orb} / days
LS 5039*	06.5 V	3.9
LMC P3	O5 III	10.3
4FGL J1405.1-6119	06.5 III	13.7
1FGL J1018.6-5856	06 V	16.6
LS I +61 303	BO Ve	26.5
HESS J1832-093	B8-1.5V	86.3
HESS J0632+057	BO Vpe	317.3
PSR B1259-63	O9.5 Ve	1236.7
PSR 2032+4127	B0 Ve	18000

In orange the γBs with a confirmed pulsar or neutron star.

Low radio-frequency emission of gamma-ray binaries

Low-frequency radio emission of LS 5039 and LS I +61 303

Low-frequency radio emission of LS I +61 303

Wind velocity of 1 500 \pm 500 km s^{-1}

Absorption processes?

- + Free-free absorption: $\label{eq:vfree} \textit{v}_{\text{FFA}} = 700 \pm 200 \ \text{km} \ \text{s}^{-1}$
- Synchrotron self-absorption: $\label{eq:ssa} \nu_{SSA} = 1\,000\pm140~\text{km}~\text{s}^{-1}$

Emitting region 2.4 $^{+1.7}_{-1.1}$ AU (LS I +61 303's semimajor axis is \sim 0.4 AU)

Marcote et al. (2016)

Intra-hour variability and flaring activity

Intra-hour variability on radio sources

LS I +61 303 on intra-hour scales

Optical light-curve from TESS, with shock-powered flares? (Mestre et al. 2022)

Fast Radio Bursts

Extremely bright ($\sim 10^{40}$ erg s⁻¹) millisecond-duration bursts (magnetars-related?) Lyutikov et al. (2020), Barkov & Popov (2022)

LS I +61 303 on milliarcsecond (AU) scales

16

1FGL J1018.6–5856 on milliarcsecond (AU) scales

LS I +61 303 on milliarcsecond (AU) scales

LS I +61 303 on milliarcsecond (AU) scales

- All gamma-ray binaries are strong non-thermal radio emitters
- Expanding the observing strategies can reveal the full radio-emitting structure
- Further steps forward via very-high-time or very-high-angular resolution radio observations
- Potential connection between (young magnetar) gamma-ray binaries and Fast Radio Bursts?
- Plus several results coming on colliding wind binaries, novae,...

Comments are welcome!

marcote@jive.eu

Modeling the LS 5039 spectrum

The three spectra show a similar shape but with subtle differences:

- Avg. spectrum: SSA+Razin
- July 19 spectrum: SSA
- July 21 spectrum: SSA+Razin

Fit	р	$\Omega B^{-1/2}$	$K\ell B^{(p+2)/2}$	$ u_{R}$
		$\left[10^{-16}\mathrm{G}^{-1/2} ight]$	$\left[10^{3} \mathrm{cm}\mathrm{G}^{(p+2)/2}\right]$	$\left[10^{8}\text{Hz} ight]$
Avg. spectrum	2.16 ± 0.04	500 ± 800	3 ± 5	4.1 ± 0.2
July 19	1.867 ± 0.014	3.9 ± 0.3	$(2.1\pm0.9) imes10^6$	_
July 21	2.24 ± 0.08	200 ± 600	0.4 ± 1.7	4.1 ± 0.7

• Estimating the free-free opacity from the stellar wind:

$$au_{
u}^{\rm FF} \propto \dot{M} \ \nu^{-2} \ell^{-3} v_{\rm w}^{-2} T_{\rm w}^{-3/2}$$

Modeling the LS 5039 spectrum

Coherent picture from fits and $\tau_{\nu}^{\rm FF}$

- Avg. spectrum: SSA+Razin
- July 19 spectrum: SSA
- July 21 spectrum: SSA+Razin
- Coherent picture with:

$$\begin{array}{rcl} \ell & \sim & 0.85 \text{ mas} \left(\sim 2.5 \text{ AU} \right) \\ B & \sim & 20 \text{ mG} \\ n_e & \sim & 4 \times 10^5 \text{ cm}^{-3} \\ \dot{M} & \sim & 5 \times 10^{-8} \text{ M}_{\odot} \text{ yr}^{-1} \end{array}$$

