

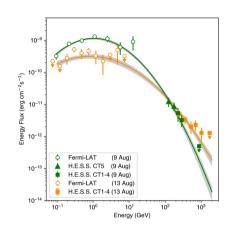
Laura Olivera-Nieto VGGRS - 12/04/2023

H.E.S.S.

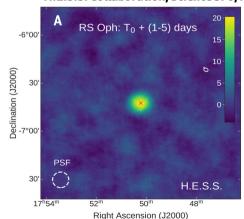
- Array of 5 Imaging Atmospheric Cherenkov Telescopes (IACT) located in Namibia.
- ► Four 12m telescopes (CT1-4), one 28m telescope (CT5)
- ► Energy range from 10s of GeV to 10s of TeV.

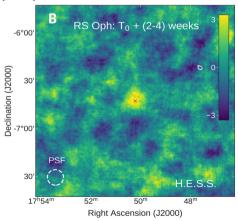
H.E.S.S.

- Array of 5 Imaging Atmospheric Cherenkov Telescopes (IACT) located in Namibia.
- ► Four 12m telescopes (CT1-4), one 28m telescope (CT5)
- ► Energy range from 10s of GeV to 10s of TeV.

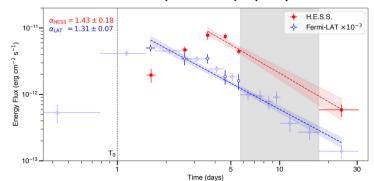

in this talk

Name	Compact Object	Star	jet?	Orbital period	HE	VHE	VHE variability?	
RS Oph	WD	RG	no	454 days	yes	yes	yes	
HESS 0632 +057	?	Ве	no	317.3 days	yes	yes	yes	
LMC P3	NS?	O5 III	no	10.3 days	yes	yes	yes	
Eta Carinae	LBV + O/B/WR type		no	~5.5 yr	yes	yes	yes	
SS 433	ВН	A7 lb	yes	13 days	?	yes	no	
V4641 Sgr	ВН	B9 III	yes	2.8 days	?	yes	no	
other microquasars	BH/NS	-	yes	-	some	no	?	



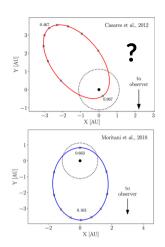

RS Oph

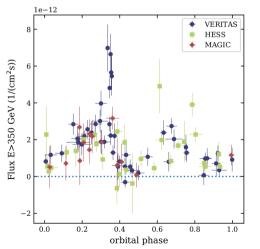
- Recurrent nova (white dwarf red giant accreting binary system)
- ► Most recent eruption in August 2021 detected by H.E.S.S. (and MAGIC and LST-1)
- ► Detected over several days → time-resolved emission!
- ► Hadronic scenario favored, very efficient acceleration

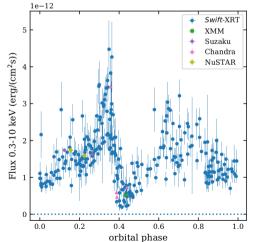


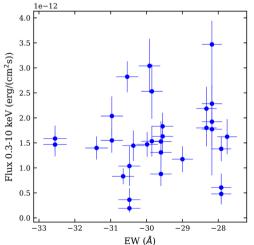
H.E.S.S. Collaboration, Science 376, 77 (2022)

H.E.S.S. Collaboration, Science 376, 77 (2022)

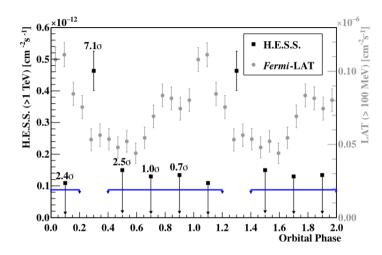





HESS 0632 +057


- ► Deep combined exposure from VERITAS, MAGIC and H.E.S.S.
- ► Detected variability in gamma-ray flux with a period and amplitude correlated to the x-ray modulation
- ightharpoonup No correlation with optical H α parameters of simultaneous observations

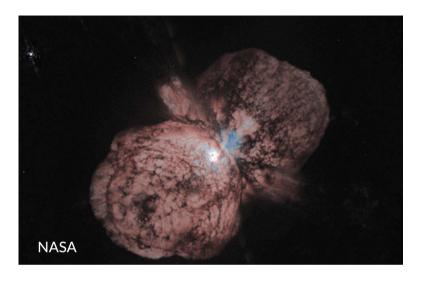
VERITAS, MAGIC, HESS et al, ApJ 943, 2021

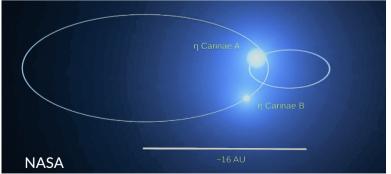


LMC P3

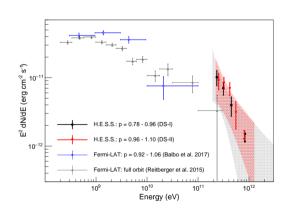
- First-ever detected extragalactic gamma-ray binary
- ► Detection by H.E.S.S. in 2018, period of 10.3 days
- Phase coverage of the initial observations was not great: periodicity cannot be deduced from the H.E.S.S. dataset alone.
- ► TeV emission near inferior conjuction
- Slightly eccentric orbit e = 0.40 ± 0.07, neutron star compact object, superior and inferior conjuction at 0.98 and 0.24 respectively (Van Soelen et al 2019)

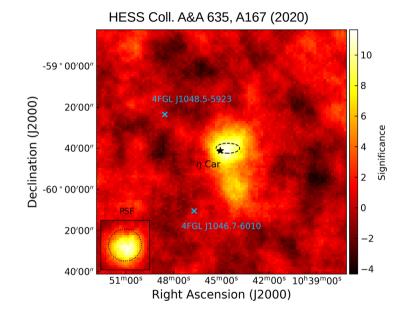
H.E.S.S. Coll, A&A 610, L17 (2018)


- New H.E.S.S. data, better binning informed by these parameters → better sampled light curve
- Led by Lalenthra Fisher
- Will be shown at the ICRC (talk)

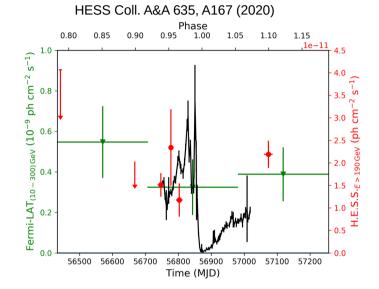


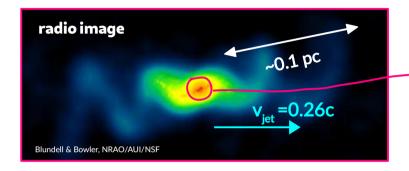
Eta Carinae


- One of only two colliding wind binaries known to be gamma-ray emitters
- ► Two massive stars in a highly eccentric orbit
- ► Eta Car A: Luminous Blue Variable, M~100M_☉
- ► Eta Car B: Wolf-Rayet or O-type, M~30M_☉
- Period ~ 5.5 yr, last periastron passage in February 2020, previously in 2014

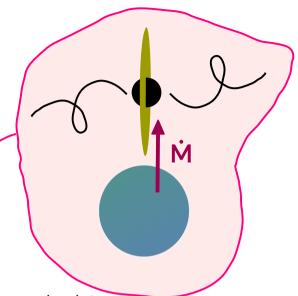


Eta Carinae


- ► Detected by H.E.S.S. before and after the 2014 periastron pasage.
- Very difficult field, high systematic uncertainties
- ► E.g. hotspot below the position of Eta Car
- origin of the emission likely hadronic

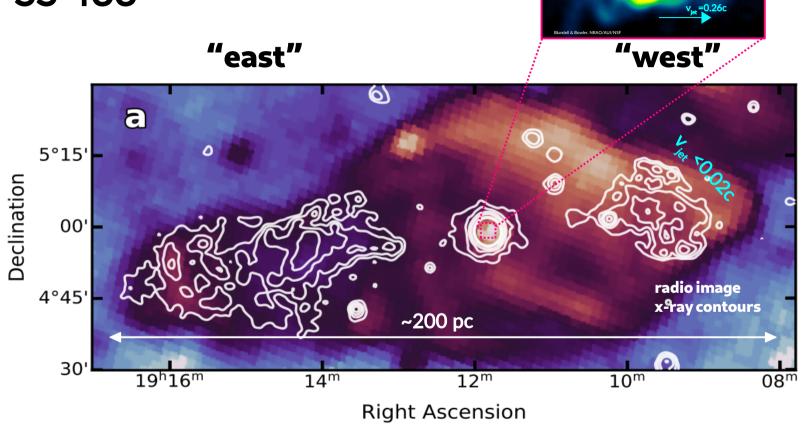

Eta Carinae

- ► 2014 periastron was not directly observed
- ► NEW: The 2020 periastron passage was observed fully.
- Data now exists for a full orbit
- ► New analysis, better treatment of noise, more confidence on spectral measurement.



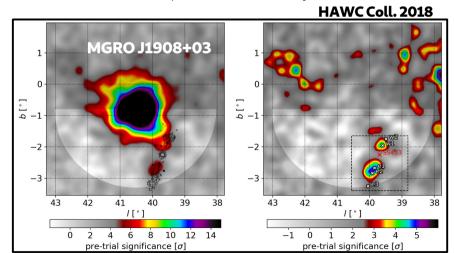
Led by Simon Steinmassl

Will be shown at the ICRC (talk)

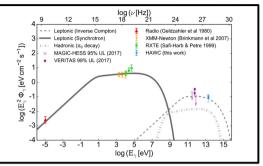

- ► very high accretion rate, 10⁻⁴-10⁻³ M_☉
- ► other microquasars have <10⁻⁸ M_☉
- continuously in super-Eddington regime
- ► (for ~50 years)

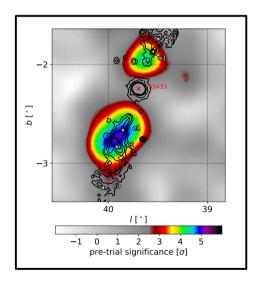
- precessing jet
- ► half-opening angle of 20°
- ► 162 days period
- ► distance ~ 5.5 kpc

11

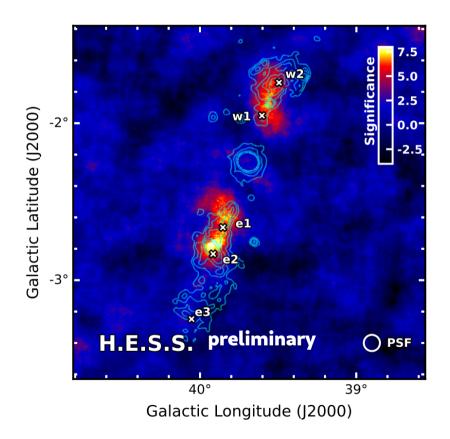

radio image

~0.1 pc

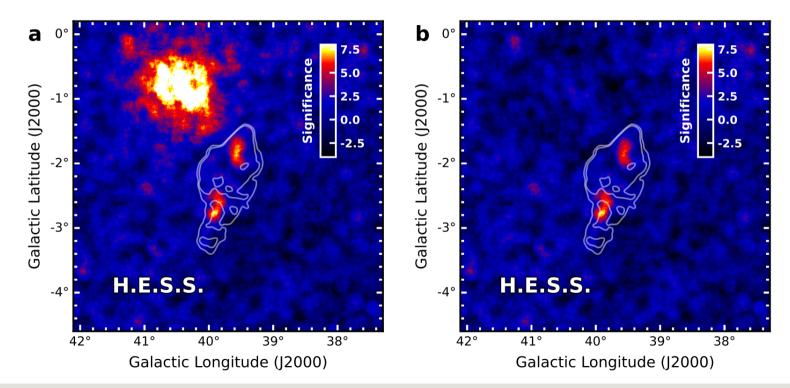


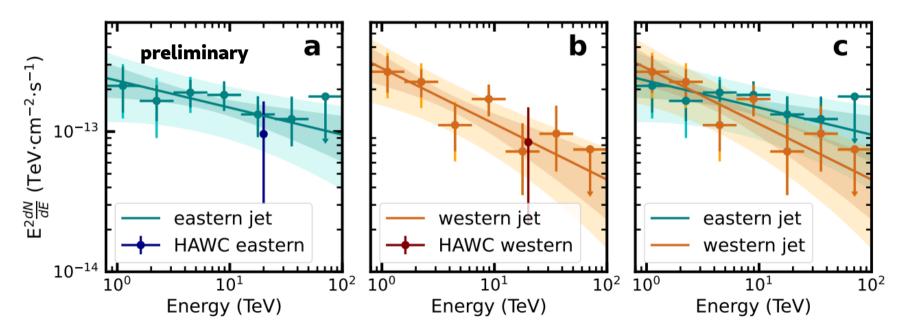

12

- ► detected by HAWC in 2018
- two hotspots consistent with the jets of SS 433
- ► both consistent with a point source description
- ► flux at 20 TeV reported (for both jets)



HAWC Coll. 2018

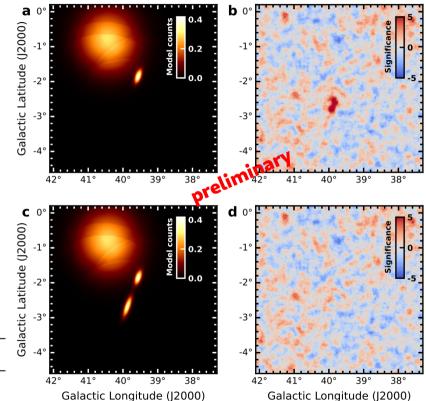

- ► Detected by H.E.S.S.
- Statistical significance of 7.8 and 6.8σ for east and west, respectively.
- ► Emission is clearly extended
- Can do detailed study of morphology and spectra
- ► Paper about to be submitted!

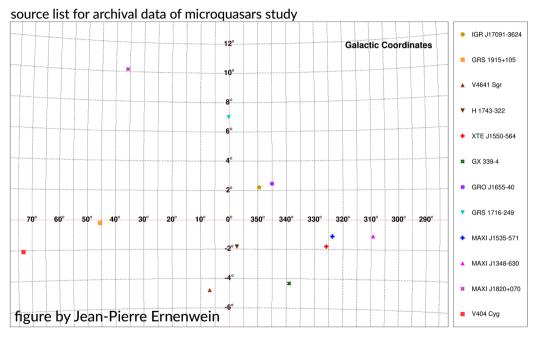


► MGRO J1908+06 is less of a problem for H.E.S.S.

15

- Spectral shape consistent with a power low, no evidence for curvature or cutoff
- ► Flux level consistent with the HAWC measurement at 20 TeV





- Emission is significantly (7.8 and 4.7σ for east and west, respectively) extended
- Ellipticity is preferred by 5.8 and 3.5σ for east and west respectively when angle is fixed to the jets
- ► Eastern excess is ~40 pc across
- ► Western excess is ~25 pc across

	1 (deg)	b (deg)	$\sigma_{ m maj}$ (deg) (pc)	σ_{\min} (deg) (pc)	θ (deg)
east	$39.88 \pm 0.02_{stat.}$	$-2.69 \pm 0.03_{\text{stat.}}$	$0.21 \pm 0.04_{stat.}$	$0.04 \pm 0.02_{\text{stat.}}$	-19
			$20.1 \pm 3.8_{stat.}$	$3.8 \pm 1.9_{\rm stat.}$	
west	$39.56 \pm 0.01_{stat.}$	$-1.85 \pm 0.03_{\rm stat.}$	$0.13 \pm 0.03_{stat.}$	$0.05 \pm 0.02_{\text{stat.}}$	-19
			$12.5\pm2.9_{stat.}$	$4.8 \pm 1.9_{\mathrm{stat.}}$	

Other microquasars

- ► Long-time running target-of-opportunity observation program + some dedicated observations have resulted on decently-sized datasets for a number of microquasars.
- Study of this data to provide upper limits on the TeV emission, both integrated and during flares.
 - ► Led by Sébastien Le Stum
 - Will be shown at the ICRC (poster)

Summary

- ► H.E.S.S. is able to provide detailed morphological, temporal and spectral studies of a number of gamma-ray binaries
- ► Not shown here: MAXI J1820+070 (dedicated talk), LS 5039 (ongoing effort)
- ► Lots of new results will be shown at upcoming ICRC
- ► SS 433 paper about to be submitted (with more results than shown here!)
- ► Stay tuned!

