Photon Spectra of Super-Critical Black Hole Accretion Flows

Tomohisa KAWASHIMA (NAOJ)

in collaboration with
Ken OHSUGA (NAOJ)
Hiroyuki TAKAHASHI (NAOJ)
Shin MINESHIGE (Kyoto U.)
Tessei YOSHIDA (NAOJ)
Ryoji MATSUMOTO (Chiba U.)
Supercritical Accretion Flows

- spherical accretion: sub-Eddington $L \leq L_E$ (L_E: Eddington luminosity)
- disk accretion: anisotropic radiation → supercritical accretion is feasible → super-Eddington $L \gtrsim L_E$
- candidates:
 - powerful jet sources (SS433, S26)
 - Narrow Line Seyfert I, OVV quasars,
 - microquasar (GRS1915+105),
 - ultraluminous X-ray sources
• ULXs are observed in off-center region of nearby galaxies.
• Luminosity: \(L_X = 10^{39-41}\,[\text{erg}\cdot\text{s}^{-1}] \) > \(L_E \) for stellar-mass BHs

(A) subcritically accreting intermediate mass BH?
or
(B) supercritically accreting stellar-mass BH?

Recently, the discovery of a supercritically accreting NS (M82 X-2) has been reported (Bachetti et al. 2014)

ULXs show spectral features different with galactic BHCs nor AGNs.

Studies of SEDS are expected to be a key to understand ULXs.
ULXs show the hard power-law component, which (1) rolls over around 5 keV or (2) extends up to 10 keV.

The data are kindly sent to us by Dr. Gladstone.

Rad-HD simulations are needed to study super-Eddington Flows.
Structure of Super-Critical Accretion Flow with Compton-Cooled Outflow (Axisymmetric 2D Rad-HD Simulation, $M_{\text{BH}} = 10M_{\odot}$)

(a) $\log T_{\text{gas}}[K]$ vs $\log \rho[\text{g/cm}^3]$ with mildly hot ($10^8 K$), sub-relativistic funnel jet, cool ($10^{6.5} K$), dense and slow ($< 10^{-2}c$) outflow

(b) $\log T_{\text{gas}}[K]$ vs $\log \rho[\text{g/cm}^3]$ with shock-heated region ($10^8 K$), rad. pressure dominant disk
Rad-HD simulation
\[\rho, T_{\text{gas}}, \nu \]
solve the photon transport using Monte-Carlo method

1. Identify surface where \(\tau_{\text{eff}} = 10 \)
2. generate seed photon from a point above the surface obtained by step (1)
 ✤ consider bremss. emission
 ✤ Taking into account special relativistic effects (Doppler shift & aberration due to bulk motion)
3. Solve photon transport by using Monte-Carlo method
 ✤ free-free absorption
 ✤ photon-trapping effect
 ✤ thermal & bulk Comptonization

output SED
Effect of Compton Scattering on SED

- Thermal and bulk Comptonization harden SEDs.
- In the hot plasma formed near the BH, the photons are upscattered by thermal inverse Compton scattering.

\[\dot{M} \approx 200L_E/c^2 \]
When the mass accretion rate is lower, the power-law extending up to 20 keV appears.

When the mass accretion rate is higher, rollover at 5 keV appears.

- short range power-law, which is flatter than that of SADM

\[\dot{M} \approx 10^3 \frac{L_E}{c^2} \]
\[5 \times 10^2 \frac{L_E}{c^2} \]
\[2 \times 10^2 \frac{L_E}{c^2} \]
Dependence of SEDs on the viewing angle “i”

- When the viewing angle is smaller, SEDs become harder.
- For $\dot{M} \approx 2 \times 10^2 L_E/c^2$, the rollover around 5keV also appears when the viewing angle is large.
Spectral Softening in the Outflow

Comptonization in the outflow is forbidden artificially.

\[\dot{M} \approx 2 \times 10^2 L_E/c^2 \]

When \(\dot{M} \) is higher or inclination angle is larger, SEDs become softer. This is because more of observable photons are Compton downscattered in the cool outflow.

\[\dot{M} \approx 10^3 L_E/c^2 \]
Structure of Super-Eddington Accretion Flow & Trajectories of Photons

- **high luminosity**
 - hard spectrum
 - $\gtrsim 10$ keV

- **low luminosity**
 - soft spectrum
 - $\lesssim 1$ keV

- sub-relativistic, mildly hot funnel jet

- cool, dense, and slow outflow

- shock-heated region

- radiation pressure dominant disk

- hot coronal inflows upscatter the photons (i.e., inverse-Compton scattering).

- cool coronal outflows downscatter the photons (i.e., Compton scattering)
Comparison with ULXs

- colored curves: calculated spectra
- black points: XMM-Newton Data corrected for absorption (provided by Dr. Gladstone)

Calculated SEDs are similar to those of ULXs! (rollover at 5keV, power-low shape)

However, the soft excess are not reproduced in our simulations, because the emission from $\sqrt{x^2 + y^2} \geq 100 r_s$ is too weak to significantly contribute to the SEDs. ← Larger simulation box containing larger outflowing photosphere may solve this problem. And/or the effects of the magnetic dissipation may be important.
A little more about the spectral state of ULXs

• Variability of SEDs of soft state and dim hard state seems to be explained by our numerical model.

• Bright hard state (cyan) is, however, hard to be explained by our model. **We need more sophisticated theoretical models!**
Second Topic: Where is the hot corona formed

3-dim. **General Relativistic** Radiation MHD simulation

non rotating BH.
initially poloidal magnetic field
Development of GR radiative transfer code

- The accumulation of the poloidal magnetic fields threading the spinning BH results in the formation of the hot corona in the vicinity of the BH. (Takahashi et al. in prep.)

- I am now developing the GR radiative transfer code to calculate the more sophisticated SEDs of black hole accretion flows!

spin a = 0.99M

spin a = -0.99M
Discovery of Absorption Line in ULXs?

- Middleton et al. (2014) reported discovery of a blue-shifted absorption line with $v \sim 0.1c$ in NGC 5408 X-1 and NGC6946 X-1, which may be the evidence of the outflow.

- These ULXs show soft X-ray spectra. This indicates that we observe this source with higher inclination angle.

- It is important to theoretically reveal the dependence of the absorption line on the viewing angle.
Summary

- The Compton effects are very important in super-critically accreting black holes.
- Coronal inflow is hot and upstaters the seed disk photons. The upscattered photons are downscattered by the coronal cool outflow and the spectral rollover at ~5keV is formed.
- Super-critical accretion flows onto stellar-mass black holes can explain the spectral features of ULXs.
- The calculations including the effects of GR and line transfer are future work.
- I hopefully think we can apply our numerical methods to the studies of AGNs.
Dependence of Viewing Angle: (2) Luminosity

\[L_X \text{ for } \dot{M} \approx 10^3 \frac{L_E}{c^2} \]
is lower than that for \[\dot{M} \approx 5 \times 10^2 \frac{L_E}{c^2} \], partly because more amount of photons are swallowed by BH and partly because \(\tau_{es} \gg 1 \) along the funnel jet for \[\dot{M} \approx 10^3 \frac{L_E}{c^2} \]

Isotropic luminosity increases when the viewing angle is smaller.
mildly collimated by the thick disk
and mildly beamed by the funnel jet!
gas temperature on the equatorial plane

non-rotating BH

rotating BH (a=0.94)

initially poloidal mag. field (r-θ)

initially toroidal mag. field (φ)

ISCO

high temp. region
Tg >> Tr

low temp. region (in LTE)
Tg = Tr

preliminary result
The gas is overheated near BH in all model.
The deviation starts at a larger radius for the poloidal model than the toroidal model.
The deviation starts from the radius (slightly) larger than the ISCO.