The Astro-H view of highly magnetic neutron stars: magnetars & Co.

Daniela Hadasch & Nanda Rea CSIC-IEEC, Barcelona, Spain

How do we define the B-field?

Rotating dipole

$$\dot{E}_{rot} = -\frac{2}{3c^3} \left| \ddot{m} \right|^2 = -\frac{2B^2 R^6 \Omega^4 \sin^2 \alpha}{3c^3}$$

How do we define the B-field?

Different classes of highly magnetic neutron stars

3- Rotating radio transients (RRATs): ~1 (over 23)

High B-field pulsars

- 7 sources only 4 of which are very faint X-ray emitters
- Periodicities in the arrival times between 0.3 -11 s
- In 1 case there was evidence of magnetar like burst activity: PSR J1846-0258

High B-field pulsars: PSR J1846-0258

Why could it be a magnetar?

- largest dipolar magnetic field of known young rotation-powered pulsars: 4.9 x 10¹³ G
- pulsars normally steady, this shows large timing noise and magnetar like burst: brightening by factor 6 between 2000-2006
- spectrum softened: change in B-field configuration or magnetar like burst
- PWN spectrum changed (not significantly...): injection of relativistic particles in PWN → enhancing brightness
- unusually high X-ray efficiency and variability → fraction of X-ray luminosity powered by magnetic energy (e.g. during burst)

Why not a magnetar?

• X-ray luminosity did not exceed the pulsar's rotational energy power → spin-down can energetically power the X-ray emission from the pulsar and its PWN

Thermally emitting neutron stars

- 9 sources characterized by a thermal spectrum plus an absorption spectral feature (atmospheric or cyclotron)
- Periodicities in the arrival times between 4 -11 s
 → magnetar like
- No radio pulsations (due to geometrical bias?): low luminosity at 1.4 GHz for RBS1774 wrt other pulsars
- Possible episodes of glitches or precession

(Rea et al. 2007b, MNRAS; van Kerkwijk & Kaplan 2007, Ap&SS)

Close (~500pc), **old neutron stars**, on the final phase of their cooling. Hotter than normal pulsars probably because of their **high B-fields** (~10¹³ G).

Rotating radio transients (RRATs)

- 23 sources characterized by dispersed radio bursts between 2-30 ms
- The average time intervals between bursts is 4 min 3 hour
- Periodicities in the arrival times of bursts between 0.4 -7 s

→ Rotating neutron stars

The most prolific burster (7 min of burst rate) and the most magnetic one ($B\sim7x10^{13}$ G), RRAT J1819-1458, is also an X-ray emitter!

Rotating radio transients (RRATs): RRAT 1819-1458

(McLaughlin, Rea, et al. 2007, ApJ; Rea et al. 2009, ApJL, Rea et al. 2010, MNRAS)

- Recently discovered to be also a strong X-ray pulsar.
- Broad spectral features in its X-ray spectrum around 1keV.
- Surrounded by a possible magnetic-powered wind nebula.

 Low spin-down energy loss → rather high X-ray efficiency for PWN X-ray emission → need of an additional source of energy such as the high magnetic energy of this source

Magnetars: SGRs and AXPs

- bright X-ray pulsars $L_x \sim 10^{33}$ -10³⁶ erg/s
- rotating with periods of 2-12s
- glitches and neutron stars quakes
- bursts on many timescales (ms to 100s)
- transient outbursts (X-ray flux change of a factor of 10-1000)

Magnetars: flaring episodes

Short bursts

- the most common
- they last ~0.1s
- peak ~ 10^{41} ergs/s
- soft γ-rays thermal spectra

Intermediate bursts

- they last 1-40 s
- peak ~10⁴¹-10⁴³ ergs/s
- abrupt on-set
- usually soft $\gamma\text{-rays}$ thermal spectra

Giant Flares

- Output of high energy is exceeded only by blazars and GRBs
- peak energy > $3x10^{46}$ ergs/s
- burst tail can last >500s, showing the NS spin

Magnetars: flaring episodes

Magnetars: flaring episodes

SGR 1806-20: Hyperflare in Dec 2004

- Caused a strong perturbation in the Earth ionosphere and saturated the detectors on every high energy satellite
- A total energy of \sim (3–10) x10⁴⁶ ergs was released during the main \sim 0.2–0.5 s long spike at the beginning of the event.
- Seven days after the event, the source was observed and detected in the radio band for the first time

• Discover fast X-ray quasi-periodic oscillations (QPOs) at ~92.5 Hz associated with a relatively hard emission component that dominates the overall energy emission, about 170–220 s after the beginning of the flare

• Evidence of ~18 and ~30 Hz QPOs between 200 and 300 s from the onset of the hyperflare

Magnetars: Why magnetic energy?

Low rotational power

No evidence for a companion star

Magnetars: multiband emission

(Israel et al. 2004; Kuiper et al. 2004; Gotz et al. 2006; Rea et al. 2007a, ApJL; Fermi-LAT coll. 2010, ApJL; MAGIC coll. 2012, A&A, submitt.)

Magnetars vs normal radio pulsars

(Thompson & Duncan 1992; 1993; 1995;1996; Thompson, Lyutikov & Kulkarni 2002)

Magnetars were thought to differ from radio pulsars since their **internal magnetic field is twisted up** to ~10 times the external dipole.

At intervals, it can twist up the external field \Rightarrow stresses build up in the NS crust, crustal fractures, large outbursts and flares

Magnetars vs normal radio pulsars

 ΔR_0

Magnetars: transient events

Magnetars: transient SGR0501+4516

First transient detection at hard X-rays!

- Cooling down differently depending on the rotation phase.
- Non-thermal emission decays faster than the thermal one.

 \rightarrow became undetectable by INTEGRALsome time within 10 days after the on-set of the bursting activity

 \rightarrow first detection of a variable hard X-ray component in a magnetar over such a short timescale.

(Rea et al. 2009, MNRAS)

Many more magnetars are hidden in the pulsar population

Recently we have discovered the first low-B "magnetars".

SGR 0418+5729

The X-ray outburst discovered in June 2009 (Esposito et al. 2010, MNRAS)

(Rea et al. 2010, Science)

No detection of period derivative in first 160 days after outburst onset \rightarrow upper limit on the period derivative

Many more magnetars are hidden in the pulsar population

Before

 \rightarrow 10% of the pulsar population was expected to be magnetars. **Now**

 \rightarrow more than 50% ?!

Many more magnetars are hidden in the pulsar population

(Rea et al. 2010, Science)

Where are we with studying strongly magnetic neutron stars?

Conclusions

Astro-H will be crucial for the study of the strongly magnetic neutron stars.

- 1. Deep observations at hard X-ray will shed light on the resonant cyclotron scattering process in the relativistic regime, in particular thanks to the **wide band spectral modelling**.
- 2. The **spectral calorimeter** throughput will be crucial for the study of the spectral lines observed in the thermally emitting neutron stars and RRAT 1819-1458.
- 3. The discovery of low-B field magnetars show that many apparently normal pulsars will turn on as magnetars anytime hence the **fast pointing** (a day or so) will be a strong requirement at that aim.
- 4. High time resolution in a possibly high telemetry mode is also important to study the neutron star quake during magnetars' flares.

Thank you! Arigatō! 有り難う

