Wide-Band Spectral Studies of Magnetar Burst and Persistent Emissions

> Yujin E. Nakagawa Waseda University, Japan

yujin@aoni.waseda.jp

Collaborators

Kazuo Makishima¹, Teruaki Enoto², Takanori Sakamoto³, Tatehiro Mihara⁴, Mutsumi Sugizaki⁴, Kazutaka Yamaoka⁵, Kevin Hurley⁶ Atsumasa Yoshida⁵, Poshak Gandhi⁷, Makoto S. Tashiro⁸, Mikio Morii⁹ and HETE-2 Team

University of Tokyo, 2. Sanford University,
GSFC/NASA, 4. RIKEN, 6. Aoyama Gakuin University, 7. U. C. Berkeley,
8.ISAS/JAXA, 8. Saitama Universisty, 9. Tokyo Institute of Technology

Current Understanding and Future Study of Magnetars: Research Strategy in the ASTRO-H era 1 September 2012

Highly Magnetized Neutron Star "Magnetar"

Characteristics

Magnetic Field : $B \sim 10^{14} \text{ G}$

Dissipation of Magnetic Energy Thompson & Duncan 1995

X-ray Counterparts

- 1. Soft Gamma Repeater (SGR) 6(+3) Objects
- 2. Anomalous X-ray Pulsar (AXP) 10(+1) Objects

■Pulse Periods : *P* ~ 2-12 s

- X-ray Persistent EmissionSporadic Burst Activities
- Location : Galactic Plane

Typical Light Curves of The Short Burst

Typical Energy Spectrum of Magnetar

Phenomenological Studies

2BB : Two-Blackbody Model,

BB+PL : Blackbody+Powerlaw, PL : Powerlaw

	Persistent Emission $\sim 10^{-11} \text{ erg cm}^{-2} \text{ s}^{-1}$	Small SGR/AXP Bursts $\sim 10^{-8} \text{ erg cm}^{-2} \text{ s}^{-1}$	Bright SGR Bursts $10^{-7} \sim 10^{-6} \text{ erg cm}^{-2} \text{ s}^{-1}$
Soft Comp.	e.g., 2BB or BB+PL e.g., Marsden & White 2001; Tiengo et al. 2008; Nakagawa et al. 2009; Enoto 2010	2BB	2BB e.g., Olive et al. 2004, Nakagawa et al. 2007
Hard Comp.	PL (Hard X-ray Component) e.g., Kuiper et al. 2006; Enoto et al. 2010	PL (Hard X-ray Component) Nakagawa, Makishima & Enoto 2011; Enoto et al. 2012 Submitted	???

Spectral Correlations

A common radiation mechanism between the bursts and persistent emission. A possibility that the persistent X-ray emission may consist of numerous micro bursts.

Nakagawa et al. 2009; Nakagawa, Makishima & Enoto 2011

Topics of My Talk

- 1. HETE-2 X-ray Observations of Bright bursts from SGR 1806-20. Contributions of hard X-ray components in bright SGR bursts.
- 2. Suzaku X-ray Observations of AXP 4U 0142+614 Comparisons of persistent emission in active phase and quiescent phase.

HETE-2 Observations of Bursts from SGR 1806-20

HETE-2 Satellite

High Energy Transient Explorer 2 (HETE-2)
Launched on 9 October 2000
Gamma-Ray Bursts, SGR Bursts, X-ray Bursts

iviass	: 124 Kg
Height	: 89 cm
Width	: 66 cm
Altitude	: 625 km
Inclination	: 0-2 degree (Equatorial Orbit)
Attitude	: Anti-Solar Pointing

1 2 4 1

Observations of SGR Bursts

181 Events (18 June 2001 – 7 August 2005)

SGR 1806-20	:	62 Events> 50 Bursts	Same Data Sets with Nakagawa et al. 2007.
SGR 1900+14	•	6 Events> 5 Bursts	-
Out of Filed of View	•	113 Events	

SGR Bursts – Analyses of Individual Spectra

SGR Bursts – Summed Light Curves

The BB temperatures of the SGR bright bursts are almost constant.We divided 50 SGR bursts into the following 6 groups and re-analyzed them individually.

SGR Bursts – 2BB Temperatures

XSPEC Spectral Model

 $N_{\rm H} \times ({\rm Blackbody} + {\rm Blackbody} + {\rm Powerlaw})$ $N_{\rm H} = 7.8 \times 10^{22} \, [{\rm cm}^{-2}]$ fixed (Nakagawa et al. 2009) $\Gamma = {\rm free \, parameter}$

SGR Bursts – Summed Spectra (1)

SGR Bursts – Summed Spectra (2)

Suzaku ToO Observation of AXP 4U 0142+614

Observation during Active Interval

```
■ObsID: 406031010 (AO-6)
```

```
Date : 2011-09-07 15:44:36 -- 2011-09-08 13:46:21
```

```
■Nominal Position : XIS
```

```
■XIS Mode : XIS0&XIS1-->Normal, XIS3-->1/4Window
```

■Net Exposure : XIS-->41ks, HXD/PIN-->42ks

```
■No obvious bursts.
```


AXP 4U 0142+614 – Source and Background Regions

Source and Background Regions

AXP 4U 0142+614 – Hardness Ratios

■Ratio of active and quiescent phase spectra.

AXP 4U 0142+614 – Spectra

AXP 4U 0142+614 – vF_v Spectra

AXP 4U 0142+614 – Spectral Parameters

Spectral Parameters in Active Phase and Quiescent Phase

■Quoted errors are 90% confidence levels.

	Active Phase	Quiescent Phase (*)	
N _H (cm ⁻²)	0.63+/-0.01	0.627+/-0.007	
kT_{L} (keV)	0.330+/-0.005	0.331+/-0.004	
kΤ _H (keV)	0.63+/-0.01	0.60+/-0.01	
Γ	1.27+/-0.06	1.53+/-0.11	
L _{2BB} (10 ³⁶ erg s ⁻¹)	0.452 (-0.10, +0.12)	0.431+/-0.008	~5%
L _{PL} (10 ³⁶ erg s ⁻¹)	0.102 (-0.006, +0.007)	0.086 (-0.009, +0.010)	~19%
χ² (d.o.f.)	2932 (1820)	3386 (2508)	

(*) See Enoto et al. 2011 for detailed analyses.

Summary

Bright Bursts of SGR 1806-20

■We re-analyzed 50 bright bursts from SGR 1806-20 detected by HETE-2, in order to examine effects of the hard X-ray component on them.

Some bright bursts are well fitted by the two-blackbody model plus the power-law model.

Persistent Emission of AXP 4U 0142+614 ■The Suzaku ToO (AO-6) observation of AXP 4U 0142+614 was performed on 7 September 2011 in active phase.

■The spectra during the active phase might be harder than that during the quiescent phase.

