

THERMAL EVOLUTION OF ORDINARY NEUTRON STARS AND MAGNETARS

D.G. Yakovlev

Ioffe Physical Technical Institute, Saint-Petersburg, Russia

- Introduction
- Thermal evolution of ordinary neutron stars
- Thermal evolution of magnetars
- Comparison of ordinary neutron stars and magnetars
- Conclusions

Rikkyo University, Tokyo, September 1, 2012

COAUTHORS

Alexander Kaminker

Alexander Potekhin

Noriaki Shibazaki

Alexander Kaurov

HARD WORK ON MAGNETAR PHYSICS

Neutron star structure

Mystery: EOS of superdense matter in the core

For simplicity, consider nucleon core: neutrons protons electrons muons EOS=? Superlfuidity=?

Cooling of ordinary neutron stars

Chandra image of the Vela pulsar wind nebula NASA/PSU Pavlov et al

Ordinary neutron stars: •Isolated neutron stars which cool by loosing their internal heat •Middle-aged (t < 1 Myr) •Show surface thermal radiation (mainly in X-rays)

Show surface thermal radiation (mainly in X-rays)

Cooling of ordinary neutron stars

Heat diffusion with neutrino and photon losses

Photon luminosity: $L_{\gamma} = 4\pi\sigma R^2 T_s^4$

Heat blanketing envelope:

$$T_s = T_s(T)$$

Heat content:

 $U_T \sim 10^{48} T_9^2 \ ergs$

Main cooling regulators:

- 1. EOS
- 2. Neutrino emission
- 3. Superfluidity
- 4. Magnetic fields
- 5. Light elements on the surface

Testing:

Internal structure of neutron stars

Neutrino emission from cores of non-superfluid NSs

Main neutrino mechanisms

Neutrino emission levels

9

THREE COOLING STAGES

Stage	Duration	Physics
Relaxation	10—100 yr	Crust
Neutrino	10-100 kyr	Core, surface
Photon	Infinite	Surface, core, Reheating

THERMAL RELAXATION Look From Inside and Outside

Gnedin et al. (2001)

1=Crab 2=PSR J0205+6449 3=PSR J1119-6127 4=RX J0822-43 5=1E 1207-52 6=PSR J1357-6429 7=RX J0007.0+7303 8=Vela 9=PSR B1706-44 10=PSR J0538+2817 11=PSR B2234+61 12=PSR 0656+14 13=Geminga 14=RX J1856.4-3754 15=PSR 1055-52 16=PSR J2043+2740 17=PSR J0720.4-3125

Interpretation of all observations of ordinary neutron stars

1=Crab 2=PSR J0205+6449 3=PSR J1119-6127 4=RX J0822-43 5=1E 1207-52 6=PSR J1357-6429 7=RX J0007.0+7303 8=Vela 9=PSR B1706-44 10=PSR J0538+2817 11=PSR B2234+61 12=PSR 0656+14 13=Geminga 14=RX J1856.4-3754 15=PSR 1055-52 16=PSR J2043+2740 17=PSR J0720.4-3125

Models of cooling neutron stars with different masses for two models of proton superfluidity

•Observed middle-aged ordinary cooling NSs are mainly on neutrino cooling stage

- They cool from inside via neutrino emission; powered by internal thermal energy
- •They have isothermal interiors = cores and surface are thermally coupled
- Good natural laboratories of superdense cores (neutrinos + superfluidity)
- •They are just cooling; no extra heat sources required

Thermal evolution of magnetars

Magnetars:

- •AXPs + SXRs
- •Neutron stars which are powered neither by accretion nor by rotation
- •Possibly are powered by strong magnetic fields
- •Activity: quasi-persistent thermal emission, flares and giant flares, QPOs
- Magnetospheric activity (twisted magnetospheres)

Main problem:

- •Are spending a lot of energy
- •Could be the energy of superstrong B-field within the star (in the core)

Main question:Where is this energy released and how?

Example: Supergiant flare of SGR 1806–20 on Dec. 27, 2004: $W_X \sim 10^{46}$ erg $\Rightarrow W_{\text{INPUT}} \sim 10^{50}$ erg

Magnetars versus ordinary cooling neutron stars The need for heating: Luminosity representation

Two assumptions:
(1) The magnetar data reflect persistent thermal surface emission
(2) Magnetars

(2) Magnetars are cooling neutron stars

There should be a HEATING! Which we assume to be INTERNAL

Statement of the Problem

- To explain quasi-persistent thermal emission of magnetars
- Assume: the emission is powered by internal heat sources
- The maximum stored energy E_{TOT}=10⁴⁹—10⁵⁰ erg can be the energy of internal magnetic field B=(1—3)x10¹⁶ G in the magnetar core
- The stored energy is released in the crust

Neutron star model

- EOS: Akmal, Pandharipande, Ravenhall (APR III); neutrons, protons, electrons, and muons in NS cores
- Direct Urca: central density > 1.275x10¹⁵ g/cc, M>1.685 M_{SUN}
- Maximum mass: M_{MAX}=1.929 M_{SUN}
- Example of slow cooling: $M=1.4 M_{SUN}$, R=12.27 km, central density = $9.280 \times 10^{14} \text{ g/cc}$
- Effects of superfluidity are neglected
- Iron heat blanketing envelopes (densities <10¹⁰ g/cc)
- Radial magnetic field B=5x10¹⁴ G above hot spots
- Cooling codes: either 2D, or 1D

Phenomenological heater and calculations

 $H(\rho, t) = H_0 \Theta(\rho_1, \rho_2) \exp(-t / \tau_0)$ Four parameters: ρ_1 , ρ_2 , H_0 , τ_0 $\tau_0 = 5 \times 10^4$ yr Angular heat power distribution:

Either hot spot: 2D code

Or spherical layer: 1D code

Run cooling code: in about 100 years – quasi-stationary temperature distribution determined by the heat source

Results of 2D code

Heater: angles $\phi < 10^{\circ}$

Heater: ~400 m under surface ~80 m width

$$\rho_1 = 3.2 \times 10^{11} \text{ g cm}^{-3}$$

 $\rho_2 = 1.6 \times 10^{12} \text{ g cm}^{-3}$
 $H_0 = 10^{19.5} \text{ erg cm}^{-3} \text{ s}^{-1}$

Weak heat spreading along the surface

Heat does not want to spread along the surface: Heater's area is projected on the surface 1D and 2D codes give similar results As in Pons and Rea 2012 but see Pons, Miralles, Geppert 2009

Carrying away pumped heat

"Eddington" limit: Kaminker et al. 2006 Pons and Rea 2012

Moving heater towards core reduces efficiency Kaminker et al. 2006 Pons and Rea 2006

TWO THERMAL REGIMES

$$C \frac{\partial T}{\partial t} = \operatorname{div} \left(\kappa \, \nabla T \right) - Q_{\nu} + H$$

HEATING REGIMES

2

 $T < 10^9$ K, $H_0 < 10^{20}$ erg cm⁻³ s⁻¹

Regulated by thermal conduction

$$T > 10^9$$
 K, $H_0 > 10^{20}$ erg cm⁻³ s⁻¹

Regulated by neutrino emission

BASICALLY NON-ECONOMICAL HEATER

What is observed as quasi-persistent emission is basically a small fraction of input energy

MOST ECONOMICAL HEATER

Position: Heat power: Efficiency to heat surface: Angular distribution: Outer crust H₀<10²⁰ erg cm⁻³ s⁻¹ <3% Hot spot Magnetic spots under surface heated by Ohmic dissipation

THE NATURE OF INTERNAL HEATING

The energy can be stored in the entire star or in inner crust but released in the outer crust?

Nature of heating: Ohmic dissipation

Numerical example

High temperature is needed:

- Low electric conduction
- Low thermal conduction Similar matters:

Aguilera, Pons, Miralles 2008 Pons, Miralles, Geppert 2009

$$H \sim \frac{j^2}{\sigma} \sim \frac{c^2 B^2}{\sigma h^2 (4\pi)^2}$$

Ohmic dissipation heat rate

For $B \sim 10^{15}$ G, $\sigma \sim 10^{22}$ s⁻¹, $h \sim 30$ m $\Rightarrow H \sim 6 \times 10^{19}$ erg cm⁻³ s⁻¹ For $(R_{BB}/R)^2 \sim 0.1 \Rightarrow W_{OHMIC} \sim 10^{36}$ erg s⁻¹, $L_s \sim 3 \times 10^{34}$ erg s⁻¹

HEAT EFFICIENCY: $L_s / W_{OHMIC} \sim 1/30$

TOTAL ENERGY NEEDED: $W_{\text{OHMIC}} \tau \sim 10^{44} - 10^{45} \text{ erg}$ $(\tau \sim 5 \times 10^4 \text{ yr})$

Energy deposition to heater?

Mechanism: Unknown

Possibilities:

- Hall drift (and instability), e.g. Geppert and Rheinhardt (2002), Aguilera et al. (2008), Pons and Geppert (2010), Price et al. (2012)
- Thermomagnetic effects (thermopower) at large temperature gradients
- Instability (e.g., loss of mechanical stability due to magnetic forces); emission of hydromagnetic waves, etc.

Main features of magnetars

- Magnetars may be cooling neutron stars with internal heating.
- It is economical to place heat sources in the outer crust.
- The heat rate in the outer crust can be H~10²⁰ erg s⁻¹ cm⁻³, the total heat rate exceeding the thermal surface luminosity with by a factor of >=30.
- The outer crust is thermally decoupled from deeper interior; the thermal radiation tests the physics of the outer crust.
- The heating may be supported by Ohmic decay under hot spots.
- Mechanism of magnetic field deposition to the heater is not clear

Ordinary cooling neutron stars versus magnetars

Objects	Ordinary stars	Magnetars
Interiors	Isothermal	Non-isothermal
Powered by	Thermal energy of core	Heat sources in crust
Thermal coupling	Surface and core	Surface and heater
Natural laboratories of	Superdense core	Heater
Allow to study of	Neutrino emission and superfluidity in core	Energy release in heater (Ohmic dissipation?)