研究業績

学術論文

  1. SPPL3-dependent downregulation of the synthesis of (neo)lacto-series glycosphingolipid is required for the staining of cell surface CD59.
    Kawaguchi, K., Yamamoto-Hino, M. and Goto, S.
    Biochem. Biophys. Res. Commun., 571, 81-87 (2021)
    DOI: https://doi.org/10.1016/j.bbrc.2021.06.093
  2. Hrd1-dependent degradation of the unassembled PIGK subunit of the GPI transamidase complex.
    Kawaguchi, K., Yamamoto-Hino, M., Murakami, Y., Kinoshita, T. and Goto, S.
    Cell Struct. Funct., 46, 65-71 (2021)
    DOI: https://doi.org/10.1247/csf.21019
  3. Subunits of the GPI transamidase complex localize to the endoplasmic reticulum and nuclear envelope in Drosophila.
    Kawaguchi, K., Yamamoto-Hino, M., Matsuyama, N., Suzuki, E. and Goto, S.
    FEBS Lett., 595, 960-968 (2021)
    DOI: https://doi.org/10.1002/1873-3468.14048
  4. Lamin is essential for nuclear localization of the GPI synthesis enzyme PIG-B and GPI-AP production in Drosophila.
    Yamamoto-Hino, M., Kawaguchi, K., Ono, M., Furukawa, K. and Goto, S.
    J. Cell Sci., 133: jcs238527 (2020)
    DOI: 10.1242/jcs.238527
  5. Stability of the transamidase complex catalyzing GPI anchoring of proteins.
    Kawaguchi,K., Sato,T., Kondo,S., Yamamoto-Hino,M., and Goto,S.
    Biochem. Biophys. Res. Commun., 512, 584-590 (2019)
    DOI: 10.1016/j.bbrc.2019.03.103
  6. Nuclear envelope localization of PIG-B is essential for GPI-anchor synthesis in Drosophila.
    Yamamoto-Hino.M., Katsumata, E., Suzuki, E., Maeda, Y., Kinoshita, T. and Goto,S.
    J. Cell Sci., 131, jcs218024 (2018)
    DOI: 10.1242/jcs.218024
  7. Spätzle-processing enzyme-independent activation of the Toll pathway in Drosophila innate immunity.
    Yamamoto-Hino, M. and Goto, S.
    Cell Struct. Funct., 41, 55-60 (2016)
    DOI: 10.1247/csf.16002
  8. Dynamic regulation of innate immune responses in Drosophila by Senju-mediated glycosylation.
    Yamamoto-Hino, M., Muraoka, M., Kondo, S., Ueda, R., Okano, H. and Goto, S.
    Proc. Natl. Acad. Sci. USA, 112 (18), 5809-5814 (2015)
    DOI: 10.1073/pnas.1424514112
  9. Phenotype-based clustering of glycosylation-related genes by RNAi-mediated gene silencing.
    Yamamoto-Hino,M., Yoshida,H., Ichimiya,T., Sakamura,S., Maeda,M., Kimura,Y., Sasaki,N., Aoki-Kinoshita,K.Y, Kinoshita-Toyoda,A., Toyoda,H., Ueda,R., Nishihara,S., and Goto,S.
    Genes Cells, 20 (6), 521-542 (2015)
    DOI: 10.1111/gtc.12246
  10. Cisterna-specific localization of glycosylation-related proteins to the Golgi apparatus.
    Yamamoto-Hino,M., Abe,M., Shibano,T., Setoguchi,Y., Awano,W., Ueda.R., Okano,H. and Goto,S.
    Cell Struct. Funct., 37, 55-63 (2012)
    DOI: dx.doi.org/10.1247/csf.11037
  11. Identification of proteasome components required for apical localization of Chaoptin using functional genomics.
    Yano,H., Yamamoto-Hino,M., Awano,W., Aoki-Kinoshita,K.F., Tsuda-Sakurai,K., Okano,H. and Goto,S.
    J. Neurogenet., 26, 53-63 (2012)
    DOI: 10.3109/01677063.2012.661497
  12. AP-1 clathrin adaptor and CG8538/Aftiphilin are involved in Notch signaling during eye development in Drosophila melanogaster.
    Kametaka,S., Kametaka,A., Yonekura,S., Haruta,M., Takenoshita,S., Goto,S. and Waguri,S.
    J. Cell Sci., 125, 634-648 (2012)
    DOI: 10.1242/jcs.090167
  13. Multistage MS/MS information obtained by deconvolution of energy-resolved mass spectra acquired by triple-quadrupole mass spectrometry.
    Kanie,O., Kanie,Y., Daikoku,S., Shioiri,Y., Kurimoto,A., Mutsuga,S., Goto,S., Ito,Y. and Suzuki,K.
    Rapid Commun. Mass Spectrom., 25, 1617-1624 (2011)
    DOI: 10.1002/rcm.5031
  14. Fluorescence-monitored zero dead-volume nanoLC-microESI-QIT-TOF MS for analysis of fluorescently tagged glycosphingolipids.
    Daikoku,S., Ono,Y., Ohtake,A., Hasegawa,Y., Fukusaki,E., Suzuki,K., Ito,Y., Goto,S. and Kanie,O.
    Analyst, 136, 1046-1050 (2011)
    DOI: 10.1039/C0AN00715C
  15. Identification of genes required for neural-specific glycosylation using functional genomics.
    Yamamoto-Hino,M., Kanie,Y., Awano,W., Aoki-Kinoshita,K.F., Yano,H., Nishihara,S., Okano,H., Ueda,R., Kanie,O. and Goto,S.
    PLoS Genetics, 6, e1001254 (2010)
    DOI: 10.1371/journal.pgen.1001254
  16. Balanced ubiquitylation and deubiquitylation of Frizzled regulate cellular responsiveness to Wingless/Wnt.
    Mukai,A., Yamamoto-Hino,M., Awano,W., Watanabe,W., Komada,M. and Goto,S.
    The EMBO J., 29, 2114-2125 (2010)
    DOI: 10.1038/emboj.2010.100
  17. Autophagy-dependent rhodopsin degradation prevents retinal degeneration in Drosophila.
    Midorikawa,R., Yamamoto-Hino,M., Awano,W., Hinohara,Y., Ueda,R. and Goto,S.
    J. Neurosci., 30, 10703-10719 (2010)
    DOI: 10.1523/JNEUROSCI.2061-10.2010
  18. Membrane protein location-dependent regulation by PI3K (III) and Rabenosyn-5 in Drosophila wing cells.
    Abe,M., Setoguchi,Y., Tanaka,T., Awano,W., Takahashi,K., Ueda,R., Nakamura,A. and Goto,S.
    PLoS ONE, 4, e7306 (2009)
    DOI: 10.1371/journal.pone.0007306
  19. Spatial and temporal regulation of glycosylation during Drosophila eye development.
    Yano,H., Yamamoto-Hino,M. and Goto,S.
    Cell. Tissue Res., 336, 137-147 (2009)
    DOI: 10.1007/s00441-009-0753-6
  20. Insight into the regulation of glycan synthesis in Drosophila chaoptin based on mass spectrometry.
    Kanie,Y., Yamamoto-Hino,M., Karino,Y., Yokozawa,H., Nishihara,S., Ueda,R., Goto,S. and Kanie,O.
    PLoS ONE, 4, e5434 (2009)
    DOI: 10.1371/journal.pone.0005434
  21. N-Glycosylation of the Drosophila neural protein Chaoptin is essential for its Stability, Cell Surface Transport and Adhesive Activity.
    Hirai-Fujita,Y., Yamamoto-Hino,M., Kanie,O. and Goto,S.
    FEBS Letters, 582, 2572-2576 (2008)
    DOI: 10.1016/j.febslet.2008.06.028
  22. Sequential enzymatic glycosyltransfer reactions on a microfluidic device: Synthesis of a glycosaminoglycan linkage region tetrasaccharide.
    Ono,Y., Kitajima,M., Daikoku,S., Shiroya,T., Nishihara,S., Kanie,Y., Suzuki,K., Goto,S. and Kanie,O.
    Lab. Chip, 8, 2168-2173 (2008)
  23. Comparative RP-HPLC for rapid identification of glycopeptides and application in off-line LC-MALDI-MS analysis.
    Kanie,Y., Enomoto,A., Goto,S. and Kanie,O.
    Carbohydr. Res., 343, 758-768 (2008)
  24. Distinct functional units of the Golgi complex in Drosophila cells.
    Yano,H., Yamamoto-Hino,M., Abe,M., Kuwahara,R., Haraguchi,S., Kusaka,I., Awano,W., Kinoshita-Toyoda,A., Toyoda,H. and Goto,S.
    Proc. Natl. Acad. Sci. USA 102, 13467-13472 (2005)
    DOI: 10.1073/pnas.0506681102
  25. Approach for functional analysis of glycan using RNA interference.
    Nishihara,S., Ueda,R., Goto,S., Toyoda,H., Ishida,H. and Nakamura,M.
    Glycoconj. J., 21, 63-68 (2004)
  26. The role of Wg signaling in the patterning of embryonic leg primordium in Drosophila.
    Kubota, K., Goto, S. and Hayashi, S.
    Dev. Biol. 257, 117-126 (2003)
  27. Molecular Cloning and Identification of 3'-Phosphoadenosine 5'-Phosphosulfate Transporter.
    Kamiyama,S., Suda,T., Ueda,R., Suzuki,M., Okubo,R., Kikuchi,N., Chiba,Y., Goto,S., Toyoda,H., Saigo,K., Watanabe,M., Narimatsu,H., Jigami,Y. and Nishihara,S.
    J. Biol. Chem. 278, 25958-25963 (2003)
  28. Distinct developmental modes and lesion-induced reactions of dendrites of two classes of Drosophila sensory neurons.
    Sugimura,K., Yamamoto,M., Niwa,R., Sato,D.H., Yamaguchi,Y., Goto,S., Taniguchi,M., Hayashi,S. and Uemura,T.
    J. Neurosci. 23, 3752-3760 (2003)
  29. GETDB, a database compiling expression patterns and molecular locations of a collection of Gal4 enhancer traps.
    Hayashi,S., Ito,K., Sado,Y., Taniguchi,M., Akimoto,A., Takeuchi,H., Aigaki,T., Matsuzaki,F., Nakagoshi,H., Tanimura,T., Ueda,R., Uemura,T., Yoshihara,M. and Goto,S.
    Genesis 34, 58-61 (2002)
  30. UDP-sugar transporter implicated in glycosylation and processing of Notch.
    Goto,S., Taniguchi,M., Muraoka,M., Toyoda,H., Sado,Y., Kawakita,M. and Hayashi,S.
    Nature Cell Biol. 3, 816-822 (2001)
  31. EGF receptor attenuates Dpp signaling and helps to distinguish the wing and leg cell fates in Drosophila.
    Kubota,K., Goto,S., Eto,K. and Hayashi,S.
    Development 127, 3769-3776 (2000)
  32. Proximal to distal cell communication in the Drosophila leg provides a basis for an intercalary mechanism of limb patterning.
    Goto,S. and Hayashi,S.
    Development 126, 3407-3413 (1999)
  33. p38 mitogen-activated protein kinase can be involved in transforming growth factor-β superfamily signal transduction in Drosophila wing morphogenesis.
    Adachi-Yamada,T., Nakamura,M., Irie,K., Sano,Y Tomoyasu,Y., Sano,Y., Mori,E., Goto,S., Ueno,N., Nishida,Y. and Matsumoto,K.
    Mol. Cell. Biol. 19, 2322-2329 (1999)
  34. Cell migration within the embryonic limb primordium of Drosophila revealed by a novel fluorescence method to visualized mRNA and protein.
    Goto,S. and Hayashi,S.
    Dev. Genes Evol. 207, 194-198 (1997)
  35. Specification of the embryonic limb primordium by graded activity of Decapentaplegic.
    Goto,S. and Hayashi,S.
    Development 124, 125-132 (1997)
  36. Enhancer-trap detection of transcription patterns corresponding to the polar coordinate system in the imaginal discs of Drosophila melanogaster.
    Goto,S., Tanimura,T. and Hotta,Y.
    Roux's Arch. Dev. Biol. 204 378-391 (1995)
  37. Purification, characterization, and amino acid sequences of pepsinogens and pepsins from the esophageal mucosa of bullfrog.
    Yakabe,E., Tanji,M., Ichinose,M., Goto,S., Miki,K., Kurokawa,K., Ito,H., Kageyama,T. and Takahashi,K.
    J. Biol. Chem. 266, 22436-22443 (1991)
  38. Isolation of Drosophila genomic clones homologous to the eel sodium channel gene.
    Okamoto,H., Sakai,K., Goto,S., Takasu-Ishikawa, E. and Hotta, Y.
    Proc. Japan Acad. 63, 284-288 (1987)

著書

  1. Localization of glycosyl enzymes and nucleotide-sugar transporters in the endoplasmic reticulum and the Golgi apparatus.
    Yamamoto-Hino,M. and Goto,S.
    In “Glycoscience: Biology and Medicine”
    Taniguchi, N. et al. ed.
    SpringerReference, Heidelberg (2014)
    https://link.springer.com/referenceworkentry/10.1007/978-4-431-54836-2_48-1
    DOI: 10.1007/978-4-431-54836-2_48-1
  2. Structure, Function and Formation of Glycans in Drosophila.
    Yamamoto-Hino,M., Okano,H., Kanie,O. and Goto,S.
    In “Glycans: Biochemistry, Characterization and Applications.” pp.165-188
    Mora Montes, H. M. ed.
    Nova Science publishers, Inc., NY (2012)
  3. 「EGF経路」「ERK/MAPK経路」「Hedgehogシグナル」「AKT」(分担)
    岩波生物学辞典、
    岩波書店(2012)
  4. 「ゴルジ体(糖修飾の場として)」(分担)
    生化学辞典
    朝倉書店
  5. 「成虫原基」
    後藤聡、谷村禎一
    新生化学実験講座「発生・分化・老化」pp.68-73 (1992)

総説・解説

  1. 翻訳後修飾と選別輸送をつかさどる小胞体・ゴルジ体の“オルガネラ・ゾーン”
    後藤聡、山本(日野)美紀
    生体の科学 69(6), 551-555 (2018)
  2. In vivo RNAi-based screens: studies in model organisms.(査読有)
    Yamamoto-Hino,M. and Goto,S.
    Genes, 4, 646-665 (2013)
    DOI:10.3390/genes4040646
  3. ユビキチン化によるFrizzledのリソソーム分解を介したWntシグナル強度の制御
    Daocharad Burana、後藤聡、駒田雅之
    細胞工学 特集 「Wnt協奏曲」 32, 396-400 (2013)
  4. Balanced ubiquitination determines cellular responsiveness to extracellular stimuli.(査読有)
    Mukai,A., Yamamoto-Hino,M., Komada.M., Okano,H. and Goto,S.
    Cellular and Molecular Life Sciences, 69, 4007-4016 (2012)
    DOI: 10.1007/s00018-012-1084-4
  5. 受容体のユビキチン化と脱ユビキチン化を介した細胞のWnt応答性の制御
    駒田雅之、後藤聡
    細胞工学 29, 1237-1243 (2010)
  6. ショウジョウバエにおけるメンブレントラフィック
    阿部将人、後藤聡
    蛋白質核酸酵素 53, 2193-2199 (2008)
  7. 糖鎖修飾の場—ゴルジ体ユニットによる糖鎖修飾の制御
    後藤聡
    蛋白質核酸酵素 53, 1475-1479 (2008)
  8. Regulation of glycosylation by Golgi units.(査読有)
    Goto,S.
    Trends in Glycoscience and Glycotechnology 18, 377-382 (2006)
  9. 発生のおける小胞輸送の役割
    後藤聡
    実験医学 21, 136-141 (2003)
  10. ショウジョウバエ脚のパターン形成、近遠軸形成機構
    後藤聡、林茂生
    実験医学 17, 306-312 (1999)
  11. 発生研究のための蛍光プローブによるmRNAとタンパク質の二重染色法
    後藤聡、林茂生
    実験医学 16, 523-527 (1998)
  12. Dpp, Wgによるショウジョウバエの翅・肢誘導と近遠軸形成
    後藤聡、林茂生
    実験医学 15, 342-349 (1997)